首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Climate change has had a significant impact on natural ecosystems and endemic species around the world and substantial impacts are expected in the future. As a result, knowing how climate change affects endemic species can help in putting forward the necessary conservation efforts. The use of niche modeling to predict changes in species distributions under different climate change scenarios is becoming a hot topic in biological conservation. This study aimed to use the global circulation model (CMIP5) to model the current distribution of suitable habitat for three critically endangered Aloe species endemic to Kenya and Tanzania in order to determine the impact of climate change on their suitable habitat in the years 2050 and 2070. We used two representative concentration pathways scenarios (RCP4.5 and RCP8.5) to project the contraction of suitable habitats for Aloe ballyi Reynolds, A. classenii Reynolds, and A. penduliflora Baker. Precipitation, temperature and environmental variables (Potential evapotranspiration, land cover, soil sedimentary and solar radiation) have had a significant impact on the current distribution of all the three species. Although suitable habitat expansion and contraction are predicted for all the species, loss of original suitable habitat is expected to be extensive. Climate change is expected to devastate >44% and 34% of the original habitats of A. ballyi and A. classenii respectively. Based on our findings, we propose that areas predicted to contract due to climate change should be designated as key protection zones for Aloe species conservation.  相似文献   

2.
Climate change is a grave danger for humans and a looming threat to Earth's biodiversity in the twenty-first century. Assessing the vulnerability of species to climate change is critical for practical conservation efforts. Due to their limited dispersal ability, amphibians are one of the most vulnerable groups of vertebrates to climate change. Among them, the species that inhabit mountains suffer a tremendous amount of climate change-induced pressures. We, therefore, adopted the Azerbaijan Mountain Newt (Neurergus crocatus), which currently inhabits Northwest Iran, North Iraq, and Southeast Turkey, as a case study for assessing the effects of climate change on the distribution patterns of mountain amphibians. By applying the species distribution models (SDMs) in this study, we tried to hindcast the species distribution area in the past and illustrate the impacts of climate change on its distribution in the present and future (the 2050s and 2070s) climate conditions. Also, the patch metrics have been deployed for identifying habitat fragmentation. Our results indicate a more than 50% rise in the species’ current suitable habitats compared to its glacial refugia. The suitable habitat is expected to gradually decrease in RCP 2.6 and RCP 8.5. Among the three countries in which the species occurs, its distribution overlaps with protected areas only in Iraq. The number of habitat patches will grow and reach approximately 20 to 60 patches by 2070 and the average area of the patches will decrease throughout this time. Aside from the numerous threats that endanger the species, climate change puts the long-term existence of Azerbaijan Newt in jeopardy. The results of this study stress the urgent need for taking extreme measures on the species management and conserving its remnant habitat patches.  相似文献   

3.
Identifying the factors predicting the high‐elevation suitable habitats of Central Asian argali wild sheep and how these suitable habitats are affected by the changing climate regimes could help address conservation and management efforts and identify future critical habitat for the species in eastern Tajikistan. This study used environmental niche models (ENMs) to map and compare potential present and future distributions of suitable environmental conditions for Marco Polo argali. Argali occurrence points were collected during field surveys conducted from 2009 to 2016. Our models showed that terrain ruggedness and annual mean temperature had strong correlations on argali distribution. We then used two greenhouse gas concentration trajectories (RCP 4.5 and RCP 8.5) for two future time periods (2050 and 2070) to model the impacts of climate change on Marco Polo argali habitat. Results indicated a decline of suitable habitat with majority of losses observed at lower elevations (3,300–4,300 m). Models that considered all variables (climatic and nonclimatic) predicted losses of present suitable areas of 60.6% (6,928 km2) and 63.2% (7,219 km2) by 2050 and 2070, respectively. Results also showed averaged habitat gains of 46.2% (6,106 km2) at much higher elevations (4,500–6,900 m) and that elevational shifts of habitat use could occur in the future. Our results could provide information for conservation planning for this near threatened species in the region.  相似文献   

