首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proteostasis network adjusts protein composition and maintains protein integrity, which are essential processes for cell function and viability. Current efforts, given their intrinsic characteristics, regenerative potential and fundamental biological functions, have been directed to define proteostasis of stem cells. These insights demonstrate that embryonic stem cells and induced pluripotent stem cells exhibit an endogenous proteostasis network that not only modulates their pluripotency and differentiation but also provides a striking ability to suppress aggregation of disease-related proteins. Moreover, recent findings establish a central role of enhanced proteostasis to prevent the aging of somatic stem cells in adult organisms. Notably, proteostasis is also required for the biological purpose of adult germline stem cells, that is to be passed from one generation to the next. Beyond these links between proteostasis and stem cell function, we also discuss the implications of these findings for disease, aging, and reproduction.  相似文献   

2.
3.
4.
Conformation-based disorders are manifested at the level of protein structure, necessitating an accurate understanding of how misfolded proteins are processed by the cellular proteostasis network. Asparagine-linked glycosylation plays important roles for protein quality control within the secretory pathway. The suspected role for the MAN1B1 gene product MAN1B1, also known as ER mannosidase I, is to function within the ER similar to the yeast ortholog Mns1p, which removes a terminal mannose unit to initiate a glycan-based ER-associated degradation (ERAD) signal. However, we recently discovered that MAN1B1 localizes to the Golgi complex in human cells and uncovered its participation in ERAD substrate retention, retrieval to the ER, and subsequent degradation from this organelle. The objective of the current study was to further characterize the contribution of MAN1B1 as part of a Golgi-based quality control network. Multiple lines of experimental evidence support a model in which neither the mannosidase activity nor catalytic domain is essential for the retention or degradation of the misfolded ERAD substrate Null Hong Kong. Instead, a highly conserved, vertebrate-specific non-enzymatic decapeptide sequence in the luminal stem domain plays a significant role in controlling the fate of overexpressed Null Hong Kong. Together, these findings define a new functional paradigm in which Golgi-localized MAN1B1 can play a mannosidase-independent gatekeeper role in the proteostasis network of higher eukaryotes.  相似文献   

5.
Protein homeostasis depends on a balance of translation, folding, and degradation. Here, we demonstrate that mild inhibition of translation results in a dramatic and disproportional reduction in production of misfolded polypeptides in mammalian cells, suggesting an improved folding of newly synthesized proteins. Indeed, inhibition of translation elongation, which slightly attenuated levels of a copepod GFP mutant protein, significantly enhanced its function. In contrast, inhibition of translation initiation had minimal effects on copepod GFP folding. On the other hand, mild suppression of either translation elongation or initiation corrected folding defects of the disease-associated cystic fibrosis transmembrane conductance regulator mutant F508del. We propose that modulation of translation can be used as a novel approach to improve overall proteostasis in mammalian cells, as well as functions of disease-associated mutant proteins with folding deficiencies.  相似文献   

6.
The long-term health of all metazoan cells is linked to protein quality control, which is achieved by proteostasis, a complex network of molecular interactions that determines the health of the proteome under physiological or stress conditions. Studying the regulation of cellular proteostasis in the context of the whole organism has unraveled multiple layers of cell-nonautonomous regulation, including neuronal regulation, cell-to-cell stress signals and endocrine signaling that affect growth, development and aging. Here, we discuss emerging concepts in cell-nonautonomous regulation of protein quality control networks. The identification of organismal modulators of cellular proteostasis may present novel, yet general targets for misfolding disease intervention.  相似文献   

7.
The biological purpose of plant stem cells is to maintain themselves while providing new pools of differentiated cells that form organs and rejuvenate or replace damaged tissues. Protein homeostasis or proteostasis is required for cell function and viability. However, the link between proteostasis and plant stem cell identity remains unknown. In contrast to their differentiated counterparts, we find that root stem cells can prevent the accumulation of aggregated proteins even under proteotoxic stress conditions such as heat stress or proteasome inhibition. Notably, root stem cells exhibit enhanced expression of distinct chaperones that maintain proteome integrity. Particularly, intrinsic high levels of the T‐complex protein‐1 ring complex/chaperonin containing TCP1 (TRiC/CCT) complex determine stem cell maintenance and their remarkable ability to suppress protein aggregation. Overexpression of CCT8, a key activator of TRiC/CCT assembly, is sufficient to ameliorate protein aggregation in differentiated cells and confer resistance to proteotoxic stress in plants. Taken together, our results indicate that enhanced proteostasis mechanisms in stem cells could be an important requirement for plants to persist under extreme environmental conditions and reach extreme long ages. Thus, proteostasis of stem cells can provide insights to design and breed plants tolerant to environmental challenges caused by the climate change.  相似文献   

