首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Deletions of the glutathione S-transferase genes M1 and T1 (GSTM1 and GSTT1) have been studied as potential risk factors for prostate cancer. Conflicting results have been obtained. Moreover, most such studies could not discriminate heterozygous from homozygous carriers of the non-deleted alleles.

Objective

We investigated whether copy number variation (CNV) of the GSTM1 and/or GSTT1 genes contribute to the risk of prostate cancer in the Caribbean population of African descent of Guadeloupe.

Methods

In a population-based case-control study, we compared 629 prostate cancer patients and 622 control subjects. Logistic regression was used to estimate adjusted odds ratios (OR) and 95% confidence intervals (CI). Exact copy numbers of GSTM1 and GSTT1 were determined by real-time PCR.

Results

A higher copy number of GSTM1 was marginally associated with prostate cancer risk. Men with 2 and 3 or more GSTT1 genes were at higher risk of prostate cancer (OR: 1.55, 95% CI: 1.11–2.16 and OR: 4.89, 95% CI: 1.71–13.99, respectively; Ptrend<0.001). Men with 3, 4 and 5 or more copies of both GSTM1 and GSTT1 genes were at higher risk of prostate cancer (OR: 2.18, 95% CI: 1.21–3.91, OR: 3.24, 95% CI: 1.63–6.46, and OR: 5.77, 95% CI: 1.40–23.84, respectively; Ptrend<0.001).

Conclusions

Copy number of GSTT1 and combined GSTM1/GSTT1 appear to be associated with prostate cancer risk in our population study with gene dose relationship. Our results support the hypothesis that variations in copy number of GSTT1 modulate the risk of prostate cancer.  相似文献   

2.

Objective

Glutathione-S-transferases (GSTs) play an important role in tobacco smoke detoxification, interestingly approximately 50% of individuals in most human populations lack the gene GSTM1 due to copy number variation (CNV). We aimed to investigate GSTM1 CNV in Rheumatoid Arthritis (RA) in relation to smoking and HLA-DRB1 shared epitope; the two best known risk factors for RA and in addition, to perform subanalyses in patients where relations between variations in GSTM1 and RA have previously been described.

Methods

qPCR was performed using TaqMan Copy Number assays (Applied Biosystems) for 2426 incident RA cases and 1257 controls from the Swedish EIRA. Odds ratio (OR) together with 95% confidence intervals (CI) was calculated and used as a measure of the relative risk of developing RA.

Results

No association between RA and GSTM1 CNV was observed when analyzing whole EIRA. However, ≥1 copy of GSTM1 appears to be a significant risk factor for autoantibody positive RA in non-smoking females ≥60 years (OR: 2.00 95% CI: 1.07–3.74), a population where such relationships have previously been described. Our data further suggest a protective effect of GSTM1 in ACPA-negative smoking men (OR: 0.56 95% CI: 0.35–0.90).

Conclusion

We assessed the exact number of GSTM1 gene copies in relation to development and severity of RA. Our data provide support for the notion that variations in copy numbers of GSTM1 may influence risk in certain subsets of RA, but do not support a role for GSTM1 CNV as a factor that more generally modifies the influence of smoking on RA.  相似文献   

3.
Purpose: GSTM1 and GSTT1 present a polymorphism that can drive complete gene deletions. The current methodology can powerfully determine GSTM1 and GSTT1 copy number variations (CNVs), which may clarify the real contribution of each gene copies to the cellular detoxification process and tumour risk. However, only analysing the presence/absence of these genes yielded controversial results for several disorders, including cancer. Because head and neck cancer (HNC) is becoming a serious global health problem, this study determined the CNVs of GSTM1 and GSTT1 in an HNC case-control population and investigated the possible association between gene copy numbers and tumour risk.

Methods: CNV was evaluated by (Ct) 2?ΔΔCt qPCR methodology in 619 HNC patients and 448 patients with no tumour diagnosis.