4.
Developing strategies for effective species conservation is necessary to counter the ever-fluctuating environmental conditions with increasing anthropogenic activities. Studies have proven Ecological Niche Modelling (ENM) as an effective tool for sustainable conservation. Nepenthes khasiana Hook.f. is an endangered pitcher plant facing a constant decline in population due to anthropogenic activities. This study aimed to locate the most suitable areas for re-establishing the species in natural habitats using Maximum Entropy (MaxEnt) modelling, and to forecast the effects of current and future climate conditions on its distribution throughout Northeast India. The potential suitable areas in future climate under three Representative Concentration Pathway (RCP) scenarios and in the current climate were predicted utilizing the 30 occurrence data, bioclimatic predictors, and variables from BCC-CSM1.1 model and WorldClim respectively. The results of the current study showed significant relationships among annual precipitation, precipitation in the driest month, seasonality of precipitation, annual range iso-thermality of temperature, mean diurnal range [Mean of monthly (max temp - min temp)], and the distribution of the analysed species. The optimum model performance was represented by the AUC value of 0.972 ± 0.007. The model predicted 10.70% of the NE Indian region as climatically suitable, which will expand under RCP4.5 and RCP6.0, reaching 15.35%, and 12.64%, respectively. However, this may degrade significantly under RCP8.5, reducing to 8.14%. Based on the analysis of modelling results it was found that the Nokrek belt and the Khasi hills as highly suitable regions for the reintroduction of the species. The study revalidated ENM as an effective means to identify new populations and predict the influence of climate change on the future habitat which can benefit the concurrent species management strategies.  相似文献   

5.
Coral reef ecosystems are threatened by both climate change and direct anthropogenic stress. Climate change will alter the physico-chemical environment that reefs currently occupy, leaving only limited regions that are conducive to reef habitation. Identifying these regions early may aid conservation efforts and inform decisions to transplant particular coral species or groups. Here a species distribution model (Maxent) is used to describe habitat suitable for coral reef growth. Two climate change scenarios (RCP4.5, RCP8.5) from the National Center for Atmospheric Research’s Community Earth System Model were used with Maxent to determine environmental suitability for corals (order Scleractinia). Environmental input variables best at representing the limits of suitable reef growth regions were isolated using a principal component analysis. Climate-driven changes in suitable habitat depend strongly on the unique region of reefs used to train Maxent. Increased global habitat loss was predicted in both climate projections through the 21st century. A maximum habitat loss of 43% by 2100 was predicted in RCP4.5 and 82% in RCP8.5. When the model is trained solely with environmental data from the Caribbean/Atlantic, 83% of global habitat was lost by 2100 for RCP4.5 and 88% was lost for RCP8.5. Similarly, global runs trained only with Pacific Ocean reefs estimated that 60% of suitable habitat would be lost by 2100 in RCP4.5 and 90% in RCP8.5. When Maxent was trained solely with Indian Ocean reefs, suitable habitat worldwide increased by 38% in RCP4.5 by 2100 and 28% in RCP8.5 by 2050. Global habitat loss by 2100 was just 10% for RCP8.5. This projection suggests that shallow tropical sites in the Indian Ocean basin experience conditions today that are most similar to future projections of worldwide conditions. Indian Ocean reefs may thus be ideal candidate regions from which to select the best strands of coral for potential re-seeding efforts.  相似文献   

6.
Distributions of potential ranges of plant species are not yet fully known in Ethiopia where high climatic variability and vegetation types are found. This study was undertaken to predict distributions of suitable habitats of Pouteria adolfi-friederici and Prunus africana under current and two future climate scenarios (RCP 4.5 and RCP 8.5 in 2050 and 2070) in Ethiopia. Eleven environmental variables with less correlation coefficients (r < 0.7) were used to make the prediction. Shifting in extents of habitat suitability and effects of elevation, solar radiation and topographic position in relation to the current and future climatic scenarios were statistically analysed using independent t-test and linear model. We found decreasing area of highly suitable habitat from 0.51% to 0.46%, 0.36% and 0.33%, 0.24% for Prunus africana and 1.13% to 1.02%, 0.77% and 0.76%, 0.60% for Pouteria adolfi-friederici, under RCP 4.5 and RCP 8.5 by 2050 and 2070 respectively. Moist and dry afromontane forests are identified as the most suitable habitat for both species. Overall, our results suggest that climate change can promote dynamic suitable habitat niches under different future climate scenarios. Therefore, biodiversity conservation strategies should take into account habitat suitability dynamics issues and identify where to conserve species before implementing conservation practices.  相似文献   