8.
The health of cells is preserved by the levels and correct folding states of the proteome, which is generated and maintained by the proteostasis network, an integrated biological system consisting of several cytoprotective and degradative pathways. Indeed, the health conditions of the proteostasis network is a fundamental prerequisite to life as the inability to cope with the mismanagement of protein folding arising from genetic, epigenetic, and micro-environment stress appears to trigger a whole spectrum of unrelated diseases. Here we describe the potential functional role of the proteostasis network in tumor biology and in conformational diseases debating on how the signaling branches of this biological system may be manipulated to develop more efficacious and selective therapeutic strategies. We discuss the dual strategy of these processes in modulating the folding activity of molecular chaperones in order to counteract the antithetic proteostasis deficiencies occurring in cancer and loss/gain of function diseases. Finally, we provide perspectives on how to improve the outcome of these disorders by taking advantage of proteostasis modeling.  相似文献   

9.
Proper regulation of protein homeostasis (proteostasis) is essential to maintain cellular fitness. Proteome stress causes imbalance of the proteostasis, leading to various diseases represented by neurodegenerative diseases, cancers, and metabolic disorders. The biosensor community recently embarked on the development of proteome stress sensors to report on the integrity of proteostasis in live cells. While most of these sensors are based on metastable mutants of specific client proteins, a recent sensor takes advantage of the specific association of heat shock protein 27 with protein aggregates and exhibits a diffusive to punctate fluorescent change in cells that are subjected to stress conditions. Thus, heat shock proteins can be also used as a family of sensors to monitor proteome stress.  相似文献   

10.
11.
The association between altered proteostasis and inflammatory disorders has been increasingly recognized, but the underlying mechanisms are not well understood. In this study, we show that deficiency of either autophagy or sequestosome 1 (p62 or SQSTM) led to inflammasome hyperactivation in response to LPS and ATP in primary macrophages and in mice in vivo. Importantly, induction of protein misfolding by puromycin, thapsigargin, or geldanamycin resulted in inflammasome activation that was more pronounced in autophagy- or p62-deficient macrophages. Accumulation of misfolded proteins caused inflammasome activation by inducing generation of nonmitochondrial reactive oxygen species and lysosomal damage, leading to release of cathepsin B. Our results suggest that altered proteostasis results in inflammasome activation and thus provide mechanisms for the association of altered proteostasis with inflammatory disorders.  相似文献   

12.
Heart proteostasis relies on a complex and integrated network of molecular processes surveilling organ performance under physiological and pathological conditions. For this purpose, cardiac cells depend on the correct function of their proteolytic systems, such as the ubiquitin-proteasome system (UPS), autophagy and the calpain system. Recently, the role of protein SUMOylation (an ubiquitin-like modification), has emerged as important modulator of cardiac proteostasis, which will be the focus of this review.  相似文献   

13.
Proteins are subject to continuous quality control for optimal proteostasis. The knowledge of peroxisome quality control systems is still in its infancy. Here we show that peroxisomes contain a member of the Lon family of proteases (Pln). We show that Pln is a heptameric protein and acts as an ATP-fueled protease and chaperone. Hence, Pln is the first chaperone identified in fungal peroxisomes. In cells of a PLN deletion strain peroxisomes contain protein aggregates, a major component of which is catalase-peroxidase. We show that this enzyme is sensitive to oxidative damage. The oxidatively damaged, but not the native protein, is a substrate of the Pln protease. Cells of the pln strain contain enhanced levels of catalase-peroxidase protein but reduced catalase-peroxidase enzyme activities. Together with the observation that Pln has chaperone activity in vitro, our data suggest that catalase-peroxidase aggregates accumulate in peroxisomes of pln cells due to the combined absence of Pln protease and chaperone activities.  相似文献   

14.
Protein quality control (proteostasis) depends on constant protein degradation and resynthesis, and is essential for proper homeostasis in systems from single cells to whole organisms. Cells possess several mechanisms and processes to maintain proteostasis. At one end of the spectrum, the heat shock proteins modulate protein folding and repair. At the other end, the proteasome and autophagy as well as other lysosome-dependent systems, function in the degradation of dysfunctional proteins. In this review, we examine how these systems interact to maintain proteostasis. Both the direct cellular data on heat shock control over autophagy and the time course of exercise-associated changes in humans support the model that heat shock response and autophagy are tightly linked. Studying the links between exercise stress and molecular control of proteostasis provides evidence that the heat shock response and autophagy coordinate and undergo sequential activation and downregulation, and that this is essential for proper proteostasis in eukaryotic systems.  相似文献   