Results: The genes copy number range was 0–3. The CNV of GSTM1 and GSTT1 frequencies were similar between the cases and control. Thus, none copy of GSTM1 and GSTT1 were associated with HNC risk. Notwithstanding, one copy of both genes had higher frequencies among individuals who carried GSTM1 and GSTT1.

Conclusions: One copy number of GSTM1 and GSTT1 presented a higher frequency among carrier genes, but the CNV of GSTM1 and GSTT1 was not associated with HNC risk.  相似文献   


4.
The glutathione S-transferase (GST) supergene family is an important part of cellular enzyme defense against endogenous and exogenous chemicals, many of which have carcinogenic potential. The present investigation was conducted to detect a possible association between polymorphisms at the GSTM1, GSTT1, and GSTP1 genes and the interaction with cigarette smoking and colorectal cancer incidence. We examined 181 patients with colorectal cancer and 204 controls. DNA was extracted from whole blood, and the GSTM1, GSTT1, and GSTP1 polymorphisms were determined using a real-time polymerase chain reaction and fluorescence resonance energy transfer with a Light-Cycler instrument. Associations between specific genotypes and the development of colorectal cancer were examined by use of logistic regression analysis to calculate odds ratios (OR) and 95% confidence intervals (CI). The GSTM1 polymorphism was associated with an increased risk of developing colorectal cancer (OR = 1.62, 95% CI: 1.06–2.46). Also the risk of colorectal cancer associated with the GSTT1 null genotype was 1.64 (95% CI: 1.10–2.59). Statistically no differences were found between patients with colorectal cancer and control groups for the GSTP1 Ile/Ile, Ile/Val and Val/Val genotypes. In addition, the frequencies of the GSTM1 and GSTT1 deletion genotypes differed significantly between the cases and controls for current smokers; the GSTT1 null genotype especially is associated with a greater risk of colorectal cancer (OR = 2.44, 95% CI: 1.24–4.81). The GSTM1 and GSTT1 deletions were associated with an increased risk of developing a transverse or rectal tumor (OR = 1.86, 95% CI: 1.15–3.00; OR = 1.70, 95% CI: 1.02–2.84; respectively). The glutathione S-transferase polymorphisms were not associated with risk in patients stratified by age. The risk of colorectal cancer increased as putative high-risk genotypes increased for the combined genotypes of GSTM1 null, GSTT1 null, and either GSTP1 valine heterozygosity or GSTP1 valine homozygosity (OR = 2.69, 95% CI: 1.02–7.11). In conclusion, the results obtained in this study clearly suggest that those susceptibility factors related to different GST polymorphic enzymes are predisposing for colorectal cancer.  相似文献   

5.
Diabetes mellitus (DM) is a common disease which results from various causes including genetic and environmental factors. Glutathione S-Transferase M1 (GSTM1) and Glutathione S-Transferase T1 (GSTT1) genes are polymorphic in human and the null genotypes lead to the absence of enzyme function. Many studies assessed the associations between GSTM1/GSTT1 null genotypes and DM risk but reported conflicting results. In order to get a more precise estimate of the associations of GSTM1/GSTT1 null genotypes with DM risk, we performed this meta-analysis. Published literature from PubMed, Embase and China Biology Medicine (CBM) databases was searched for eligible studies. Pooled odds ratios (OR) and corresponding 95% confidence intervals (95%CI) were calculated using a fixed- or random-effects model. 11 publications (a total of 2577 cases and 4572 controls) were finally included into this meta-analysis. Meta-analyses indicated that null genotypes of GSTM1/GSTT1 and dual null genotype of GSTM1–GSTT1 were all associated with increased risk of DM (GSTM1: OR random-effects = 1.60, 95%CI 1.10–2.34, POR = 0.014; GSTT1: OR random-effects = 1.47, 95%CI 1.12–1.92, POR = 0.005; GSTM1–GSTT1: OR fixed-effects = 1.83, 95%CI 1.30–2.59, POR = 0.001). Subgroup by ethnicity suggested significant associations between null genotypes of GSTM1 and GSTT1 and DM risk among Asians (GSTM1: OR random-effects = 1.77, 95%CI 1.24–2.53, POR = 0.002; GSTT1: OR random-effects = 1.58, 95%CI 1.09–2.27, POR = 0.015). This meta-analysis suggests null genotypes of GSTM1/GSTT1 and dual null genotype of GSTM1–GSTT1 are all associated with increased risk of DM, and null genotypes of GSTM1/GSTT1 and dual null genotype of GSTM1–GSTT1 are potential biomarkers of DM.  相似文献   

