首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Micrococcus luteus, also known as M. luteus, is a bacterium that inhabits mucous membranes, human skin, and various environmental sources. It is commonly linked to infections, especially among individuals who have compromised immune systems. M. luteus is capable of synthesizing the enzyme superoxide dismutase (SOD) as a component of its protective response to reactive oxygen species (ROS). This enzyme serves as a promising target for drug development in various diseases. The current study utilized a subtractive genomics approach to identify potential therapeutic targets from M. luteus. Additionally, genome mining was employed to identify and characterize the biosynthetic gene clusters (BGCs) responsible for the production of secondary metabolites in Bacillus licheniformis (B. licheniformis), a bacterium known for its production of therapeutically relevant secondary metabolites. Subtractive genomics resulted in identification of important extracellular protein SOD as a drug target that plays a crucial role in shielding cells from damage caused by ROS. Genome mining resulted in identification of five potential ligands (secondary metabolites) from B. licheniformis such as, Bacillibactin (BAC), Paenibactin (PAE), Fengycin (FEN), Surfactin (SUR) and Lichenysin (LIC). Molecular docking was used to predict and analyze the binding interactions between these five ligands and target protein SOD. The resulting protein–ligand complexes were further analyzed for their motions and interactions of atoms and molecules over 250 ns using molecular dynamics (MD) simulation analysis. The analysis of MD simulations suggests, Bacillibactin as the probable candidate to arrest the activities of SOD. All the five compounds reported in this study were found to act by directly/indirectly interacting with ROS molecules, such as superoxide radicals (O2–) and hydrogen peroxide (H2O2), and transforming them into less reactive species. This antioxidant activity contributes to its protective effects against oxidative stress-induced damage in cells making them likely candidate for various applications, including in the development of antioxidant-based therapies, nutraceuticals, and functional foods.  相似文献   

2.
Testicular function and structure harmed by ageing. Goal of this research was to assess preventive actions of soy isoflavone oral administration for 8 weeks on testes of old male albino rats, and potential mechanisms of action. Adult control (N = 10) and elderly control (N = 10) rats were fed usual diet, while aged treatment group (N = 10) gave oral 100 mg/kg soy isoflavone daily for 8 weeks. ELISA kits were used to measure testosterone levels and oxidative stress indicators [malonaldehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD)] in serum. Aging produced functional and structural testicular changes and decreased ki67 proliferative marker immunoexpression versus adult control rats due to enhancement of oxidative stress. Soy isoflavone exerted protective effect on testicular function and structure as assessed by increase serum levels of testosterone and preserved histological structure and immune-expression features. These protected effects due to isoflavone antioxidant properties proved by decrease in serum values of MDA, while GSH and SOD were elevated after treatment. These data demonstrated protective effects of isoflavone against age changes in rat testes, by reducing oxidative stress and increasing antioxidants and testicular ki67 proliferative marker immunoexpression.  相似文献   

3.
4.
5.
Transient receptor potential vanilloid 1 (TRPV1) is known as a receptor of capsaicin, a spicy ingredient of chili peppers. It is also sensitive to a variety of pungent compounds and is involved in nociception. Here, we focused on the structural characteristics of capsaicin, and investigated whether vanillylmanderic acid (VMA), vanillic acid (VAcid), vanillyl alcohol (VAlc), vanillyl butyl ether (VBE), and vanillin, containing a vanillyl skeleton similar to capsaicin, affected the TRPV1 activities. For detection of TRPV1 activity, intracellular Ca2+ concentration ([Ca2+]i) was measured in HEK 293 cells heterologously expressing mouse TRPV1 (mTRPV1-HEK) and in mouse sensory neurons. Except for vanillin, four vanilloid analogues dose-dependently increased [Ca2+]i in mTRPV1-HEK. The solutions that dissolved VMA, VAcid and vanillin at high concentrations were acidic, whereas those of VAlc and VBE were neutral. Neutralized VAcid evoked [Ca2+]i increases but neutralized VMA did not. Mutation of capsaicin-sensing sites diminished [Ca2+]i responses to VAcid, VAlc and VBE. VAcid, VMA, and vanillin suppressed the activation of TRPV1 induced by capsaicin. VAcid and VMA also inhibited the acid-induced TRPV1 activation. In sensory neurons, VMA diminished TRPV1 activation by capsaicin or acids. The present data indicate that these structural characteristics of chemical compounds on TRPV1 may provide strategies for the development of novel analgesic drugs targeting nociceptive TRPV1.  相似文献   

