首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  1. Quantifying the contributions of insect pollinators to crops provides insight into how pollination services should be managed and protected into the future.
  2. Faba bean, Vicia faba var minor (Linneaus), is a widely grown crop globally that can benefit from pollinator visitation, but only from species that are morphologically compatible with the plant's long-corollae flowers. Here, we rank insect pollinators in terms of their potential importance to faba bean pollination and quantify the economic value of pollination for Irish faba beans.
  3. Our findings demonstrate that bee pollination contributes significantly to the pod set of faba beans, and, consequently, the crop's production value. We find that pollination services account for almost half of Ireland's total faba bean market value, with the pollinator contribution estimated at almost €4,000,000 per year.
  4. We estimate that, relative to other pollinators, wild bumblebees contribute to approximately 70% of the economic value of pollination services in faba bean fields, driven mainly by the contributions of a long-tongued bumblebee species, Bombus hortorum (Linneaus; Hymenoptera: Apidae).
  5. Based on these results, we suggest that B. hortorum populations be encouraged on farmland through appropriate management to ensure the continued delivery of pollination services to Irish faba beans.
  相似文献   

2.
Abstract: In selected foraging habitats of an agricultural landscape flower visits of bumblebees and community structure of foraging bumblebees were studied, with special regard to the role of crops as super-abundant resources. Most crops represent temporal foraging habitats with high abundance of bumblebees but mainly with low diversity in the bumblebee forage community, in contrast to permanent foraging habitats such as, for example, a hedgerow. The high numbers of bumblebees in the monoculture of crop plantations consisted mainly of short-tongued bumblebee species. The role of foraging distances for the visitation rate of foraging habitats was studied by performing capture–recapture experiments with natural nests of Bombus terrestris , Bombus lapidarius and Bombus muscorum . Differences were found on the species as well as the individual level. The foraging distances of B. muscorum were more restricted to the neighbourhood of the nesting habitat than the foraging activity of B. terrestris and B. lapidarius . High percentages of B. terrestris workers were recaptured while foraging on super-abundant resources in distances up to 1750 m from the nest. Isolated patches of highly rewarding forage crops, in agricultural landscapes, are probably only accessed by bumblebee species with large mean foraging distances, such as the short-tongued B. terrestris . Species like the rare, long-tongued B. muscorum depend on a close connection between nesting and foraging habitat. A restricted foraging radius might be one important factor of bumblebee species loss and potential pollinator limitation in modern agricultural landscapes. Furthermore, long-distance flights of bumblebee pollinators have to be considered in the present discussion on gene flow from transgenic plant species on a landscape scale.  相似文献   

3.
Increasing cultivation of oilseed rape may have consequences for pollinators and wild plant pollination. By providing pollinating insects with pollen and nectar, oilseed rape benefits short-tongued, generalist insect species. Long-tongued bumble bee species, specialized to other flower types, may instead be negatively affected by increased competition from the generalists (e.g. due to nectar-robbing of long-tubed flowers) after oilseed rape flowering has ceased. We expected that the increased abundance of short-tongued pollinators and reduced abundance of long-tongued bumble bees in landscapes with a high proportion of oilseed rape would impact the pollination of later flowering wild plant species. In addition, we expected contrasting effects on plants pollinated by short-tongued pollinators and those pollinated by long-tongued bumble bees. We predicted that semi-natural grasslands, which provide insects with alternative floral resources, would reduce both negative and positive effects on pollination by mitigating competition between pollinators.In 16 semi-natural grasslands, surrounded by agricultural landscapes, with a variation in both the proportion of oilseed rape and the proportion of semi-natural grassland within 1 km, we studied reproductive output in two species of potted plants with different pollination strategies: the woodland strawberry (Fragaria vesca) and red clover (Trifolium pratense). The first species is mainly pollinated by short-tongued pollinators, e.g. hoverflies and solitary bees, and the latter by long-tongued bumble bees. Both species flowered after oilseed rape.Strawberry weight was higher in landscapes with a high proportion of oilseed rape, but only in landscapes with a low proportion of semi-natural grassland. The proportion of developed achenes was also positively related to the proportion of oilseed rape, but only during the latest flowering period. In contrast, red clover seed set was unrelated to the proportion of oilseed rape. Whereas the discrepancy between the two strawberry measurements calls for further research, this study suggests that oilseed rape can affect later flowering plants and that the impact differs among species.  相似文献   

