首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
油茶(Camellia oleifera)是我国第一大木本油料作物, 野生油茶是油茶育种的宝贵遗传资源。本研究从中国数字植物标本馆(CVH, http://www.cvh.org.cn/)获得可靠的野生油茶分布点数据, 结合气象和土壤数据, 分别应用最大熵(MaxEnt)模型和规则集遗传算法(GARP)模型构建了野生油茶的生态位模型, 预测了野生油茶的潜在分布区, 并分析了影响野生油茶分布的主要环境变量。根据生态位模型预测的分布概率值, 对野生油茶的潜在分布区划分适生等级, 并与主要油茶产地的实际分布数据进行比较, 以验证适生等级划分的可靠性。结果表明, 两种模型的预测结果均能较好地反映油茶的分布情况。GARP模型预测的潜在分布区更广, 而MaxEnt模型的预测结果更精确。两种模型的预测结果均显示, 野生油茶的潜在分布区大部分位于中国, 但在中南半岛也有部分分布。MaxEnt模型预测的野生油茶在中国的潜在分布区与我国亚热带常绿阔叶林的分布区基本吻合, 高适生区主要可以分为3大区域: (1)东北-西南走向的武夷山脉及附近的群山区域; (2)东西走向的南岭山脉及附近的群山区域; (3)东北-西南走向的武陵山脉及附近的群山区域。MaxEnt模型分析显示, 影响野生油茶分布的主要环境变量是昼夜温差月均值、最干季降水量与最暖季降水量。油茶生长面积较大的地区绝大部分都位于MaxEnt模型预测的中、高适生区, 说明适生等级的划分较可靠。实地考察显示, 生态位模型的预测结果对于寻找野生油茶资源具有较高的参考价值。此外, 本研究也充分显示, 利用中国数字植物标本馆的植物分布数据, 结合相应的环境数据构建生态位模型, 有助于了解作物野生近缘种的地理分布。  相似文献   

2.
Leiolepis ocellata is a lizard species distributing in topographically diverse habitats in northern Thailand. To explore its evolutionary history, 113 samples of L. ocellata were collected from 11 localities covering its distributional range in northern Thailand, and sequenced for mtDNA fragments (Cyt b and ND2). Pairwise comparisons across sampling localities yielded significant genetic differentiation (F ST and Jost''s D) but no clear pattern of isolation by distance could be demonstrated based on the Mantel test. Phylogenetic and network analyses highlighted six haplogroups. Their divergence times were estimated to occur during the Pleistocene, much more recent than major orogenic events affecting northern Thailand. Instead, the results suggested that lineage divergences, of particularly eastern and western haplogroups of the region, coincided with the major rivers in the region (Yom river and Ping river, respectively), indicating vicariance in response to riverine barriers. Furthermore, ecological niche modeling suggested an expansion of suitable habitats of L. ocellata, when LGM‐liked conditions. This expansion potentially facilitated their dispersal among adjacent localities leading to lineage diversification and genetic admixture, after the riverine divergence.  相似文献   

3.
Ecological niche models (ENMs) have a wide range of biological applications, particularly in conservation. To build these models, two sources of information are needed: occurrence records for the species of interest and environmental variables. However, taxonomic limits are often unclear, and the selection of occurrence data depends on the species concept being used. In this study we generated ENMs based on different taxonomic levels within the Dendrortyx group, which is comprised of three species and several subspecies; we analyzed the geographic and ecological distribution patterns and discuss the implications for the biogeography and conservation of this group. Our results suggest that the area with suitable climate depends on the taxonomic category used in the model, which in turn affects the interpretation of the importance of different biogeographic barriers and introduces variation into the potential differentiation of Dendrortyx. In terms of conservation, Dendrortyx macroura and Dendrortyx leucophrys are in a low risk category, that of “least concern,” although they may be amended to a higher category when their allopatric lineages are considered as the units for modeling. We suggest carrying out an a priori taxonomic analysis to facilitate the empirical identification of the units to be modeled in order to allow for a better ecological and biogeographic interpretation and more sound conservation policies.  相似文献   