6.
Cadmium (Cd) is often associated with reproductive disorders of mammals. Edible bird’s nest (EBN) is a natural food product made of swiftlet's salivary secretion used to make their nests and it has been consumed as a tonic food for decades. This research aimed to study the protective effects of EBN against Cd-induced uterine toxicity in Sprague Dawley rats. Thirty (30) female Sprague Dawley rats were assigned into five groups as follows: group 1- negative control (NC) received distilled water; group 2 - positive control (PC) administered with CdCl2, 5 mg/kg BW; while groups EBN-1, EBN-2, and EBN-3 received CdCl2 (5 mg/kg BW) plus graded concentrations of 60, 90 and 120 mg/kg BW of EBN, respectively. After four weeks of daily oral treatment, rats were euthanized to collect the uterus for evluations of histopathological changes, Cd concentrations and Metallothionein (MT) expressions using H&E stain, inductive coupled plasma mass spectrometry (ICP-MS) and immunohistochemistry, respectively. Blood samples were collected for superoxide dismutase (SOD) analysis using SOD assay kit. Results revealed that the CdCl2 without EBN supplement (PC) group had elevated levels of Cd in the uterus along with increased MT expressions and decreased SOD enzyme activity as compared to the NC group. Moreover, uterine histopathological changes, including glandular cysts and loss of normal structure of luminal epithelium (LE) and glandular epithelium (GE) were found in the PC group. Interestingly, groups treated with CdCl2 along with EBN (EBN1, EBN2, EBN3) showed lower levels of uterine tissue Cd deposition and MT expression, lower degenerative changes with normal histomorphology of glands, and increased SOD activity as compared to the PC group. Overall, the findings revealed that oral exposure to Cd at a dose of 5 mg/kg BW resulted in significant alterations in the rat's uterus. However, the toxicity effect was averted by EBN treatment in a dose dependant manner; highest protection achieved with EBN 120 mg/kg BW, through a possible detoxification mechanism and prevention of Cd deposition.  相似文献   

7.
The NOD-like receptor pyrin domain 3 (NLRP3) inflammasome is activated during atherogenesis, but how this occurs is unclear. Here, we explored the mechanisms activating and regulating NLRP3 inflammasomes via the acid sphingomyelinase (ASM)-ceramide signaling pathway. As a neointima formation model, partial left carotid ligations were performed on endothelial cell (EC)-specific ASM transgene mice (Smpd1trg/ECcre) and their control littermates (Smpd1trg/WT and WT/WT) fed on the Western diet (WD). We found neointima formation remarkably increased in Smpd1trg/ECcre mice over their control littermates. Next, we observed enhanced colocalization of NLRP3 versus adaptor protein ASC (the adaptor molecule apoptosis-associated speck-like protein containing a CARD) or caspase-1 in the carotid ECs of WD-treated Smpd1trg/ECcre mice but not in their control littermates. In addition, we used membrane raft (MR) marker flotillin-1 and found more aggregation of ASM and ceramide in the intima of Smpd1trg/ECcre mice than their control littermates. Moreover, we demonstrated by in situ dihydroethidium staining, carotid intimal superoxide levels were much higher in WD-treated Smpd1trg/ECcre mice than in their control littermates. Using ECs from Smpd1trg/ECcre and WT/WT mice, we showed ASM overexpression markedly enhanced 7-ketocholesterol (7-Ket)-induced increases in NLRP3 inflammasome formation, accompanied by enhanced caspase-1 activity and elevated interleukin-1β levels. These 7-Ket-induced increases were significantly attenuated by ASM inhibitor amitriptyline. Furthermore, we determined that increased MR clustering with NADPH oxidase subunits to produce superoxide contributes to 7-Ket-induced NLRP3 inflammasome activation via a thioredoxin-interacting protein-mediated controlling mechanism. We conclude that ceramide from ASM plays a critical role in NLRP3 inflammasome activation during hypercholesterolemia via MR redox signaling platforms to produce superoxide, which leads to TXNIP dissociation.  相似文献   