4.
The Bombus sensu stricto species complex is a widespread group of cryptic bumblebee species which are important pollinators of many crops and wild plants. These cryptic species have, until now, largely been grouped together in ecological studies, and so little is known about their individual colony densities, foraging ranges or habitat requirements, which can be influenced by land use at a landscape scale. We used mass-flowering oilseed rape fields as locations to sample bees of this complex, as well as the second most common visitor to oilseed rape B. lapidarius, and molecular RFLP methods to distinguish between the cryptic species. We then used microsatellite genotyping to identify sisters and estimate colony densities, and related both proportions of cryptic species and their colony densities to the composition of the landscape surrounding the fields. We found B. lucorum was the most common member of the complex present in oilseed rape followed by B. terrestris. B. cryptarum was also present in all but one site, with higher proportions found in the east of the study area. High numbers of bumblebee colonies were estimated to be using oilseed rape fields as a forage resource, with B. terrestris colony numbers higher than previous estimates from non-mass-flowering fields. We also found that the cryptic species responded differently to surrounding landscape composition: both relative proportions of B. cryptarum in samples and colony densities of B. lucorum were negatively associated with the amount of arable land in the landscape, while proportions and colony densities of other species did not respond to landscape variables at the scale measured. This suggests that the cryptic species have different ecological requirements (which may be scale-dependent) and that oilseed rape can be an important forage resource for many colonies of bumblebees. Given this, we recommend sustainable management of this crop to benefit bumblebees.  相似文献   

5.
Identifying and quantifying crop stressors interactions in agroecosystems is necessary to guide sustainable crop management strategies. Over the last 50 years, faba bean cropping area has been declining, partly due to yield instabilities associated with uneven insect pollination and herbivory. Yet, the effect of interactions between pollinators and a key pest, the broad bean beetle Bruchus rufimanus (florivorous and seed predating herbivore) on faba bean yield has not been investigated. Using a factorial cage experiment in the field, we investigated how interactions between two hypothesized stressors, lack of insect pollination by bumblebees and herbivory by the broad bean beetle, affect faba bean yield. Lack of bumblebee pollination reduced bean weight per plant by 15%. Effects of the broad bean beetle differed between the individual plant and the plant‐stand level (i.e., when averaging individual plant level responses at the cage level), likely due to high variation in the level of herbivory among individual plants. At the individual plant level, herbivory increased several yield components but only in the absence of pollinators, possibly due to plant overcompensation and/or pollination by the broad bean beetle. At the plant‐stand level, we found no effect of the broad bean beetle on yield. However, there was a tendency for heavier individual bean weight with bumblebee pollination, but only in the absence of broad bean beetle herbivory, possibly due to a negative effect of the broad bean beetle on the proportion of legitimate flower visits by bumblebees. This is the first experimental evidence of interactive effects between bumblebees and the broad bean beetle on faba bean yield. Our preliminary findings of negative and indirect associations between the broad bean beetle and individual bean weight call for a better acknowledgment of these interactions in the field in order to understand drivers of crop yield variability in faba bean.  相似文献   

6.
Coexistence in bumblebee communities has largely been investigated at local spatial scales. However, local resource partitioning does not fully explain the species diversity of bumblebee communities. Theoretical studies provide new evidence that partitioning of space can promote species coexistence, when species interact with their environment at different spatial scales. If bumblebee species possess specific foraging ranges, different spatial resource utilisation patterns might operate as an additional mechanism of coexistence in bumblebee communities. We investigated the effects of the landscape-wide availability of different resources (mass flowering crops and semi-natural habitats) on the local densities of four bumblebee species at 12 spatial scales (landscape sectors with 250–3,000 m radius) to indirectly identify the spatial scales at which the bumblebees perceive their environment. The densities of all bumblebee species were enhanced in landscapes with high proportions of mass flowering crops (mainly oilseed rape). We found the strongest effects for Bombus terrestris agg. and Bombus lapidarius at large spatial scales, implying foraging distances of 3,000 and 2,750 m, respectively. The densities of Bombus pascuorum were most strongly influenced at a medium spatial scale (1,000 m), and of Bombus pratorum (with marginal significance) at a small spatial scale (250 m). The estimated foraging ranges tended to be related to body and colony sizes, indicating that larger species travel over larger distances than smaller species, presumably enabling them to build up larger colonies through a better exploitation of food resources. We conclude that coexistence in bumblebee communities could potentially be mediated by species-specific differences in the spatial resource utilisation patterns, which should be considered in conservation schemes.  相似文献   