7.
The mountain ecosystems are fragile because of topography and extreme climatic conditions. The Hindu-Kush Himalayan (HKH) region is a biodiversity-rich ecosystem and highly vulnerable to climate change and anthropogenic activities among the mountains. In HKH, the climate change impacts on ecologically specialist species are already evident, but generalist species are not much studied. One such generalist species distributed throughout the HKH is Yellow-Throated Marten (YTM) (Martes flavigula Boddaert, 1785), a facultative predator that occupies the Southern flank of the HKH. The YTM is one of the least studied animals distributed up to 4510-m elevation. The HKH covers 61 terrestrial ecoregions and 304 Protected Areas (PAs). An ecologically successful facultative predator of the region is seriously threatened because of habitat loss and climate change. Hence, we used an ensemble model to map the distribution of suitable habitats and their representativeness in terms of ecoregions and PA coverage. The results indicated that by 2050, the distribution range might decline to 58.78% and 49.33% with reference to the current scenario under the representative concentration pathway (RCP) 4.5 and 8.5 scenarios, respectively. The species may lose much of its range, mainly in the eastern part of the HKH landscape. Furthermore, the centroid of the distribution may also shift to the northwest, thereby abandoning many areas and occupying new refugia. The Upper Gangetic plains moist deciduous forests ecoregion possess the highest suitable habitats for the YTM, with a mean value of 0.744. At the same time, the existing PA network represents only 12.2% of its suitable habitat in HKH. Hence, for the long-term viability of the species, there is a need to enhance protection and improve habitat quality.  相似文献   

8.
Understanding the drivers of habitat distribution patterns and assessing habitat connectivity are crucial for conservation in the face of climate change. In this study, we examined a sparsely distributed tree species, Kalopanax septemlobus (Araliaceae), which has been heavily disturbed by human use in temperate forests of South Korea. We used maximum entropy distribution modeling (MaxEnt) to identify the climatic and topographic factors driving the distribution of the species. Then, we constructed habitat models under current and projected climate conditions for the year 2050 and evaluated changes in the extent and connectivity of the K. septemlobus habitat. Annual mean temperature and terrain slope were the two most important predictors of species distribution. Our models predicted the range shift of K. septemlobus toward higher elevations under medium-low and high emissions scenarios for 2050, with dramatic reductions in suitable habitat (51% and 85%, respectively). In addition, connectivity analysis indicated that climate change is expected to reduce future levels of habitat connectivity. Even under the Representative Construction Pathway (RCP) 4.5 medium-low warming scenario, the projected climate conditions will decrease habitat connectivity by 78%. Overall, suitable habitats for K. septemlobus populations will likely become more isolated depending on the severity of global warming. The approach presented here can be used to efficiently assess species and habitat vulnerability to climate change.  相似文献   

9.
张微  姜哲  巩虎忠  栾晓峰 《生态学报》2016,36(7):1815-1823
气候变化是造成生物多样性下降和物种灭绝的主要因素之一。研究气候变化对物种生境,尤其是濒危物种生境影响对未来保护物种多样性和保持生态系统功能完整性具有重要意义。以驼鹿乌苏里亚种(Alces alces cameloides)为研究对象,选取了对驼鹿分布可能存在影响的22个环境因子,利用最大熵(Maxent)模型模拟了驼鹿基准气候条件下在我国东北的潜在生境分布,并预测了RCP4.5和RCP8.5两种气候变化情景下2041—2060年(2050s)、2061—2080年(2070s)驼鹿潜在分布,采用接收工作曲线下面积(AUC)对模型预测能力进行评估。研究结果表明:最大熵模型预测驼鹿潜在生境分布的精度较高(平均AUC值为0.845),22个环境因子中,年均温、最暖季均温、年降水、平均日较差是影响驼鹿生境分布的主要因子。基准气候条件下,驼鹿的潜在生境面积占研究区域总面积的36.4%,潜在生境分布区主要在大、小兴安岭。随着时间的推移,研究区内驼鹿当前潜在生境面积明显减少,而新增潜在生境面积较少,总面积呈现急剧减少的趋势,其中RCP8.5情景减少程度大于RCP4.5情景。至2050s阶段,当前潜在生境面积平均将减少62.3%,新增潜在分布面积平均仅为3.6%,总潜在生境面积最高将减少65.6%,平均将减少58.8%;至2070s阶段,当前潜在生境面积平均将减少75.8%,新增潜在分布面积平均仅为1.9%,总潜在生境面积最高将减少93.1%,平均减少73.9%。空间分布上,驼鹿的潜在生境的几何中心将先向西北移动,然后再向高纬度地区西南方向迁移,至2050s阶段,潜在分布生境的几何中心在RCP4.5和RCP8.5情景下的迁移距离分别为183.5 km和210.8 km;至2070s阶段,相应情景下的迁移距离将缩短至28.7 km和33.8 km。潜在生境分布整体呈现向高海拔、高纬度迁移的趋势。  相似文献   