6.
The results from the published studies on the association between glutathione S-transferases (GST) gene polymorphism and hepatocellular carcinoma (HCC) in Asian population are still conflicting. GSTM1, GSTT1 and GSTP1 are the mainly mutant sites reported at present. This meta-analysis was performed to evaluate the relationship between GST gene polymorphism and HCC risk in Asians. Association studies were identified from the databases of PubMed, Embase, Cochrane Library and CBM-disc (China Biological Medicine Database) on February 1, 2012, and eligible investigations were synthesized using meta-analysis method. Results were expressed with odds ratios (OR) for dichotomous data, and 95?% confidence intervals (CI) were also calculated. Twenty-five investigations were identified for the analysis of association between polymorphic deletion of GSTM1 and HCC, consisting of 3,547 patients with HCC and 6,132 controls. There was a marked association between GSTM1 null genotype and HCC susceptibility (OR 1.48, 95?% CI 1.19–1.85, P?=?0.0004). GSTM1 null genotype was associated with HCC risk in Chinese. Furthermore, null genotype of GSTT1 was associated with HCC susceptibility in Asians. For the GSTM1–GSTT1 interaction analysis, the dual null genotype of GSTM1/GSTT1 was significantly associated with HCC susceptibility in Asian population. However, GSTP1 ile105?val gene polymorphism was not associated with HCC risk in Asian population. In conclusion, GSTM1/GSTT1 null genotype is associated with the HCC susceptibility. However, GSTP1 gene polymorphism is not associated with HCC risk.  相似文献   

7.
Polymorphism in glutathione S-transferase (GST) genes (GSTM1, GSTT1 and GSTP1) and interaction with environmental factors such as tobacco (smoking or chewing) and alcohol on susceptibility to head and neck squamous cell carcinoma (HNSCC) was studied in a case-control study. The study group consisted of 175 patients suffering from HNSCC and 200 age matched healthy controls. Statistical analysis showed an increase in risk to HNSCC in the patients with null genotype of GSTM1 (OR: 2.02; 95% CI: 1.32-3.10; P=0.001) or GSTT1 (OR: 1.66; 95% CI: 1.02-2.69; P=0.04), though the risk was not found to be significant when adjusted for age, sex, smoking, tobacco chewing or alcohol use by multivariate logistic regression model. Our data further showed that combination of deletion genotypes of GST (GSTM1 and GSTT1) confer an even higher risk of HNSCC. Interestingly, GSTP1 wild type genotype in combination with GSTM1 null or GSTT1 null genotype increased susceptibility for HNSCC (OR: 2.49 and 2.75, respectively). Likewise a much greater risk for HNSCC was observed in the patients carrying a genotype combination of GSTM1 null, GSTT1 null and GSTP1 (Ile/Ile) (OR: 4.47; 95% CI: 1.62-12.31; P=0.002). Our data have further provided evidence that tobacco chewing and alcohol consumption are the important risk factors for HNSCC. The interaction between tobacco chewing and null genotype of GSTM1 or GSTT1 resulted in about 3.5- and 2.2-fold increase in the risk respectively in the patients when compared to those not chewing tobacco. Alcohol use resulted in more than 4-fold increase in the risk in the patients with null genotype of GSTM1 as compared to those who are non-drinkers. Alcohol consumption also increased the risk (approx. 3-fold) in the cases with null genotype of GSTT1, though the association was not found to be significant when compared to non-drinkers. Our data have provided evidence that GST polymorphism modifies the susceptibility to HNSCC and have further demonstrated importance of gene-environment interaction in modulating the risk to HNSCC.  相似文献   