4.
In this study we investigated the population dynamics of Chrysomya albiceps (Wiedemann) with laboratory experiments, employing survival analysis and stage structure mathematical models, emphasizing survival among life stages. The study also assessed the theoretical influence of density dependence and cannibalism during immature stages, on the population dynamics of the species. The survival curves were similar, indicating that populations of C. albiceps exhibit the same pattern of survival among life stages. A strong nonlinear trend was observed, suggesting density dependence, acting during the first life stages of C. albiceps. The time-series simulations produced chaotic oscillations for all life stages, and the cannibalism did not produce qualitative changes in the dynamic behavior. The bifurcation analysis shows that for low values for survival, the population reaches a stable equilibrium, but the cannibalism results in chaotic oscillations practically over all the parametric space. The implications of the patterns of dynamic behavior observed are discussed.  相似文献   

5.
番荔枝实蝇Ceratitis artortoe(Graham)是一种重要的外来人侵性检疫害虫.在广东口岸,其幼虫连续从入境旅客所携带的水果中被榆出.目前关于番荔枝实蝇潜在适生性分布的研究进行得很少,但对于我国的生物生态安全却有重要意义.本研究中,我们使用3种牛态位模型(ENFA模型,马氏典型性模型和Maxent模型)对番荔枝实蝇在中斟以及全球范尉内的潜在适生性分布区域进行了预测分析.结果显示:Maxent模型拥有最好的预测精确度,马氏典型件模型次之,而ENFA模型的预测精确度最差;Maxent模型和马氏典型性模型的预测精确度无显著性差异;根据Maxent模型的预测结果,番荔枝实蝇在中国的潜在适生区主要是广西、广东、海南以及云南的少部分地区.分析结果显示,番荔枝实蝇从境外传人中国南部地区并最终在上述地区定殖的风险可能性存在,但风险较小.另外,折刀法(Jackknife)分析显示,6种环境因子,例如地面霜冻频率、年平均降雨量、十月降雨量、四月降雨量、年最低温度以及蒸气压,对于番荔枝实蝇在全球和局部地区的分布模式有显著的影响.  相似文献   

6.
Most spiders use venom to paralyze their prey and are commonly feared for their potential to cause injury to humans. In North America, one species in particular, Loxosceles reclusa (brown recluse spider, Sicariidae), causes the majority of necrotic wounds induced by the Araneae. However, its distributional limitations are poorly understood and, as a result, medical professionals routinely misdiagnose brown recluse bites outside endemic areas, confusing putative spider bites for other serious conditions. To address the issue of brown recluse distribution, we employ ecological niche modeling to investigate the present and future distributional potential of this species. We delineate range boundaries and demonstrate that under future climate change scenarios, the spider's distribution may expand northward, invading previously unaffected regions of the USA. At present, the spider's range is centered in the USA, from Kansas east to Kentucky and from southern Iowa south to Louisiana. Newly influenced areas may include parts of Nebraska, Minnesota, Wisconsin, Michigan, South Dakota, Ohio, and Pennsylvania. These results illustrate a potential negative consequence of climate change on humans and will aid medical professionals in proper bite identification/treatment, potentially reducing bite misdiagnoses.  相似文献   

7.
Over 100 hot spring sediment samples were collected from 28 sites in 12 areas/regions, while recording as many coincident geochemical properties as feasible (>60 analytes). PCR was used to screen samples for Korarchaeota 16S rRNA genes. Over 500 Korarchaeota 16S rRNA genes were screened by RFLP analysis and 90 were sequenced, resulting in identification of novel Korarchaeota phylotypes and exclusive geographical variants. Korarchaeota diversity was low, as in other terrestrial geothermal systems, suggesting a marine origin for Korarchaeota with subsequent niche-invasion into terrestrial systems. Korarchaeota endemism is consistent with endemism of other terrestrial thermophiles and supports the existence of dispersal barriers. Korarchaeota were found predominantly in >55°C springs at pH 4.7-8.5 at concentrations up to 6.6×10(6) 16S rRNA gene copies g(-1) wet sediment. In Yellowstone National Park (YNP), Korarchaeota were most abundant in springs with a pH range of 5.7 to 7.0. High sulfate concentrations suggest these fluids are influenced by contributions from hydrothermal vapors that may be neutralized to some extent by mixing with water from deep geothermal sources or meteoric water. In the Great Basin (GB), Korarchaeota were most abundant at spring sources of pH<7.2 with high particulate C content and high alkalinity, which are likely to be buffered by the carbonic acid system. It is therefore likely that at least two different geological mechanisms in YNP and GB springs create the neutral to mildly acidic pH that is optimal for Korarchaeota. A classification support vector machine (C-SVM) trained on single analytes, two analyte combinations, or vectors from non-metric multidimensional scaling models was able to predict springs as Korarchaeota-optimal or sub-optimal habitats with accuracies up to 95%. To our knowledge, this is the most extensive analysis of the geochemical habitat of any high-level microbial taxon and the first application of a C-SVM to microbial ecology.  相似文献   