7.
Mass flowering crops enhance pollinator densities at a landscape scale   总被引:10,自引:3,他引:7  
To counteract the decline of pollinators in Europe, conservation strategies traditionally focus on enhancing the local availability of semi‐natural habitats, as supported by the European Union's Common Agriculture Policy. In contrast, we show that densities of bumblebees, an important pollinator group in agroecosystems, were not determined by the proportion of semi‐natural habitats in agricultural landscapes. Instead, bumblebee densities were positively related to the availability of highly rewarding mass flowering crops (i.e. oilseed rape) in the landscape. In addition, mass flowering crops were only effective determinants of bumblebee densities when grown extensively at the landscape scale, but not at smaller local scales. Therefore, future conservation measures should consider the importance of mass flowering crops and the need for management schemes at landscape level to sustain vital pollination services in agroecosystems.  相似文献   

8.
Honey bees and wild bees provide critical pollination services to agricultural ecosystems; however, the relative contributions of different bee taxa are not well understood. The natural habitats surrounding farmland support food and nesting resources for wild bees and therefore play an important role in the maintenance of crop pollination. In this study, we selected Cucurbita pepo L. (squash) as a model crop to investigate the relative importance of honey bees and bumblebees in pollinating the crop. Thirteen fields, which were surrounded by a gradient of natural habitat, were investigated on the Yunnan‐Guizhou Plateau in China. We measured the visit densities of honey bees and bumblebees, the number of pollen grains deposited in a single visit by the two bee taxa, as well as the overall pollen grains deposited on stigmas during a flowering day, and then used Bayesian inference to decouple the pollen grains deposited by either the honey bees or the bumblebees. Compared with honey bees, bumblebees deposited a higher number of pollen grains on stigmas in a single visit, but had a lower visit density than honey bees. Meanwhile, the bumblebee visit density increased along the proportion of natural habitat, while the honey bee visit density was not affected by the surrounding natural habitat. Data simulations using Bayesian inference showed that on a flowering day, the number of pollen grains deposited by bumblebees increased with the proportion of natural habitat in the surrounding landscape, but the number of pollen grains deposited by honey bees did not. Moreover, the total numbers of pollen grains deposited by honey bees or bumblebees alone were all below 2000 (the critical level to satisfy the pollination requirement of this crop). Pollen calculations demonstrated that the number of pollen grains deposited by the two bee taxa was greater than 2000 in fields surrounded by more than 13% natural habitat (grasslands and forests). The results revealed that bumblebees ensured C. pepo pollination in combination with honey bees in the highland agricultural ecosystems.  相似文献   

9.
Foraging distance is a key determinant of colony survival and pollination potential in bumblebees Bombus spp. However this aspect of bumblebee ecology is poorly understood because of the difficulty in locating colonies of these central place foragers. Here, we used a combination of molecular microsatellite analyses, remote sensing and spatial analyses using kernel density estimates to estimate nest location and foraging distances for a large number of wild colonies of two species, and related these to the distribution of foraging habitats across an experimentally manipulated landscape. Mean foraging distances were 755 m for Bombus lapidarius and 775 m for B. pascuorum (using our most conservative estimation method). Colony‐specific foraging distances of both species varied with landscape structure, decreasing as the proportion of foraging habitats increased. This is the first time that foraging distance in wild bumblebees has been shown to vary with resource availability. Our method offers a means of estimating foraging distances in social insects, and informs the scale of management required to conserve bumblebee populations and enhance their pollination services across different landscapes.  相似文献   

10.
Land-use intensification and loss of semi-natural habitats have induced a severe decline of bee diversity in agricultural landscapes. Semi-natural habitats like calcareous grasslands are among the most important bee habitats in central Europe, but they are threatened by decreasing habitat area and quality, and by homogenization of the surrounding landscape affecting both landscape composition and configuration. In this study we tested the importance of habitat area, quality and connectivity as well as landscape composition and configuration on wild bees in calcareous grasslands. We made detailed trait-specific analyses as bees with different traits might differ in their response to the tested factors. Species richness and abundance of wild bees were surveyed on 23 calcareous grassland patches in Southern Germany with independent gradients in local and landscape factors. Total wild bee richness was positively affected by complex landscape configuration, large habitat area and high habitat quality (i.e. steep slopes). Cuckoo bee richness was positively affected by complex landscape configuration and large habitat area whereas habitat specialists were only affected by the local factors habitat area and habitat quality. Small social generalists were positively influenced by habitat area whereas large social generalists (bumblebees) were positively affected by landscape composition (high percentage of semi-natural habitats). Our results emphasize a strong dependence of habitat specialists on local habitat characteristics, whereas cuckoo bees and bumblebees are more likely affected by the surrounding landscape. We conclude that a combination of large high-quality patches and heterogeneous landscapes maintains high bee species richness and communities with diverse trait composition. Such diverse communities might stabilize pollination services provided to crops and wild plants on local and landscape scales.  相似文献   