10.
Two ecologically and economically important, and threatened Dipterocarp trees Sal (Shorea robusta) and Garjan (Dipterocarpus turbinatus) form mono‐specific canopies in dry deciduous, moist deciduous, evergreen, and semievergreen forests across South Asia and continental parts of Southeast Asia. They provide valuable timber and play an important role in the economy of many Asian countries. However, both Dipterocarp trees are threatened by continuing forest clearing, habitat alteration, and global climate change. While climatic regimes in the Asian tropics are changing, research on climate change‐driven shifts in the distribution of tropical Asian trees is limited. We applied a bioclimatic modeling approach to these two Dipterocarp trees Sal and Garjan. We used presence‐only records for the tree species, five bioclimatic variables, and selected two climatic scenarios (RCP4.5: an optimistic scenario and RCP8.5: a pessimistic scenario) and three global climate models (GCMs) to encompass the full range of variation in the models. We modeled climate space suitability for both species, projected to 2070, using a climate envelope modeling tool “MaxEnt” (the maximum entropy algorithm). Annual precipitation was the key bioclimatic variable in all GCMs for explaining the current and future distributions of Sal and Garjan (Sal: 49.97 ± 1.33; Garjan: 37.63 ± 1.19). Our models predict that suitable climate space for Sal will decline by 24% and 34% (the mean of the three GCMs) by 2070 under RCP4.5 and RCP8.5, respectively. In contrast, the consequences of imminent climate change appear less severe for Garjan, with a decline of 17% and 27% under RCP4.5 and RCP8.5, respectively. The findings of this study can be used to set conservation guidelines for Sal and Garjan by identifying vulnerable habitats in the region. In addition, the natural habitats of Sal and Garjan can be categorized as low to high risk under changing climates where artificial regeneration should be undertaken for forest restoration.  相似文献   

11.
Climate change and human activities have caused the degeneration of the natural habitats of medicinal plants. Mentha pulegium L. is one of the most common medicinal plants in Tunisia that features high economic and ecological values. Predicting species' suitable habitats, through modeling, has evolved as a useful tool for the assessment of resource conservation to protect medicinal plants. Herein, we used MaxEnt model to predict current and future distributions of M. pulegium under two representative concentration pathways (RCP2.6 and RCP8.5) for the years 2050 and 2070. MaxEnt modeling was in the “Excellent” category since all the AUCs were above 0.9. Results showed that high and moderate suitable habitats for the current distribution of M. pulegium encompassed ca. 9929 km2 and 16,423 km2, respectively. These areas are mainly located in North Tunisia. Precipitation of the coldest quarter (Bio19) was identified as the most critical factor shaping M. pulegium distribution. Compared to the current distribution, the highly and moderately suitable areas for M. pulegium under the two RCPs (RCP2.6 and RCP8.5) would decrease in the 2050s and 2070s. The model projected a shift of the suitable area from Northeastward to Center-eastward. These results may provide a useful tool for developing adaptive management strategies to enhance M. pulegium protection and sustainable utilization in the context of global climate change.  相似文献   