8.
Several molecular epidemiological studies have been conducted to examine the association between glutathione S-transferase mu-1 (GSTM1) and glutathione S-transferase theta-1 (GSTT1) null polymorphisms and childhood acute leukemia; however, the conclusions remain controversial. We performed an extensive meta-analysis on 26 published case-control studies with a total of 3252 cases and 5024 controls. Crude odds ratios (ORs) with 95% confidence interval were used to assess the strength of association between childhood acute leukemia risk and polymorphisms of GSTM1 and GSTT1. With respect to GSTM1 polymorphism, significantly increased risk of childhood acute leukemia was observed in the overall analysis (OR = 1.30; 95%CI, 1.11-1.51). Furthermore, a stratification analysis showed that the risk of GSTM1 polymorphism are associated with childhood acute leukemia in group of Asians (OR = 1.94; 95%CI, 1.53-2.46), Blacks (OR = 1.76; 95%CI, 1.07-2.91), ALL (OR = 1.33; 95%CI, 1.13-1.58), ‘< 100 cases and <100 controls’ (OR = 1.79; 95%CI, 1.21-2.64), ‘≥ 100 cases and ≥ 100 controls’ (OR = 1.25; 95%CI, 1.02-1.52), and population-based control source (OR = 1.40; 95%CI, 1.15-1.69). With respect to GSTT1 polymorphism, significant association with childhood acute leukemia risk was only found in subgroup of Asian. This meta-analysis supports that GSTM1 null polymorphism is capable of causing childhood acute leukemia susceptibility.  相似文献   

9.
Bronchopulmonary dysphasia (BPD) is a complex multifactorial disease with an obvious genetic predisposition. Oxidative stress plays an important role in its pathogenesis. Glutathione S-transferases (GSTs) detoxify metabolites produced by oxidative stress within the cell and protect the cells against injury. In the present study, the hypothesis that polymorphisms in the GSTM1 and GSTT1 genes are associated with BPD in Chinese Han infants was examined. Sixty infants with BPD and 100 gestational age and birth weight-matched preterm infants without BPD were recruited. Genotyping for GSTM1 and GSTT1 was performed by multiplex polymerase chain reaction (PCR). The GSTM1 null genotype was more prevalent in BPD infants (65.0%) than in the control subjects (48.0%), which yielded higher risk towards BPD (odds ratio (OR): 2.012, 95% confidence interval (CI) = 1.040–3.892, p = 0.037). There was no statistically significant association of GSTT1 genotype with BPD (OR: 1.691, 95% CI = 0.884–3.236, p = 0.111), although the frequency of GSTT1 null genotype was higher among the BPD subjects (60.0%) than in the control patients (47.0%). GSTM1 and GSTT1 double null genotype was also higher in BPD group (38.3%) than in controls (21.0%) with a higher risk towards BPD (OR: 2.338, 95%CI = 1.151–4.751, p = 0.017). The results suggest that null genotypes of GSTM1 and GSTT1 genes may contribute to the development of BPD in our Chinese Han population.  相似文献   