8.
9.
ObjectiveRadioresistance of tumor cells is a major factor associated with failure of radiotherapy (RT). This study aimed to investigate the effect of BRCA1 knockdown on MDA-MB231 breast cancer cell radiosensitivity.Materials and methodsShort hairpin RNA (shRNA) was used to knockdown BRCA1 gene in MDA-MB231 cells. Cell viability and proliferative capacity were assessed by CCK-8 and colony formation assays, respectively. We established xenograft models in nude mice to evaluate tumor volume and tumor weight. The mice were imaged by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) before and after RT to evaluate changes in maximum standardized uptake value (SUVmax) and tumor SUVmax/muscle SUVmax (TMR). Changes in HIF-1α, Glut-1 and Ki-67 were analyzed and the correlation between 18F-FDG uptake and tumor biology was analyzed.ResultsCompared with the control cells, RT significantly reduced cell viability and colony formation capacity in cells with the BRCA1 gene knockdown. In vivo assays showed that there was obvious delay in the tumor growth in the shBRCA1+RT group compared with the control group. 18F-FDG Micro PET/CT indicated a reduction in glucose metabolism in the shBRCA1+RT group, with statistically significant differences in both the SUVmax and TMR. The data showed the expression of HIF-1α, Glut-1 and Ki-67 was downregulated in the shBRCA1+RT group, and both SUVmax and TMR had significant correlation with tumor biology.ConclusionThese results demonstrated that BRCA1 knockdown improves the sensitivity of MDA-MB231 breast cancer cells to RT. In addition, 18F-FDG PET/CT imaging allows non-invasive analysis of tumor biology and assessment of radiosensitivity.  相似文献   

10.
Duckweed is recognized as a phytoremediation aquatic plant due to the production of large biomass and a high level of tolerance in stressed conditions. A laboratory experiment was conducted to investigate antioxidant response and mechanism of copper and mercury tolerance of S. polyrhiza (L.) Schleid. To understand the changes in chlorophyll content, MDA, proline, and activities of ROS-scavenging enzymes (SOD, CAT, GPOD) during the accumulation of Cu+2 and Hg+2, S. polyrhiza were exposed to various concentrations of Cu+2 (0.0–40 μM) and Hg+2 (0.0–0.4 μM). antioxidant activity initially indicated enhancing trend with application of 10 μM Cu+2; 0.2 μM Hg+2 (SOD), of 20 μM Cu+2; 0.2 μM Hg+2 (CAT) and of 10 μM Cu+2;0.2 μM Hg+2 (GPOD) and then decreased consistently up to 40 μM Cu+2 and 0.4 μM Hg+2. In the experiment chlorophyll and frond multiplication initially showed increasing tendency and decreased gradually with the application of increased metal concentration. Application of heavy metal has constantly enhanced proline and MDA content while the maximum increase was observed with the application of 40 μM Cu; 0.4 μM Hg for proline and MDA respectively. The upregulation of antioxidant enzymes and proline reveals that S. polyrhiza has strong biochemical strategies to deal with the heavy metal toxicity induced by the accumulation of Cu+2 and Hg+2.  相似文献   

11.
Foxtail millet (Pennisetum glaucum L.) is a vital crop that is planted as food and fodder crop around the globe. There is only limited information is present for abiotic stresses on the physiological responses to atrazine. A field experiment was conducted to investigate the effects of different atrazine dosages on the growth, fluorescence and physiological parameters i.e., malonaldehyde (MDA) and reactive oxygen species (ROS) (H2O2 and O2) in the leaves to know the extent of atrazine on oxidative damage of foxtail millet. Our experiment consisted of 0, 2.5, 12.5, 22.5 and 32.5 (mg/kg) of labeled atrazine doses on 2 foxtaill millet varieties. High doses of atrazine significantly enhanced ROS and MDA synthesis in the plant leaves. Enzymes activities like ascorbate peroxidase (APX) and peroxidase (POD) activities enhanced, while catalase (CAD) and superoxide dismutase (SOD) activities reduced with increasing atrazine concentrations. Finally atrazine doses at 32.5 mg/kg reduced chlorophyll contents, while chlorophyll (a/b) ratio also enhanced. Biomass, plant height, chlorophyll fluorescence parameters, minimal and maximal fluorescence (Fo, Fm), maximum and actual quantum yield, photochemical quenching coefficient, and electron transport rate are decreased with increasing atrazine doses.  相似文献   