12.
Global species range dynamics are intrinsically influenced by the interplay between human activities and climate compatibility. Snowflake coral (Carijoa riisei) is a soft octacoral species that belongs to the family Clavulariidae and can rapidly grow to colonise new habitats. This species has successfully colonised numerous habitats, displacing native species and disrupting the ecological balance in the introduced habitats. Recent investigations into species invasions in aquatic ecosystems suggest that anthropogenic activities and climate change will accelerate the introduction, establishment, and spread of invasive species to new habitats. In this study, we utilised ensemble species distribution modelling to investigate shifts in the invasive potential of Snowflake coral in current and future climatic settings on a global scale. Future distribution was forecasted using four Representative Concentration Pathways (RCPs 2.6, 4.5, 6.0, and 8.5) across two periods (2040–2050 and 2090–2100). The results accurately predicted the known distributional range of the species. Temperature, distance to the port, and bathymetry were identified as the three most significant predictor variables. The low and medium habitat suitability regions increased in all scenarios and periods. In the high habitat suitability category, only RCP 4.5 and RCP 6.0 in the 2090–2100 period exhibited an increase in percentage area. Under the worst-case climate scenario, RCP 8.5 (2090–2100), the high-suitability regions displayed a surprising decline in area percentage, which can be attributed to the temperature thresholds of the species. Our findings indicate that the species has a greater potential to spread under current climatic conditions than previously reported, and its expansion may further accelerate in the future. This highlights the urgent need for more intensive surveys employing advanced detection tools and the implementation of proactive management measures to protect vulnerable ecosystems that could be impacted by this species.  相似文献   

13.

Mapping the distribution of invasive species under current and future climate conditions is crucial to implement sustainable and effective conservation strategies. Several studies showed how invasive species may benefit from climate change fostering their invasion rate and, consequently, affecting the native species community. In the Canary Islands and on Tenerife in particular, previous research mostly focused on climate change impacts on the native communities, whereas less attention has been paid on alien species distribution under climate change scenarios. In this study, we modelled the habitat distribution of Pennisetum setaceum, one of the most invasive alien species on Tenerife. In addition, we described the species’ potential distribution shift in the light of two climate change scenarios (RCP2.6, RCP8.5), highlighting the areas that should be prioritized during management and eradication programs. P. setaceum’s suitable areas are located in the coastal area, with higher habitat suitability near cities and below 800 m asl. In both future climate change scenarios, the geographic distribution of P. setaceum suitable areas is characterized by an elevational shift, which is more pronounced in the RCP8.5 scenario. Despite being drought resistant, water supply is crucial for the species’ seed germination, thus supporting future species’ shift to higher elevation and in the north–north–west part of the island, where it could benefit from the combined effect of orographic precipitations and humidity carried by trade winds.

  相似文献   

14.
应用最大熵(MaxEnt)模型,基于230条分布记录及33个气候因子数据,模拟全新世中期(约6000年前)、当前时期(1950—2000年)和未来(2050s、2070s)气候条件下,红花龙胆西南地区的潜在分布范围;结合多元统计分析和ArcGIS空间分析,筛选影响物种分布的关键气候因子,探讨不同分布区对气候变化的敏感性.结果表明: 模型训练集AUC值为0.942,验证集AUC值为0.849,表明模型预测的准确性较高.5个气候因子(7月最高气温、8月最低气温、昼夜温差与年温差比值、7月最低气温和6月最低气温)对模型贡献最大,累计贡献率达59.9%.随未来气候变化,红花龙胆适生区将呈现先减少后增加的变化趋势,在RCP 8.5情景下,至2070s阶段,西南地区红花龙胆适宜生境总面积与当前气候条件相比减少15.0%,但云南境内适生区和高适生区面积较当前分别增加32.8%和32.7%.红花龙胆适宜生长于温暖、湿润的气候条件下,气候变暖明显影响着适宜生境的面积和范围,尤其低海拔分布区对气候变化较敏感,适宜生境退缩严重,而高海拔地区由于降水、温度条件的改善适宜生境有所增加.随着全球气候的变化,未来西南地区红花龙胆主要分布区可能向西迁移,并向更高海拔扩张.  相似文献   