10.
The Glutathione S-transferases (GSTs) polymorphisms have been implicated in susceptibility to male idiopathic infertility, but study results are still controversial. To investigate the genetic associations between GSTs polymorphisms and risk of male idiopathic infertility, a systematic review and meta-analysis were performed. Meta-analysis was performed by pooling odds ratio (OR) with its corresponding 95 % confidence interval (95 % CI) form studies in electronic databases up to March 16, 2012. Glutathione S-transferase M 1 (GSTM1) null genotype, Glutathione S-transferase T 1 (GSTT1) null genotype, and dual null genotype of GSTM1/GSTT1 were analyzed independently. 14 eligible studies with a total of 1,845 idiopathic infertility males and 1,729 controls were included. There were 13 studies on GSTM1 polymorphism, 10 ones on GSTT1 polymorphism and 5 ones on GSTM1-GSTT1 interaction analysis. Meta-analyses of total relevant studies showed GSTM1 null genotype was significantly associated with an increased risk of male idiopathic infertility (OR = 1.40, 95 % CI 1.07–1.84, P OR = 0.015). The GSTM1-GSTT1 interaction analysis showed dual null genotype of GSTM1/GSTT1 was also significantly associated with increased risk of male idiopathic infertility (OR = 1.85, 95 % CI 1.07–3.21, P OR = 0.028). Subgroup analyses by ethnicity showed the associations above were still statistically significant in Caucasians (For GSTM1, OR = 1.51, 95 % CI 1.11–2.05, P OR = 0.009; For GSTM1/GSTT1, OR = 2.10, 95 % CI 1.51–2.91, P OR < 0.001). This meta-analysis suggests GSTM1 null genotype contributes to increased risk of male idiopathic infertility in Caucasians, and males with dual null genotype of GSTM1/GSTT1 are particularly susceptible to developing idiopathic infertility.  相似文献   

11.

Background and Objectives

The GSTM1, GSTT1 and GSTP1 polymorphisms might be involved in inactivation of procarcinogens that contribute to the genesis and progression of cancers. However, studies investigating the association between GSTM1, GSTT1 or GSTP1 polymorphisms and prostate cancer (PCa) risk report conflicting results, therefore, we conducted a meta-analysis to re-examine the controversy.

Methods

Published literature from PubMed, Embase, Google Scholar and China National Knowledge Infrastructure (CNKI) were searched (updated to June 2, 2012). According to our inclusion criteria, studies that observed the association between GSTM1, GSTT1 or GSTP1 polymorphisms and PCa risk were included. The principal outcome measure was the odds ratio (OR) with 95% confidence interval (CI) for the risk of PCa associated with GSTM1, GSTT1 and GSTP1 polymorphisms.

Results

Fifty-seven studies involving 11313 cases and 12934 controls were recruited. The overall OR, which was 1.2854 (95% CI = 1.1405–1.4487), revealed a significant risk of PCa and GSTM1 null genotype, and the similar results were observed when stratified by ethnicity and control source. Further, the more important is that the present study first reported the high risks of PCa for people who with dual null genotype of GSTM1 and GSTT1 (OR = 1.4353, 95% CI = 1.0345–1.9913), or who with GSTT1 null genotype and GSTP1 A131G polymorphism (OR = 1.7335, 95% CI = 1.1067–2.7152). But no association was determined between GSTT1 null genotype (OR = 1.102, 95% CI = 0.9596–1.2655) or GSTP1 A131G polymorphism (OR = 1.0845, 95% CI = 0.96–1.2251) and the PCa risk.

Conclusions

Our meta-analysis suggested that the people with GSTM1 null genotype, with dual null genotype of GSTM1 and GSTT1, or with GSTT1 null genotype and GSTP1 A131G polymorphism are associated with high risks of PCa, but no association was found between GSTT1 null genotype or GSTP1 A131G polymorphism and the risk of PCa. Further rigorous analytical studies are highly expected to confirm our conclusions and assess gene-environment interactions with PCa risk.  相似文献   