12.
A search for the organisms responsible for anaerobic betaine degradation in soda lakes resulted in isolation of a novel bacterial strain, designated Z-7014T. The cells were Gram-stain-negative, non-endospore-forming rods. Growth occurred at 8–52 °C (optimum 40–45 °C), pH 7.1–10.1 (optimum pH 8.1–8.8) and 1.0–3.5 M Na+ (optimum 1.8 M), i.e. it can be regarded as a haloalkaliphile. The strain utilized a limited range of substrates, mostly peptonaceous but not amino acids, and was able to degrade betaine. Growth on betaine occurred only in the presence of peptonaceous substances which could not be replaced by vitamins. The G + C content of the genomic DNA of strain Z-7014T was 36.1 mol%. The major cellular fatty acids (>5% of the total) were C16:0 DMA, C18: 0 DMA, C16:1ω8, C16:0, C18:1 DMA, C16:1 DMA, C18:1ω9, and C18:0. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain Z-7014T formed a distinct evolutionary lineage in the order Halanaerobiales with the highest similarity to Halarsenitibacter silvermanii SLAS-1T (83.6%), Halothermothrix orenii H168T (85.6%), and Halocella cellulosilytica DSM 7362T (85.6%). AAI and POCP values between strain Z-7014T and type strains of the order Halanaerobiales were 51.7–57.8%, and 33.8–58.3%, respectively. Based on polyphasic results including phylogenomic data, the novel strain could be distinguished from other genera, which suggests that strain Z-7014T represents a novel species of a new genus, for which the name Halonatronomonas betaini gen. nov., sp. nov. is proposed. The type strain is Z-7014T (=KCTC 25237T = VKM B-3506T). On the basis of phylogenomic data, it is also proposed to evolve two novel families Halarsenitibacteraceae fam. nov. and Halothermotrichaceae fam. nov. within the current order Halanaerobiales.  相似文献   

13.
The purpose of this work was to investigate the protective effect of five essential oils (EOs); Rosmarinus officinalis, Thymus vulgaris, Origanum compactum Benth., Eucalyptus globulus Labill. and Ocimum basilicum L.; against oxidative stress induced by hydrogen peroxide in Saccharomyces cerevisiae. The chemical composition of the EOs was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). The in vitro antioxidant activity was evaluated and the protective effect of EOs was investigated. Yeast cells were pretreated with different concentrations of EOs (6.25–25 µg/ml) for an hour then incubated with H2O2 (2 mM) for an additional hour. Cell viability, antioxidants (Catalase, Superoxide dismutase and Glutathione reductase) and metabolic (Succinate dehydrogenase) enzymes, as well as the level of lipid peroxidation (LPO) and protein carbonyl content (PCO) were evaluated. The chemical composition of EOs has shown the difference qualitatively and quantitatively. Indeed, O. compactum mainly contained Carvacrol, O. basilicum was mainly composed of Linalool, T. vulgaris was rich in thymol, R. officinalis had high α-Pinene amount and for E. globulus, eucalyptol was the major compound. The EOs of basil, oregano and thyme were found to possess the highest amount of total phenolic compounds. Moreover, they have shown the best protective effect on yeast cells against oxidative stress induced by H2O2. In addition, in a dose dependent manner of EOs in yeast medium, treated cells had lower levels of LPO, lower antioxidant and metabolic enzymes activity than cells exposed to H2O2 only. The cell viability was also improved. It seems that the studied EOs are efficient natural antioxidants, which can be exploited to protect against damages and serious diseases related to oxidative stress.  相似文献   

14.
Hexavalent chromium, toxic heavy metal, among the top-rated environmental contaminants, is declared a potent endocrine disruptor in humans and animals. The present study was planned to find harmful effects on the reproductive system caused by Cr (VI) and the ameliorative effect of Nigella sativa and Nigella sativa-mediated AgNP on male mice (Mus musculus). In the present study, known infertility medicine, clomiphene citrate is also used as a positive control. The main objective of the present study was to assess the ameliorative potential of oral administration of a dose of 50 mg/kg BW clomiphene citrate (control), AgNP via chemical synthesis, Nigella sativa seed extract, and Nigella sativa-mediated AgNP against the Cr (VI) at the dose of 1.5 mg/kg BW from K2Cr2O7 orally induced toxicity over eight weeks on the reproductive performance of male albino mice. Nigella sativa mediated AgNPs were characterized by UV, SEM, FTIR, and XRD. The histological analysis, smear study, antioxidant capacity test, and hormone analysis were conducted by blood samples of albino mice. Cr exposed groups showed a significant decrease in sperm head breadth (5.29 ± 0.54 µ) and length (19.54 ± 1.18 µ), middle piece length, tail length, LH (1.65 ± 0.15 ng/mL), testosterone (2.63 ± 0.29 ng/mL), SOD (61.40 ± 2.48 mmol/mL), CAT (87.40 ± 6.01 mmol/mL), GSH (1.54 ± 0.09 µmol/mL), and no of spermatogonia (1.22 ± 0.25), and spermatocytes (2.33 ± 0.943). However, FSH level (160.00 ± 4.98 ng/mL), seminiferous tubule CSA (1094.69 ± 49.76 mm2), size of spermatogonia (41.30 ± 1.24 µ), and spermatocytes (26.07 ± 1.34 µ) were significantly increased. Administration of Nigella sativa and Nigella sativa-mediated AgNPs reduced the toxicity.  相似文献   