15.
为了解气候变化对大兴安岭地区鹤类潜在分布的影响,促进其有效保护,本文以大兴安岭地区6种鹤为研究对象,基于Pearson相关性分析和Jackknife分析,筛选气候、地形和植被类型等关键环境因子,采用MaxEnt模型模拟了当前和未来两种气候变化情景(RCP4.5和8.5)下6种鹤的潜在分布区域,通过Zonation和ArcGIS软件确定了其优先保护区域并分析了目标优先保护区域.结果表明:当前气候条件下,6种鹤的潜在适宜生境集中分布于大兴安岭中部和西北部;RCP4.5和RCP8.5气候情景下,6种鹤的高适宜生境将缩减.白头鹤、丹顶鹤、白枕鹤、灰鹤和蓑羽鹤的潜在适宜生境整体呈缩减趋势,而白鹤的潜在适宜生境将比当前扩张5.4%~6.3%;当前及未来气候条件下,6种鹤的优先保护区域主要分布于大兴安岭的西北部、东南部以及中部偏西地区,目标优先保护区域的保护率达20.1%~23.8%,保护空缺主要分布于漠河县西部、额尔古纳市中部偏北地区、根河市中东部、牙克石市东北部和鄂伦春自治旗南部,建议适当增加保护地面积,为鹤类的有效保护提供保障.  相似文献   

16.
明确区域尺度上外来入侵种的潜在分布格局及其对气候变化的响应对入侵种的预防和控制具有重要意义。以外来入侵植物刺苍耳(Xanthium spinosum L.)为研究对象,以其扩散蔓延的新疆地区为研究区域,结合中国国家气候中心开发的BCC—CSM1—1模式下的将来气候条件,应用MaxEnt模型和ArcGIS空间分析技术构建了未来不同气候变化情景(RCP4.5,8.5)下2050s和2070s的刺苍耳适宜生境预测模型,定量的展示了气候变化情景下刺苍耳在新疆的扩散趋势及其适宜生境的面积空间变化和分布区中心移动轨迹。结果表明:年降雨量、下层土壤有机碳含量、上层土壤pH值、年温度变化范围、降雨量的季节性变化和年平均温度是影响刺苍耳地理分布的主导环境因子;博州、塔城、阿勒泰西北部、哈密中部、巴州北部、克州中部、阿克苏北部、奎屯市、克拉玛依市、五家渠市、喀什市等地为高危入侵风险区;两种气候模式下刺苍耳的各级适生区面积和总适生面积均呈持续增加的变化趋势,且在RCP8.5情景(最高温室气体排放情景)下响应更为敏感;总体上看,刺苍耳在新疆的分布未达到饱和,呈现以塔城中部为中心,向天山北麓和塔克拉玛干北缘方向辐射状扩散,且两种气候变化情景下至2070s分布区中心均向伊犁州奎屯方向移动。  相似文献   

17.
The Alpine marmot (Marmota marmota) is a social mammal living in mountainous grassland areas and has the particularity to hibernate in winter. Recent studies on a population in the French Alps found that climate change is affecting Alpine marmot population dynamics and might impact their overall distribution in the future. Using Species Distribution Models (SDMs), the effect of climate change on Alpine marmot's future distribution was investigated at a local scale, in the western part of the Pyrenean massif (New-Aquitaine region, France). This scale was chosen as an appropriate action scale for the conservation strategy for the species. Three climatic scenarios were used (RCP 2.6, RCP 4.5, and RCP 8.5) over three future 30-year periods (2021–2050, 2040–2070, 2071–2100) to predict the short- to long-term potential distribution of the target species. The results are consistent with naturalistic knowledge of the species´ ecological needs in terms of variable importance and response type. Mean maximum temperature in winter, standard-deviation of daily temperature in winter, along with the median rainfall amount in summer were the three most important climatic variables. Predictions under the two most pessimistic climate scenarios showed potential large habitat loss. In the long term, for RCP 4.5, an estimated habitat loss of 18% was predicted. In the case of RCP 8.5, a higher impact was predicted, with a 54% habitat loss. Our results show that high impact due to climate change can be expected at a long term. In addition, if winter climatic conditions are important for marmot survival through hibernation, drought in summer might be one of the drivers of future population dynamic and distribution. Our findings can be applied for other species living in grassland mountainous environments and for which access to food resources in summer is essential, facilitating the conservation of target areas.  相似文献   