12.
Background:Myocardial infarction is one of the leading causes of morbidity and mortality worldwide. Oxidative stress plays a vital role in the pathogenesis of atherosclerosis leading to myocardial infarction and Glutathione S-transferases (GSTs) act as detoxifying enzymes to reduce oxidative stress. The aim of the present study was to investigate the associations of the GST (T1 & M1) gene polymorphism with the susceptibility of myocardial infarction in the Bangladeshi population.Methods:A case-control study on 100 cardiac patients with MI and 150 control subjects was conducted. The genotyping of GST (T1 & M1) gene was done using conventional Polymerase Chain Reaction.Results:The percentage of GSTM1 genotypes was significantly (p< 0.01) lower in patients compared to control subjects while the GSTT1 genotypes were not significantly different between the study subjects. The individual with GSTM1 null allele was at 2.5-fold increased risk {odds ratio (OR)= 2.5; 95 % confidence interval (95 % CI)= 1.4 to 4.3; p< 0.01} of experiencing MI while individual with either GSTM1 or GSTT1 genotypes was at lower risk. In the case of GST M1 and GST T1 combined genotype, patients having both null genotypes for GST M1 and GST T1 gene showed significantly (p< 0.01) higher risk of experiencing MI when compared to control subjects (OR= 3.5; 95% CI= 1.7–7.2; p< 0.001). Conclusion:Thus our recent study suggested that GSTM1 alone and GSTM1 and T1 in combination augments the risk of MI in Bangladeshi population. Key Words: Bangladesh, GST (T1 & M1), Myocardial infarction, PCR, Polymorphism  相似文献   

13.
In the present study, we investigated whether the polymorphisms of glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) genes are risk factors of cataract among Iranian population in a molecular epidemiological way. Blood samples from 150 subjects with cataract (72 male; 78 female) and 150 age- and sex-matched healthy persons were collected. Both patient and control groups were unrelated Iranian Muslims. Using PCR-based method, the genotypes were determined. The null GSTM1 genotype was associated with a 2.38-fold increase in the risk of developing cataract (OR=2.38; 95% CI=1.46-3.89; P = 0.0003). After stratification by sex of subjects, the association was apparent only among women (OR=3.20; 95% CI=1.58-6.52; P = 0.0007). The GSTT1 null genotype was associated with a 1.10-fold increased risk of developing cataract, but this association was not statistically significant. After stratification by sex of subjects, same results were obtained. Female patients with null genotype for GSTM1 and no history of smoking had a 3.45-fold increased cataract risk (P < 0.05), whereas females who were null for GSTM1 and having history of smoking were not at increased risk of cataract.  相似文献   

14.
Studies investigating the associations between glutathione S-transferase (GST) genetic polymorphisms and primary open-angle glaucoma (POAG) have reported controversial results. Therefore, a meta-analysis was performed to clarify the effects of GSTM1 and GSTT1 polymorphisms on POAG risk. Published literatures from PubMed, EMBASE, ISI Web of Science and CBM databases were retrieved. All studies evaluating the association between GSTM1/GSTT1 polymorphisms and POAG were included. Pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using fixed- or random-effects model. Eleven studies on GSTM1 (1339 cases and 1412 controls) and seven studies on GSTT1 (958 cases, 1003 controls) were included. Overall analysis showed that the association between GSTM1 and GSTT1 null genotype and POAG risk is not statistically significant. Subgroup analyses showed that the null genotype of GSTM1 increased the risk of POAG in Asians. In GSTM1GSTT1 interaction analysis, individuals with dual null genotype were associated with a significantly increased risk of POAG when compared with the dual present genotype. In conclusion, the present meta-analysis suggested that GSTM1 null genotypes are associated with increased POAG risk in Asian populations but not in Caucasian and mixed populations. Dual null genotype of GSTM1/GSTT1 is associated with increased risk of POAG. Given the limited sample size, the finding on GST polymorphisms needs further investigation.  相似文献   