15.
Inhibition of microsomal prostaglandin E synthase-1 (mPGES-1) results in decreased production of proinflammatory PGE2 and can lead to shunting of PGH2 into the prostaglandin D2 (PGD2)/15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2) pathway. 15dPGJ2 forms Michael adducts with thiol-containing biomolecules such as GSH or cysteine residues on target proteins and is thought to promote resolution of inflammation. We aimed to elucidate the biosynthesis and metabolism of 15dPGJ2 via conjugation with GSH, to form 15dPGJ2-glutathione (15dPGJ2-GS) and 15dPGJ2-cysteine (15dPGJ2-Cys) conjugates and to characterize the effects of mPGES-1 inhibition on the PGD2/15dPGJ2 pathway in mouse and human immune cells. Our results demonstrate the formation of PGD2, 15dPGJ2, 15dPGJ2-GS, and 15dPGJ2-Cys in RAW264.7 cells after lipopolysaccharide stimulation. Moreover, 15dPGJ2-Cys was found in lipopolysaccharide-activated primary murine macrophages as well as in human mast cells following stimulation of the IgE-receptor. Our results also suggest that the microsomal glutathione S-transferase 3 is essential for the formation of 15dPGJ2 conjugates. In contrast to inhibition of cyclooxygenase, which leads to blockage of the PGD2/15dPGJ2 pathway, we found that inhibition of mPGES-1 preserves PGD2 and its metabolites. Collectively, this study highlights the formation of 15dPGJ2-GS and 15dPGJ2-Cys in mouse and human immune cells, the involvement of microsomal glutathione S-transferase 3 in their biosynthesis, and their unchanged formation following inhibition of mPGES-1. The results encourage further research on their roles as bioactive lipid mediators.  相似文献   

16.
This study aims to investigate the neuroprotective effects of Pyrola incarnata against β-amyloid-induced memory impairment in mice. Ethanol extract of Pyrola incarnata (EPI) was obtained and led to eleven phytochemicals successfully by isolation and purification, which were elucidated by spectroscopic analysis (1H NMR, 13C NMR and HR-ESI-MS). Thereinto, ursolic acid was gained as most abundant monomer. C57BL/6 mice were intracerebroventricular injected with aggregated Aβ25–35. Open-field test, Barnes maze test and Morris water maze were conducted for evaluating cognition processes of EPI and ursolic acid. EPI significantly improved learning and memory deficits, attenuated the Aβ25–35 level of deposition immunohistochemically. Further studies revealed that ursolic acid as bioactive phytochemical of P. incarnata improved spatial memory performance and ameliorated Aβ25–35 accumulation by activating microglia cells and up-regulating Iba1 level in the hippocampus. These findings suggest P. incarnata could improve the cognition of mice and be a promising natural source for the treatment of neurodegenerative disease.  相似文献   

17.
Diverse molecular species of sulfatide with differences in FA lengths, unsaturation degrees, and hydroxylation statuses are expressed in the kidneys. However, the physiological functions of specific sulfatide species in the kidneys are unclear. Here, we evaluated the distribution of specific sulfatide species in the kidneys and their physiological functions. Electron microscopic analysis of kidneys of Cst-deficient mice lacking sulfatide showed vacuolar accumulation in the cytoplasm of intercalated cells in the collecting duct, whereas the proximal and distal tubules were unchanged. Immunohistochemical analysis revealed that vacuolar H+-ATPase-positive vesicles were accumulated in intercalated cells in sulfatide-deficient kidneys. Seventeen sulfatide species were detected in the murine kidney by iMScope MALDI-MS analysis. The distribution of the specific sulfatide species was classified into four patterns. Although most sulfatide species were highly expressed in the outer medullary layer, two unique sulfatide species of m/z 896.6 (predicted ceramide structure: t18:0-C22:0h) and m/z 924.6 (predicted ceramide structure: t18:0-C24:0h) were dispersed along the collecting duct, implying expression in intercalated cells. In addition, the intercalated cell-enriched fraction was purified by fluorescence-activated cell sorting using the anti-vacuolar H+-ATPase subunit 6V0A4, which predominantly contained sulfatide species (m/z 896.6 and 924.6). The Degs2 and Fa2h genes, which are responsible for ceramide hydroxylation, were expressed in the purified intercalated cells. These results suggested that sulfatide molecular species with ceramide composed of phytosphingosine (t18:0) and 2-hydroxy FAs, which were characteristically expressed in intercalated cells, were involved in the excretion of NH3 and protons into the urine.  相似文献   