8.
ABSTRACT

Background

Hybridisation associated with biological invasions may generate new phenotypic combinations, allowing hybrids to occupy new ecological niches. To date, few studies have assessed niche shifts associated with hybridisation in recently introduced populations while simultaneously characterising the niche of parental species in both native and introduced ranges.  相似文献   

9.
Ecological niche models and species distribution models are used in many fields of science. Despite their popularity, only recently have important aspects of the modeling process like model selection been developed. Choosing environmental variables with which to create these models is another critical part of the process, but methods currently in use are not consistent in their results and no comprehensive approach exists by which to perform this step. Here, we compared seven heuristic methods of variable selection against a novel approach that proposes to select best sets of variables by evaluating performance of models created with all combinations of variables and distinct parameter settings of the algorithm in concert. Our results were that—except for the jackknife method for one of the 12 species and fluctuation index for two of the 12 species—none of the heuristic methods for variable selection coincided with the exhaustive one. Performance decreased in models created using variables selected with heuristic methods and both underfitting and overfitting were detected when comparing their geographic projections with the ones of models created with variables selected with the exhaustive method. Using the exhaustive approach could be time consuming, so a two-step exercise may be necessary. However, using this method identifies adequate variable sets and parameter settings in concert that are associated with increased model performance.  相似文献   

10.
Most species data display spatial autocorrelation that can affect ecological niche models (ENMs) accuracy‐statistics, affecting its ability to infer geographic distributions. Here we evaluate whether the spatial autocorrelation underlying species data affects accuracy‐statistics and map the uncertainties due to spatial autocorrelation effects on species range predictions under past and future climate models. As an example, ENMs were fitted to Qualea grandiflora (Vochysiaceae), a widely distributed plant from Brazilian Cerrado. We corrected for spatial autocorrelation in ENMs by selecting sampling sites equidistant in geographical (GEO) and environmental (ENV) spaces. Distributions were modelled using 13 ENMs evaluated by two accuracy‐statistics (TSS and AUC), which were compared with uncorrected ENMs. Null models and the similarity statistics I were used to evaluate the effects of spatial autocorrelation. Moreover, we applied a hierarchical ANOVA to partition and map the uncertainties from the time (across last glacial maximum, pre‐insustrial, and 2080 time periods) and methodological components (ENMs and autocorrelation corrections). The GEO and ENV models had the highest accuracy‐statistics values, although only the ENV model had values higher than expected by chance alone for most of the 13 ENMs. Uncertainties from time component were higher in the core region of the Brazilian Cerrado where Q. grandiflora occurs, whereas methodological components presented higher uncertainties in the extreme northern and southern regions of South America (i.e. outside of Brazilian Cerrado). Our findings show that accounting for autocorrelation in environmental space is more efficient than doing so in geographical space. Methodological uncertainties were concentrated in outside the core region of Q. grandiflora's habitat. Conversely, uncertainty due to time component in the Brazilian Cerrado reveals that ENMs were able to capture climate change effects on Q. grandiflora distributions.  相似文献   

11.
Although the systematic utility of ecological niche modeling is generally well known (e.g., concerning the recognition and discovery of areas of endemism for biogeographic analyses), there has been little discussion of applications concerning species delimitation, and to date, no empirical evaluation has been conducted. However, ecological niche modeling can provide compelling evidence for allopatry between populations, and can also detect divergent ecological niches between candidate species. Here we present results for two taxonomically problematic groups of Phelsuma day geckos from Madagascar, where we integrate ecological niche modeling with mitochondrial DNA and morphological data to evaluate species limits. Despite relatively modest levels of genetic and morphological divergence, for both species groups we find divergent ecological niches between closely related species and parapatric ecological niche models. Niche models based on the new species limits provide a better fit to the known distribution than models based upon the combined (lumped) species limits. Based on these results, we elevate three subspecies of Phelsuma madagascariensis to species rank and describe a new species of Phelsuma from the P. dubia species group. Our phylogeny continues to support a major endemic radiation of Phelsuma in Madagascar, with dispersals to Pemba Island and the Mascarene Islands. We conclude that ecological niche modeling offers great potential for species delimitation, especially for taxonomic groups exhibiting low vagility and localized endemism and for groups with more poorly known distributions. In particular, niche modeling should be especially sensitive for detecting recent parapatric speciation driven by ecological divergence, when the environmental gradients driving speciation are represented within the ecological niche models.  相似文献   