15.
Glutathione S-transferases (GSTs) belong to a superfamily of detoxification enzymes that provide critical defences against a large variety of chemical carcinogens and environmental toxicants. GSTs are present in most epithelial tissues of the human gastrointestinal tract. We investigated associations between genetic variability in specific GST genes (GSTM1, GSTT1 and GSTP1), the interaction with cigarette smoking and susceptibility to gastric cancer. The GSTM1, GSTT1 and GSTP1 polymorphisms were determined using real-time polymerase chain reaction (PCR) and fluorescence resonance energy transfer with Light Cycler Instrument. The study included 70 patients with gastric cancer and 204 controls. Associations between specific genotypes and the development of gastric cancer were examined by use of logistic regression to calculate odds ratios (OR) and 95% confidence intervals (CI). The GSTM1 homozygous null genotype was associated with an increased risk of developing gastric cancer (OR = 1.73; 95% CI = 1.10-3.04). GSTT1 homozygous null genotype and GSTP1 genotypes were not associated with the risk of gastric cancer. Also there was no difference between cases and controls in the frequency of val-105 and ile-105 alleles (p = 0.07). After grouping according to smoking status, GSTM1 null genotype was associated with an increased gastric cancer risk for smokers (OR = 2.15; 95% CI, 1.02-4.52). There were no significant differences in the distributions of any of the other GST gene combinations. Our findings suggest that the GSTM1 null genotype may be associated with an increased susceptibility to gastric cancer.  相似文献   

16.
Glutathione S-transferases (GSTs) M1 and T1 are known to be polymorphic in humans. Both polymorphisms are due to gene deletions which are responsible for the existence of null genotypes. Previous studies have suggested that GST genotypes may play a role in determining susceptibility to a number of unrelated cancers, including lung cancer. The GSTM1 and GSTT1 polymorphisms were determined by PCR-based analysis in 75 lung cancer patients and 55 controls. The unconditional logistic regression analysis was used to calculate ORs and 95% CI. The frequencies of GSTM1 and GSTT1 null genotypes were 37.3 and 22.7% in lung cancer patients and 27.3 and 16.4% in controls, respectively. When analyzed by histology the GSTM1 null genotype was more prevalent in squamous-cell carcinoma and adenocarcinoma patients. Whereas, GSTT1 null genotype frequency was lower in small-cell lung cancer patients than controls. But these differences were not statistically significant. According to smoking status, null genotype for both gene are associated with an increase in risk for lung cancer. Our results suggest that GSTM1 and GSTT1 polymorphisms may play a role in the development of lung cancer for some histological subtypes and modifies the risk of smoking-related lung cancer.  相似文献   

17.
Myocardial infarction (MI), which is the most important manifestation of coronary artery disease, is the leading cause of morbidity and mortality in the world. Glutathione S transferases (GSTs) are enzymes responsible for the metabolism of numerous xenobiotics and are known to be polymorphic in humans. We investigated the association between the GSTM1 and GSTT1 gene polymorphisms and MI. The study consists of 296 healthy controls and 324 consecutive patients who had undergone coronary angiography for suspicion of coronary artery disease and with a past history of myocardial infarction. DNA was extracted from whole blood of patient and control. GSTM1 and GSTT1 gene polymorphisms were examined using multiplex PCR. We found that the null GSTM1 was associated with protective effect on MI, although this increase was not significant for GSTM1 (p < 0.054). However, GSTT1 genotype was associated with an increase in the risk of developing MI. In addition to after adjusting other all coronary risk factors, the interactive effect of GSTT1 null genotype remained statistically significant (p < 0.001) for MI disease but GSTM1 null genotype was not statistically significant. Patients, who smoke having the null genotypes of GSTM1, were at a higher risk for developing MI (p < 0.001, OR = 0.41, 95 % CI = 0.240–0.207). There was an effect of interaction of GSTM1 null genotype and smoking on MI development between patient and control groups (p < 0.001). Our results showed that individuals with the null genotypes for GSTM1 had protective effect, while GSTT1 was at a higher risk for MI disease. In addition, there was additional effects of smoking when smoking and non-smoking groups were compared.  相似文献   