18.
EF-hand Ca2+-binding proteins (CBPs), such as S100 proteins (S100s) and calmodulin (CaM), are signaling proteins that undergo conformational changes upon increasing intracellular Ca2+. Upon binding Ca2+, S100 proteins and CaM interact with protein targets and induce important biological responses. The Ca2+-binding affinity of CaM and most S100s in the absence of target is weak (CaKD > 1 μM). However, upon effector protein binding, the Ca2+ affinity of these proteins increases via heterotropic allostery (CaKD < 1 μM). Because of the high number and micromolar concentrations of EF-hand CBPs in a cell, at any given time, allostery is required physiologically, allowing for (i) proper Ca2+ homeostasis and (ii) strict maintenance of Ca2+-signaling within a narrow dynamic range of free Ca2+ ion concentrations, [Ca2+]free. In this review, mechanisms of allostery are coalesced into an empirical “binding and functional folding (BFF)” physiological framework. At the molecular level, folding (F), binding and folding (BF), and BFF events include all atoms in the biomolecular complex under study. The BFF framework is introduced with two straightforward BFF types for proteins (type 1, concerted; type 2, stepwise) and considers how homologous and nonhomologous amino acid residues of CBPs and their effector protein(s) evolved to provide allosteric tightening of Ca2+ and simultaneously determine how specific and relatively promiscuous CBP-target complexes form as both are needed for proper cellular function.  相似文献   

19.
Syntrophus aciditrophicus is a model syntrophic bacterium that degrades fatty and aromatic acids into acetate, CO2, formate, and H2 that are utilized by methanogens and other hydrogen-consuming microbes. S. aciditrophicus benzoate degradation proceeds by a multistep pathway with many intermediate reactive acyl-coenzyme A species (RACS) that can potentially Nε-acylate lysine residues. Herein, we describe the identification and characterization of acyl-lysine modifications that correspond to RACS in the benzoate degradation pathway. The amounts of modified peptides are sufficient to analyze the post-translational modifications without antibody enrichment, enabling a range of acylations located, presumably, on the most extensively acylated proteins throughout the proteome to be studied. Seven types of acyl modifications were identified, six of which correspond directly to RACS that are intermediates in the benzoate degradation pathway including 3-hydroxypimeloylation, a modification first identified in this system. Indeed, benzoate-degrading enzymes are heavily represented among the acylated proteins. A total of 125 sites were identified in 60 proteins. Functional deacylase enzymes are present in the proteome, indicating a potential regulatory system/mechanism by which S. aciditrophicus modulates acylation. Uniquely, Nε-acyl-lysine RACS are highly abundant in these syntrophic bacteria, raising the compelling possibility that post-translational modifications modulate benzoate degradation in this and potentially other, syntrophic bacteria. Our results outline candidates for further study of how acylations impact syntrophic consortia.  相似文献   

20.
Methyl ketones present a group of highly reduced platform chemicals industrially produced from petroleum-derived hydrocarbons. They find applications in the fragrance, flavor, pharmacological, and agrochemical industries, and are further discussed as biodiesel blends. In recent years, intense research has been carried out to achieve sustainable production of these molecules by re-arranging the fatty acid metabolism of various microbes. One challenge in the development of a highly productive microbe is the high demand for reducing power. Here, we engineered Pseudomonas taiwanensis VLB120 for methyl ketone production as this microbe has been shown to sustain exceptionally high NAD(P)H regeneration rates. The implementation of published strategies resulted in 2.1 g Laq−1 methyl ketones in fed-batch fermentation. We further increased the production by eliminating competing reactions suggested by metabolic analyses. These efforts resulted in the production of 9.8 g Laq−1 methyl ketones (corresponding to 69.3 g Lorg−1 in the in situ extraction phase) at 53% of the maximum theoretical yield. This represents a 4-fold improvement in product titer compared to the initial production strain and the highest titer of recombinantly produced methyl ketones reported to date. Accordingly, this study underlines the high potential of P. taiwanensis VLB120 to produce methyl ketones and emphasizes model-driven metabolic engineering to rationalize and accelerate strain optimization efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号