12.
The black‐spotted tokay and the red‐spotted tokay are morphologically distinct and have largely allopatric distributions. The black‐spotted tokay is characterized by a small body size and dark skin with sundry spots, while the red‐spotted tokay has a relatively large body size and red spots. Based on morphological, karyotypic, genetic, and distribution differences, recent studies suggested their species status; however, their classifications remain controversial, and additional data such as ecological niches are necessary to establish firm hypotheses regarding their taxonomic status. We reconstructed their ecological niches models using climatic and geographic data. We then performed niche similarity tests (niche identity and background tests) and point‐based analyses to explore whether ecological differentiation has occurred, and whether such differences are sufficient to explain the maintenance of their separate segments of environmental ranges. We found that both niche models of the black‐ and the red‐spotted tokay had a good fit and a robust performance, as indicated by the high area under the curve (AUC) values (“black” = 0.982, SD = ± 0.002, “red” = 0.966 ± 0.02). Significant ecological differentiation across the entire geographic range was found, indicating that the involvement of ecological differentiation is important for species differentiation. Divergence along the environmental axes is highly associated with climatic conditions, with isothermality being important for the “black” form, while temperature seasonality, precipitation of warmest quarter, and annual temperature range together being important for the “red” form. These factors are likely important factors in niche differentiation between the two forms, which result in morphological replacement. Overall, beside morphological and genetic differentiation information, our results contribute to additional insights into taxonomic distinction and niche differentiation between the black‐ and the red‐spotted tokay.  相似文献   

13.
The chestnut phylloxerid, Moritziella castaneivora, has been recently recorded as a forest pest in China. It heavily damaged chestnut trees and has caused serious economic losses in some main chestnut production areas. In order to effectively monitor and manage this pest, it is necessary to investigate its potential geographical distribution worldwide. In this study, we used two ecological niche models, Genetic Algorithm for Rule‐set Production (GARP) and Maximum Entropy (Maxent), along with the geographical distribution of the host plants, Japanese chestnut (Castanea crenata) and Chinese chestnut (Castanea mollissima), to predict the potential geographical distribution of M. castaneivora. The results suggested that the suitable distribution areas based on GARP were general consistent with those based on Maxent, but GARP predicted distribution areas that extended more in size than did Maxent. The results also indicated that the suitable areas for chestnut phylloxerid infestations were mainly restricted to Northeast China (northern Liaoning), East China (southern Shandong, northern Jiangsu and western Anhui), North China (southern Hebei, Beijing and Tianjin), Central China (eastern Hubei and southern Henan), Japan (Kinki, Shikoku and Tohoku) and most parts of the Korean Peninsula. In addition, some provinces of central and western China were predicted to have low suitability or unsuitable areas (e.g. Xinjiang, Qinghai and Tibet). A jackknife test in Maxent showed that the average precipitation in July was the most important environmental variable affecting the distribution of this pest species. Consequently, the study suggests several reasonable regulations and management strategies for avoiding the introduction or invasion of this high‐risk chestnut pest to these potentially suitable areas.  相似文献   