15.
Loss-of-function mutations in EIF2AK3, encoding the pancreatic endoplasmic reticulum (ER) kinase, PERK, are associated with dysfunction of the endocrine pancreas and diabetes. However, to date it has not been possible to uncouple the long term developmental effects of PERK deficiency from sensitization to physiological levels of ER unfolded protein stress upon interruption of PERK modulation of protein synthesis rates. Here, we report that a selective PERK inhibitor acutely deregulates protein synthesis in freshly isolated islets of Langerhans, across a range of glucose concentrations. Acute loss of the PERK-mediated strand of the unfolded protein response leads to rapid accumulation of misfolded pro-insulin in cultured beta cells and is associated with a kinetic defect in pro-insulin processing. These in vitro observations uncouple the latent role of PERK in beta cell development from the regulation of unfolded protein flux through the ER and attest to the importance of the latter in beta cell proteostasis.  相似文献   

16.
Sequestration of misfolded proteins into distinct cellular compartments plays a pivotal role in proteostasis and proteopathies. Cytoplasmic ubiquitinated proteins are sequestered by p62/SQSTM1 to deposit in sequestosomes or aggresome-like induced structures (ALIS). Most aggresome or ALIS regulators identified thus far are recruiters, while little is known about the disaggregases or dissolvers. In this research, we showed that lanosterol synthase and its enzymatic product lanosterol effectively reduced the number and/or size of sequestosomes/ALIS/aggresomes formed by endogenous proteins in the HeLa and HEK-293A cells cultured under both non-stressed and stressed conditions. Supplemented lanosterol did not affect the proteasome and autophagic activities, but released the trapped proteins from the p62-positive inclusions accompanied with the activation of HSF1 and up-regulation of various heat shock proteins. Our results suggested that the coordinated actions of disaggregation by lanosterol and refolding by heat shock proteins might facilitate the cells to recycle proteins from aggregates. The disaggregation activity of lanosterol was not shared by cholesterol, indicating that lanosterol possesses additional cellular functions in proteostasis regulation. Our findings highlight that besides protein modulators, the cells also possess endogenous low-molecular-weight compounds as efficient proteostasis regulators.  相似文献   

17.
《Autophagy》2013,9(2):244-245
The control of protein homeostasis, or proteostasis, has been traditionally viewed through the lenses of a general housekeeping function that all cells need, regardless of pathway specification or link to defined cellular responses. A more updated perspective considers proteostasis as an essential adaptive mechanism, taking place in specialized subcellular organelles, and maintaining the functionality of defined cellular networks. Fresh experimental evidence now identifies heat shock protein 90 (HSP90) chaperones as pivotal regulators of proteostasis in mitochondria, selectively in tumor cells. This function connects to a global network of cellular compensation, linking autophagy, endoplasmic reticulum (ER) stress and metabolic reprogramming in a single adaptive continuum, and offers prime opportunities for novel cancer therapeutics.  相似文献   

18.
The ubiquitin–proteasome system (UPS) is the primary selective degradation system in the nuclei and cytoplasm of eukaryotic cells, required for the turnover of myriad soluble proteins. The hundreds of factors that comprise the UPS include an enzymatic cascade that tags proteins for degradation via the covalent attachment of a poly-ubiquitin chain, and a large multimeric enzyme that degrades ubiquitinated proteins, the proteasome. Protein degradation by the UPS regulates many pathways and is a crucial component of the cellular proteostasis network. Dysfunction of the ubiquitination machinery or the proteolytic activity of the proteasome is associated with numerous human diseases. In this review we discuss the contributions of the proteasome to human pathology, describe mechanisms that regulate the proteolytic capacity of the proteasome, and discuss strategies to modulate proteasome function as a therapeutic approach to ameliorate diseases associated with altered UPS function. This article is part of a Special Issue entitled: Ubiquitin–Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.  相似文献   

19.
20.
Maintenance of cellular protein homeostasis (proteostasis) depends on a complex network of molecular chaperones, proteases and other regulatory factors. Proteostasis deficiency develops during normal aging and predisposes individuals for many diseases, including neurodegenerative disorders. Here we describe sensor proteins for the comparative measurement of proteostasis capacity in different cell types and model organisms. These sensors are increasingly structurally destabilized versions of firefly luciferase. Imbalances in proteostasis manifest as changes in sensor solubility and luminescence activity. We used EGFP-tagged constructs to monitor the aggregation state of the sensors and the ability of cells to solubilize or degrade the aggregated proteins. A set of three sensor proteins serves as a convenient toolkit to assess the proteostasis status in a wide range of experimental systems, including cell and organism models of stress, neurodegenerative disease and aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号