18.
茶是对气候变化敏感的重要经济作物, 评价全球气候变化对茶分布和生产的影响对相关国家经济发展和茶农的生计至关重要。本研究基于全球858个茶分布点和6个气候因子数据, 利用物种分布模型预测全球茶的潜在适宜分布区及其在2070年的不同温室气体排放情景(RCP2.6和RCP8.5)下的变化。结果表明: 当前茶在五大洲均有适宜分布区, 主要集中在亚洲、非洲和南美洲, 并且最冷季平均温和最暖季降水量主导了茶的分布。预计2070年, 茶的适宜分布区变化在不同的大洲、国家和气候情景间将存在差异。具体来说, 茶的适宜分布区总面积将会减少, 减少的区域主要位于低纬度地区, 而中高纬度地区的适宜分布区将扩张, 由此可能导致茶的适宜分布区向北移动; 重要的产茶国中, 阿根廷、缅甸、越南等茶适宜分布区面积会减少57.8%-95.8%, 而中国和日本的适宜分布面积则会增加2.7%-31.5%。未来全球新增的适宜分布区中, 约有68%的地区土地覆盖类型为自然植被, 因此可能导致新茶树种植园的开垦和自然植被及生物多样性保护产生冲突。  相似文献   

19.
Egyptian flower mantis Blepharopsis mendica (Order: Mantodea) is a widespread mantis species throughout the southwest Palearctic region. The ecological and geographical distribution of such interesting species is rarely known. So, through this work, habitat suitability models for its distribution through Egyptian territory were created using MaxEnt software from 90 occurrence records. One topographic (altitude) and eleven bioclimatic variables influencing the species distribution were selected to generate the models. The predicted distribution in Egypt was focused on the Delta, South Sinai, the north-eastern part of the country, and some areas in the west including Siwa Oasis. Temporal analysis between the two periods (1900–1961) and (1961–2017) show current reduction of this species distribution through Delta and its surrounding areas, may be due to urbanization. On the other hand, it increases in newly protected areas of South Sinai. Under the future climate change scenario, the MaxEnt model predicted the habitat gains for B. mendica in RCP 2.6 for 2070 and loss of habitat in RCP 8.5 for the same year. Our results can be used as a basis for conserving this species not only in Egypt, but also throughout the whole of its range, also, it show how the using of geo-information could help in studying animal ecology.  相似文献   

20.
The White-Winged Wood duck (Asarcornis scutulata) is an endangered forest wetland bird currently on the verge of extinction due to an array of anthropogenic pressures. It has been reported that global climate change could affect the distribution of many bird species globally. Therefore, an understanding the potential distribution of the White-Winged Wood duck in future climate scenarios could facilitate the creation of immediate conservation plans and the mitigation of subsequent threats. This is the first ever study on the distribution of White-Winged Wood Duck (WWWD) where Representative Concentration Pathway (RCP) 8.5 scenario was used to forecast the distribution of the WWWD in the Indian Eastern Himalayan region in the 2050s and 2070s. The study revealed that 1.87 % of the total area of IEH has the high potential distribution of WWWD. The state of Assam alone includes 1.68 % of the highly potential habitat in the region. It was predicted that 436.61 km2 of highly potential habitat would be lost by 2070. Changes in the annual temperature range, precipitation in the wettest months (June to September), and precipitation decrease in the warmest quarter (October to December) would result in the loss of highly potential habitats. Under the influence of climate change, the habitat of WWWD in the eastern part of the region is likely to shift towards the western part. It was found that there will be a decline in potential habitat in the Indian states of Arunachal Pradesh, Assam, Nagaland, and Tripura located in the IEH under future climate scenarios. The potential of areas located at the Bhutan and Assam border would increase for supporting WWWD as this species' requires the average annual precipitation about 1000–1200 mm. However, the simultaneous anthropogenic activity would further destroy potential habitats in the future. The current study has provided baseline data on the potential distribution of WWWD in the IEH region for immediate conservation management plans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号