14.
We aim to show how a combination of molecular systematics and ecological niche modelling approaches can be used to test historical biogeographical hypotheses for species of conservation concern. We focus on the land snail genus Oreohelix (Oreohelicidae), a group found throughout the Rocky Mountains. In addition to its larger distribution, a group of Oreohelix is also found in the Black Hills of Wyoming and South Dakota, an isolated, easternmost extension of the Rocky Mountains. We determine the number, distribution, and relationships of Black Hills Oreohelicids, which are a current conservation concern due to their fragmented distribution. We compared Black Hills groups to those in the main part of the Rockies to test historical biogeographical patterns that explain current diversity. We collected mtDNA data (COI and 12S sequences) from multiple populations of Oreohelix throughout the Black Hills and in adjacent populations in the Rocky Mountains to construct phylogenetic hypotheses. To determine whether favourable environmental conditions currently exist between the Black Hills and the north-eastern Rocky Mountains, we used DesktopGARP to generate an ecological niche model for distinct lineages discovered in the molecular phylogenetic analysis. Results show that all Black Hills populations are likely Oreohelix cooperi and that little genetic differentiation exists within this clade. In addition, Black Hills groups are genetically similar or identical to populations found in the Judith Mountains and Bighorn Mountains (north-eastern Rockies). Ecological niche models show that suitable environmental conditions may exist between eastern Rockies and Black Hills O. cooperi samples. Taken together, the phylogenetic and niche model data, along with the low vagility of the snails, support passive long-distance dispersal as a likely explanation for current arrangement of biodiversity.  相似文献   

15.
Accurate species delimitation is the key to precise estimation of species diversity and is fundamental to most branches of biology. Unclear species boundaries within species complexes could lead to the underestimation of species diversity. However, species delimitation of species complexes remains challenging due to the continuum of phenotypic variations. To robustly examine species boundaries within a species complex, integrative approaches in phylogeny, ecology, and morphology were applied to the Stewartia sinensis complex (Theaceae) endemic to China. Multispecies coalescent-based species delimitation using 572 nuclear ortholog sequences (anchored enrichment) supported reciprocal phylogenetic monophyly of the northern lineage (NL) and southern lineage (SL), which were not sister clades. Niche equivalency and similarity tests demonstrated significant climatic niche differentiation between NL and SL with observed Warren et al.'s I = 0.0073 and Schoener's D = 0.0021. Species distribution modeling also separated their potential distribution. Morphometric analyses suggested significant interlineage differentiation of multiple traits including the ratio of length and width, leaf width, and pedicel length, although overall similarity did not differ. Based on the integrative species concept, two distinct species were proposed with legitimate names of Stewartia gemmata for SL and S. sinensis for NL. Our empirical study of the S. sinensis complex highlights the importance of applying multiple species criteria, in particular the underappreciated niche differentiation, to species delimitation in species complexes pervasive in plants.  相似文献   

16.
The distribution range of Primula marginata Curtis (Primulaceae) has never been fully characterized. In the present study, authors did a revision of the distribution range using herbaria material, database records and in situ populations' check-up. P. marginata was confirmed extending from Cottian to Maritime and Ligurian Alps, with few outlier occurrences in the northern Apennines. The localities previously reported from northern Piedmont (Val d'Ossola) were not confirmed. Maximum entropy model (Maxent) was used to simulate the potential distribution of P. marginata under current climate conditions. According to the distribution modelling performed, the species prefers rocky calcareous habitats mainly at high elevations, with abundant precipitation, but low moisture retention at soil level and marked temperature range between winter and summer seasons. The potential distribution area drawn by Maxent seemed to describe P. marginata at its maximum extension, and any future climate changes might cause limitations for the survival of the species.  相似文献   

17.
Analysis of ecological characters on phylogenetic frameworks has only recently appeared in the literature, with several studies addressing patterns of niche evolution, generally over relatively recent time frames. In the present study, we examined patterns of niche evolution for a broad radiation of American blackbird species (Family Icteridae), exploring more deeply into phylogenetic history. Within each of three major blackbird lineages, overlap of ecological niches in principal components analysis transformed environmental space varied from high to none. Comparative phylogenetic analyses of ecological niche characteristics showed a general pattern of niche conservatism over evolutionary time, with differing degrees of innovation among lineages. Although blackbird niches were evolutionarily plastic over differing periods of time, they diverged within a limited set of ecological possibilities, resulting in examples of niche convergence among extant blackbird species. Hence, an understanding of the patterns of ecological niche evolution on broad phylogenetic scales sets the stage for framing questions of evolutionary causation, historical biogeography, and ancestral ecological characteristics more appropriately.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 869–878.  相似文献   