18.
Prostate cancer (PCa) is the most commonly diagnosed cancer in the developed world, and the incidence of this cancer is rising rapidly in many countries. Several polymorphic genes encoding enzymes involved carcinogenesis have been studied as potential risk factor of prostate cancer. Genetic polymorphisms in glutathione S-transferases M1 (GSTM1), T1 (GSTT1) and P1 (GSTP1) genes have been constantly reported to have a meaningful effect on prostate cancer risk. But other surveys of this relationship have yielded inconsistent results. To assess the possible contribution of the GSTM1, GSTT1, and GSTP1 gene polymorphisms in prostate cancer, we performed a population-based study of 139 prostate cancer patients and 115 healthy controls based on their genotype distributions of the genes. There were no differences in distributions of genotype frequencies of GSTM1 and GSTP1 polymorphisms between prostate cancer patients and controls (OR 1.60, 95 % CI 0.886–2.860 for GSTM1 and OR 1.38, 95 % CI 0.739–2.577 for GSTP1). In contrast, the distribution of GSTT1-null genotype is significantly different between the prostate cancer case and controls (OR 0.26, 95 % CI 0.128–0.518, p < 0.001). Meanwhile, GSTP1 I/V and V/V genotypes were significantly associated with prostate cancer where the PSA level was more than 10.0 (OR 2.73, 95 % CI 1.319–5.639, p = 0.006). Thus, our data imply that the GSTT1-null genotype may not be a risk factor but a protective factor of prostate cancer and GSTP1 Val allele is a risk factor for the prostate cancer where the PSA level was high, although functional studies with larger sample size are necessary to elucidate these findings.  相似文献   

19.
Tuberculosis (TB) is one of the most important concerns of public health. There is evidence suggesting that genetic status is responsible for predisposition to infectious diseases including TB. To determine genetic risk factors of TB development, the frequencies of polymorphisms of genes CYP1A1, CYP2D6, CYP2C9, CYP2C19, GSTT1, GSTM1, NAT2, MDR1, and NRAMP1 in 73 TB patients and 352 healthy individuals were determined by allele-specific hybridizatio n using microarray technology. The TB patients have shown a significant increase in the frequency of the null GSTT1 genotype (OR = 3.26, 95% CI = 1.91–5.55, p = 0.000028) as well as the double null GSTT1/GSTM1 genotype (OR = 4.05, 95% CI = 2.14-7.65,p = 0.000034) compared to the group of healthy donors. It was shown that the NAT2* 5/* 5 genotype in combination with the “null” GSTT1 and the double “null” GSTT1/GSTM1 genotypes was observed significantly more often in the TB patients than in the control sample. Thus the examined GSTT1, GSTM1 and NAT2 gene polymorphisms may potentially alter the risk of TB development in ethnic Russians and are of interest for further research using larger cohorts of patients.  相似文献   

20.
Diabetes Mellitus is characterized by chronic hyperglycemia and associated with an increased production of reactive oxygen species (ROS). Oxidative stress is the result of accumulation of free radicals in tissues which specially affects beta cells in pancreas. Glutathione S-transferases (GSTs) are a family of antioxidant enzymes that include several classes of GSTs. These enzymes have important roles in decreasing of ROS species and act as a kind of antioxidant defense. To investigate the association between GSTs polymorphism with type 2 diabetes mellitus (T2DM), we investigated the frequency of GSTM1, T1 and P1 genotypes in patients with T2DM and controls. The genotypes of GSTT1, M1 and P1 were determined in 171 clinically documented T2DM patients and 169 normal cases (as controls) by multiplex polymerase chain reaction and PCR–RFLP. In diabetic patients, the frequency of GSTM1-null genotype was significantly (OR?=?1.74; 95?% CI?=?1.13–2.69, P?=?0.016) higher than that in control. However, the frequency of GSTT1 (OR?=?1.29; 95?% CI?=?0.07–2.14, P?=?0.367) and GSTP1 (OR?=?0.83; 95?% CI?=?0.53–1.30, P?=?0.389) genotypes were not significantly different comparing both groups. Also, the frequency of both GSTT1-null and GSTM1-null genotypes in patients (19.88?%) was significantly higher compared to controls with the same genotypes (11.83?%, P?=?0.022). Our results indicated that GSTM1 and GSTT1 genotypes might be involved in the pathogenesis of T2DM in south Iranian population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号