11.
Understanding the effects of local and landscape factors on bumblebees is relevant for the conservation of this group of pollinators. Bumblebees have been well-studied in agricultural landscapes of Western Europe, Asia and North America, but few studies have been developed on bumblebees in forest-dominated landscapes of Eastern Europe. We developed this study in 22 semi-natural meadows located in a patchy forested landscape of Estonia. We investigated the influence of habitat characteristics and landscape factors (calculated at four spatial scales: 250, 500, 1,000 and 2,000 m radius) on the total species richness and abundance of bumblebees. Correlation analysis, partial least squares (PLS) and stepwise forward-selection multiple regression analysis were applied in this study. The presence of a high diversity of flowering plants in semi-natural meadows may benefit the abundance of bumblebees. At the local level, patch area and shape seem to have positive and negative influences, respectively, on bumblebee species richness. At the landscape level, human settlements with the presence of gardens may favour bumblebee richness and abundance. Also, bumblebee species may increase with a high presence of meadows in the landscape, and may decrease with high percentages of forest and young forest. Overall, forested landscapes with a strong presence of edges and a diverse matrix may support a higher species richness and abundance of bumblebees. Both local and landscape factors should be considered when designing conservation strategies and agri-environmental measures.  相似文献   

12.
Although agricultural habitats can provide enormous amounts of food resources for pollinator species, links between agricultural and (semi-)natural habitats through dispersal and foraging movements have hardly been studied. In 67 study sites, we assessed the interactions between mass-flowering oilseed rape fields and semi-natural grasslands at different spatial scales, and their effects on the number of brood cells of a solitary cavity-nesting bee. The probability that the bee Osmia bicornis colonized trap nests in oilseed rape fields increased from 12 to 59 % when grassland was nearby, compared to fields isolated from grassland. In grasslands, the number of brood cells of O. bicornis in trap nests was 55 % higher when adjacent to oilseed rape compared to isolated grasslands. The percentage of oilseed rape pollen in the larval food was higher in oilseed rape fields and grasslands adjacent to oilseed rape than in isolated grasslands. In both oilseed rape fields and grasslands, the number of brood cells was positively correlated with the percentage of oilseed rape pollen in the larval food. We show that mass-flowering agricultural habitats—even when they are intensively managed—can strongly enhance the abundance of a solitary bee species nesting in nearby semi-natural habitats. Our results suggest that positive effects of agricultural habitats have been underestimated and might be very common (at least) for generalist species in landscapes consisting of a mixture of agricultural and semi-natural habitats. These effects might also have—so far overlooked—implications for interspecific competition and mutualistic interactions in semi-natural habitats.  相似文献   

13.
Modifications of landscape structure and composition can decrease the availability of floral resources, resulting in the decline of many pollinator species, including bumblebees. These declines may have significant ecological consequences, because bumblebees pollinate a large range of plant species. Our study was carried out in heathlands, open semi-natural habitats that have decreased considerably due to human activities. We analysed how floral resources affect bumblebee communities throughout the colony lifetime at three scales: plot scale, heathland patch scale, and landscape scale. Floral density at the plot scale and spruce plantations at the landscape scale influenced bumblebee communities. The abundance of bumblebees on ericaceous species was higher when the landscape included a substantial proportion of unsuitable foraging habitat (i.e., spruce plantations). Both life history traits and colony life cycle stage influenced bumblebee responses to the availability of floral resources. Bumblebees were more affected by floral resources during the colony development phase than during the nest-foundation or mating phases. Moreover, bumblebees of species that form large colonies needed larger quantities of favourable foraging habitat, compared with small-colony bees, and their proportion decreased in habitats dominated by spruce plantations. In conclusion, the conservation of plant–bumblebee interactions will require management at a larger spatial scale than the restricted protected habitats. Moreover, at the landscape scale, both quantity of favourable foraging patches and their ecological continuity are important to conserve both small- and large- colony species.  相似文献   