18.
For an introduced plant species to become invasive, it must be able to reproduce even in initially small populations. We tested for Allee effects (reduced reproductive performance of individuals in small populations) in the nonclonal, buzz-pollinated shrub Senna didymobotrya in its invasive range in South Africa. The species is self-compatible, but we found that in its invasive range in South Africa it requires pollinators to set seed. Nearly all stigmas (90%) received pollen, but natural fruit set was very low (3-20%). Pollen receipt and fruit set were not significantly correlated with population size. We thus found no evidence for an ecological Allee effect arising from pollen limitation in small populations. Offspring seedling performance, measured in terms of stem volume and leaf area, was also not significantly correlated with the number of plants in the source population, indicating that genetic Allee effects, such as inbreeding depression, are either absent or of such a small magnitude that they would be unlikely to limit further spread of S. didymobotrya in South Africa.  相似文献   

19.
Populus tremuloides is the widest‐ranging tree species in North America and an ecologically important component of mesic forest ecosystems displaced by the Pleistocene glaciations. Using phylogeographic analyses of genome‐wide SNPs (34,796 SNPs, 183 individuals) and ecological niche modeling, we inferred population structure, ploidy levels, admixture, and Pleistocene range dynamics of P. tremuloides, and tested several historical biogeographical hypotheses. We found three genetic lineages located mainly in coastal–Cascades (cluster 1), east‐slope Cascades–Sierra Nevadas–Northern Rockies (cluster 2), and U.S. Rocky Mountains through southern Canadian (cluster 3) regions of the P. tremuloides range, with tree graph relationships of the form ((cluster 1, cluster 2), cluster 3). Populations consisted mainly of diploids (86%) but also small numbers of triploids (12%) and tetraploids (1%), and ploidy did not adversely affect our genetic inferences. The main vector of admixture was from cluster 3 into cluster 2, with the admixture zone trending northwest through the Rocky Mountains along a recognized phenotypic cline (Utah to Idaho). Clusters 1 and 2 provided strong support for the “stable‐edge hypothesis” that unglaciated southwestern populations persisted in situ since the last glaciation. By contrast, despite a lack of clinal genetic variation, cluster 3 exhibited “trailing‐edge” dynamics from niche suitability predictions signifying complete northward postglacial expansion. Results were also consistent with the “inland dispersal hypothesis” predicting postglacial assembly of Pacific Northwestern forest ecosystems, but rejected the hypothesis that Pacific‐coastal populations were colonized during outburst flooding from glacial Lake Missoula. Overall, congruent patterns between our phylogeographic and ecological niche modeling results and fossil pollen data demonstrate complex mixtures of stable‐edge, refugial locations, and postglacial expansion within P. tremuloides. These findings confirm and refine previous genetic studies, while strongly supporting a distinct Pacific‐coastal genetic lineage of quaking aspen.  相似文献   

20.
The family Profundulidae is a group of small-sized fish species distributed between southern Mexico and Honduras, where they are frequently the only fish representatives at higher elevations in the basins where they occur. We characterized their ecological niche using different methods and metrics drawn from niche modelling and by re-examining phylogenetic relationships of a recently published molecular phylogeny of this family to gain a better understanding of its biogeographic and evolutionary history. We assessed both lines of evidence from the perspective of niche conservatism to set a foundation for discussing hypotheses about the processes underlying the distribution and evolution of the group. In fish clades where the species composition is not clear, we examined whether niche classification could be informative to discriminate groups geographically and ecologically consistent with any of the different hypotheses of valid species. The characterization of the ecological niche was carried out using the Maxent algorithm under different parameterizations and the projection of the presence on the main components of the most relevant environmental coverage, and the niche comparison was calculated with two indices (D and I), both in environmental space and in that projected geographically. With the molecular data, a species tree was generated using the *BEAST method. The comparison of these data was calculated with an age-overlap correlation test. Based on the molecular phylogeny and on niche overlap analyses, we uncovered strong evidence to support the idea that ecologically similar species are not necessarily sister species. The correlation analysis for genetic distance and niche overlap was not significant (P > 0.05). In clades with taxonomic conflicts, we only identified Profundulus oaxacae as a geographically and ecologically distinct group from P. punctatus. All the evidence considered leads us to propose that Profundulidae do not show evidence of niche conservatism and that there are reasons to consider P. oaxacae as a valid species. Our study suggests that niche divergence is a driving evolutionary force that caused the diversification and speciation processes of the Profundulidae, along with the geological and climatic events that promoted the expansion or contraction of suitable environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号