14.
Floral resource quantity in agricultural landscapes plays a key role in the persistence of wild pollinators. An equally important, but less investigated factor is how variation in floral resource availability over time, e.g. floral resource pulses, affects pollinator abundances and diversity. Despite the potential importance of late-season resource pulses for bumblebee reproduction, few studies have evaluated the effects of late-season mass-flowering crops on bumblebee abundances and diversity during and after crop bloom. We assessed how bumblebee abundances, diversity and traits associated with species rarity were affected by cultivation of late-season mass-flowering red clover grown for seed production. Bumblebees were surveyed in red clover fields and flower-rich field borders across 20 landscapes with or without a red clover field during and after crop bloom in southern Sweden. Bumblebee worker abundances were higher in clover fields compared to flower-rich borders in the surrounding landscape. There was no relationship between presence of clover fields and the abundance of males of social bumblebees, but more male cuckoo bumblebees were found in flower-rich borders in landscapes with clover following crop bloom. Mass-flowering red clover also had a positive effect on bumblebee species richness and diversity after crop bloom. Overall, clover had positive and lasting effects on less common bumblebees thereby sustaining higher bumblebee species richness after bloom. Cultivation of red clover has the potential, in combination with the management of flower-rich habitats, to benefit less common bumblebee species in temperate agroecosystems.  相似文献   

15.
Providing ample nectar and pollen, mass-flowering crops were suggested to counteract ongoing pollinator declines in modern agro-ecosystems. Lately, however, positive effects were shown to be transient and highly trait-specific within the social bumblebees. Contrary to bumblebees, solitary wild bees may benefit more sustainably from mass-flowering crops due to a better seasonal match of the mass provision of resources and their sexual reproduction. We quantified reproductive activity and reproductive output of the polylectic solitary bee Osmia rufa during and after mass-flowering in landscapes with differing amounts of oilseed rape and semi-natural habitats. Across seasons, the number of produced offspring increased with availability of oilseed rape and semi-natural habitats while brood abortion decreased with the former and parasitation with the latter. Season-specific analyses suggest that increased nest-building during mass-flowering of oilseed rape early in the season outweighs negative effects on the number of cells per nest and the percentage of parasitized cells once the mass-flowering has ceased. No effect on number of cells per nest during mass-flowering and exemplary pollen analysis indicate that oilseed rape benefits solitary bees in the form of abundant nectar for foraging flights rather than pollen for brood provisioning. Besides providing permanent forage and nesting sites, semi-natural elements seem to benefit pollinators also by mitigating negative effects of parasitation, potentially via enhanced hyperparasitism. In conclusion, O. rufa clearly benefits from mass-flowering oilseed rape. Yet, the outweighing of the negative post-flowering effects by the early benefits of oilseed rape is tightly linked to the bee's polylecty and early phenology. Thus, it remains to be tested if species unable to utilize oilseed rape due to mismatched oligolecty or later phenology suffer disproportionally from the post-flowering phase of oilseed rape.  相似文献   

16.
Abstract.  1. Although pollen is a vital nutritional resource for honey bees, Apis mellifera , the influence of pollen quality on their foraging behaviour is little understood.
2. In choice-test experiments, bees showed no innate pollen-foraging preferences, but preferred oilseed rape Brassica napus pollen over field bean Vicia faba pollen after previous foraging experience of oilseed rape.
3. The free amino acid content of oilseed rape and field bean pollen was compared using high-performance liquid chromatography. Oilseed rape pollen contained a greater proportion of the most essential amino acids required by honey bees (valine, leucine, and isoleucine) than field bean, suggesting that oilseed rape pollen is of greater nutritional quality for honey bees than is field bean pollen.
4. Honey bee foraging preferences appeared to reflect pollen quality. The hypothesis that pollen amino acid composition affects the foraging behaviour of honey bees is discussed.  相似文献   

17.
18.
The viability of wild bee populations and the pollination services that they provide are driven by the availability of food resources during their activity period and within the surroundings of their nesting sites. Changes in climate and land use influence the availability of these resources and are major threats to declining bee populations. Because wild bees may be vulnerable to interactions between these threats, spatially explicit models of population dynamics that capture how bee populations jointly respond to land use at a landscape scale and weather are needed. Here, we developed a spatially and temporally explicit theoretical model of wild bee populations aiming for a middle ground between the existing mapping of visitation rates using foraging equations and more refined agent‐based modeling. The model is developed for Bombus sp. and captures within‐season colony dynamics. The model describes mechanistically foraging at the colony level and temporal population dynamics for an average colony at the landscape level. Stages in population dynamics are temperature‐dependent triggered by a theoretical generalized seasonal progression, which can be informed by growing degree days. The purpose of the LandscapePhenoBee model is to evaluate the impact of system changes and within‐season variability in resources on bee population sizes and crop visitation rates. In a simulation study, we used the model to evaluate the impact of the shortage of food resources in the landscape arising from extreme drought events in different types of landscapes (ranging from different proportions of semi‐natural habitats and early and late flowering crops) on bumblebee populations.  相似文献   

19.
Agri-environment schemes, like flower fields, have been implemented in the EU to counteract the dramatic decline of farmland biodiversity. Farmers in Lower Saxony, Germany, may receive payments for three flower field types: annual, perennial (five years old), and mixed flower fields composed of yearly alternating annual and biannual parts. We assessed the effectiveness of these flower field types in providing bumblebee foraging habitat compared to control cereal fields. We sampled bumblebees with transect walks and assessed the richness of exploited pollen plants using DNA meta-barcoding and direct observations.All flower field types enhanced bumblebee abundance and species richness compared to control fields but attracted mostly three generalist species. Although we expected highest benefits from the more heterogeneous mixed flower fields, abundance was highest in annual, only intermediate in mixed, and lowest in perennial flower fields. Bumblebee species richness did not differ between flower field types.Overall, the proportion of sown plants in pollen loads was surprisingly low (< 50%). Bombus pascuorum, but not B. terrestris agg., exploited 10% of the sown plant species in perennial, 36% in annual and 45% in mixed flower fields, respectively. Compared to direct observations, pollen samples revealed 4.5 times more visited plant species and thus assessed floral resource use more reliably. Plant species richness in pollen loads decreased with local flowering plant species richness and increased with proportion of annual crops in the landscape, potentially due to the exploitation of more diverse and scattered resources, including flowering crops, in homogenized landscapes to fulfil dietary requirements.Our results indicate that under the current management, both annual and mixed flower fields provide the most attractive food resources, while perennial flower fields offered the poorest foraging habitats. Conclusively, flower fields seem important but resources from the surrounding landscape are still needed to sustain bumblebees in agricultural landscapes.  相似文献   

20.
Christina M. Kennedy  Eric Lonsdorf  Maile C. Neel  Neal M. Williams  Taylor H. Ricketts  Rachael Winfree  Riccardo Bommarco  Claire Brittain  Alana L. Burley  Daniel Cariveau  Luísa G. Carvalheiro  Natacha P. Chacoff  Saul A. Cunningham  Bryan N. Danforth  Jan‐Hendrik Dudenhffer  Elizabeth Elle  Hannah R. Gaines  Lucas A. Garibaldi  Claudio Gratton  Andrea Holzschuh  Rufus Isaacs  Steven K. Javorek  Shalene Jha  Alexandra M. Klein  Kristin Krewenka  Yael Mandelik  Margaret M. Mayfield  Lora Morandin  Lisa A. Neame  Mark Otieno  Mia Park  Simon G. Potts  Maj Rundlf  Agustin Saez  Ingolf Steffan‐Dewenter  Hisatomo Taki  Blandina Felipe Viana  Catrin Westphal  Julianna K. Wilson  Sarah S. Greenleaf  Claire Kremen 《Ecology letters》2013,16(5):584-599
Bees provide essential pollination services that are potentially affected both by local farm management and the surrounding landscape. To better understand these different factors, we modelled the relative effects of landscape composition (nesting and floral resources within foraging distances), landscape configuration (patch shape, interpatch connectivity and habitat aggregation) and farm management (organic vs. conventional and local‐scale field diversity), and their interactions, on wild bee abundance and richness for 39 crop systems globally. Bee abundance and richness were higher in diversified and organic fields and in landscapes comprising more high‐quality habitats; bee richness on conventional fields with low diversity benefited most from high‐quality surrounding land cover. Landscape configuration effects were weak. Bee responses varied slightly by biome. Our synthesis reveals that pollinator persistence will depend on both the maintenance of high‐quality habitats around farms and on local management practices that may offset impacts of intensive monoculture agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号