首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is a growing emphasis on developing methods for quantifying the structure and composition of tropical forests that can be applied over large landscapes, especially for tropical dry forests that are severely fragmented and have a high conservation priority. This study investigates the relationships between various measures of forest structure (annual woody increment, canopy closure, stand density, stand basal area) and composition (tree species diversity, tree community composition) measured in semi‐deciduous tropical dry forests on islands in Lago Guri, Venezuela and three spectral indices derived from Landsat ETM+: Normalized Difference Vegetation Index (NDVI), Infrared Index (IRI), and Mid‐Infrared Index (MIRI). Even though there were significant autocorrelations among spectral indices, there were significant differences in the relationships between spectral indices and forest attributes. IRI was not significantly correlated with any of the structural variables while MIRI was correlated with canopy closure and NDVI values were correlated with canopy closure as well as annual woody increment. NDVI and MIRI were both related to relative tree diversity and all three indices were associated with aspects of tree species composition. Based on the results of this study, it appears that spectral indices, and in particular NDVI, may be useful indicators of forest attributes in tropical dry forest habitats. Further research needs to be undertaken to identify if the results of this study can be applied to other tropical dry forests at a global spatial scale.  相似文献   

2.
Deadwood-associated species are increasingly targeted in forest biodiversity conservation. In order to improve structural biodiversity indicators and sustainable management guidelines, we need to elucidate ecological and anthropogenic drivers of saproxylic diversity. Herein we aim to disentangle the effects of local habitat attributes which presumably drive saproxylic beetle communities in temperate lowland deciduous forests. We collected data on saproxylic beetles in 104 oak and 49 beech stands in seven French lowland forests and used deadwood, microhabitat and stand features (large trees, openness) as predictor variables to describe local forest conditions. Deadwood diversity and stand openness were consistent key habitat features for species richness and composition in deciduous forests. Large downed deadwood volume was a significant predictor of beetle species richness in oak forests only. In addition, the density of cavity- and fungus-bearing trees had weak but significant effects. We recommend that forest managers favor the local diversification of deadwood types, especially the number of combinations of deadwood positions and tree species, the retention of large downed deadwood and microhabitat-bearing trees in order to maximize the saproxylic beetle diversity at the stand scale in deciduous forests. To improve our understanding of deadwood-biodiversity relationships, further research should be based on targeted surveys on species-microhabitat relationships and should investigate the role of landscape-scale deadwood resources and of historical gaps in continuity of key features availability at the local scale.  相似文献   

3.
We evaluated 50-year-old bottomland forests in southwestern Kentucky restored from agriculture by planting and natural regeneration in terms of their development toward mature forests. We described and compared the structure and composition of the plant communities of three stands of each type (planted, naturally regenerated, and mature). Increment cores were analyzed to reconstruct developmental trends. Future trends were predicted from analyses of the midstory and understory composition. Both planting and natural regeneration adequately replaced the structural attributes of the historical bottomland forest. The existing structural differences are expected to diminish over time. Neither regeneration method replaced the wildlife value of the mature bottomland forests due to insufficient establishment and subsequent ingrowth of heavy mast species (particularly oaks and hickories). There was evidence that the understory species compositions of the restored forest types were similar to that of the mature stand type. All forests, including the mature stands, appeared to be succeeding from hydric to mesic species compositions as a result of human-altered hydrology and natural floodplain processes. We speculate that the historical bottomland species composition will probably not persist on any of the study sites in the long term.  相似文献   

4.
Despite the general recognition that fragmentation can reduce forest biomass through edge effects, a systematic review of the literature does not reveal a clear role of edges in modulating biomass loss. Additionally, the edge effects appear to be constrained by matrix type, suggesting that landscape composition has an influence on biomass stocks. The lack of empirical evidence of pervasive edge‐related biomass losses across tropical forests highlights the necessity for a general framework linking landscape structure with aboveground biomass. Here, we propose a conceptual model in which landscape composition and configuration mediate the magnitude of edge effects and seed‐flux among forest patches, which ultimately has an influence on biomass. Our model hypothesizes that a rapid reduction of biomass can occur below a threshold of forest cover loss. Just below this threshold, we predict that changes in landscape configuration can strongly influence the patch's isolation, thus enhancing biomass loss. Moreover, we expect a synergism between landscape composition and patch attributes, where matrix type mediates the effects of edges on species decline, particularly for shade‐tolerant species. To test our conceptual framework, we propose a sampling protocol where the effects of edges, forest amount, forest isolation, fragment size, and matrix type on biomass stocks can be assessed both collectively and individually. The proposed model unifies the combined effects of landscape and patch structure on biomass into a single framework, providing a new set of main drivers of biomass loss in human‐modified landscapes. We argue that carbon trading agendas (e.g., REDD+) and carbon‐conservation initiatives must go beyond the effects of forest loss and edges on biomass, considering the whole set of effects on biomass related to changes in landscape composition and configuration.  相似文献   

5.
Tree species composition and stand structural complexity are valuable indicators of sustainable forest management. This article aims to investigate the relative influence of forest overstorey composition and structural attributes on understorey composition and diversity, taking into account also site characteristics and broad-scale environmental variables. We sampled vascular plant species composition and forest structure in 132 plots in the Cilento and Vallo di Diano National Park (southern Italy). Spearman’s non-parametric correlation coefficients were calculated between overstorey and understorey diversity indices, beech percentage, and altitude and environmental indices. A complete partitioning of the variation in understorey composition was then performed through canonical correspondence analysis considering four sets of variables: (1) overstorey composition, (2) structural attributes, (3) topography, and (4) landscape abiotic variables. Finally, we constructed a regression tree analysis of understorey species richness using the same explanatory variables. Understorey diversity indices were positively correlated with overstorey diversity indices and with environmental indices (i.e., light and soil heterogeneity). Overstorey and understorey diversity indices were negatively correlated with both altitude and the dominance of beech in the overstorey. Compositional variation was due primarily to overstorey composition and secondarily to structural attributes. Regression tree analysis revealed that altitude, overstorey species richness, and structural attributes play an important role in determining understorey species richness. According to our results, understorey composition and diversity are strongly related to overstorey composition and structural attributes. Indeed, the latter proved to be effective indicators of understorey characteristics in the study area.  相似文献   

6.
Large-scale severe natural disturbance events drive spatial and temporal patterns of forests by altering forest structure, composition, and functions. In the Bavarian Forest National Park in Germany, windthrow events led to large disturbances caused by the European bark beetle (Ips typographus L.). Until recently, it was assumed that at the initial stage of regeneration, trees tend to form a homogeneous stand structure, whereas structural heterogeneity is an attribute of later developmental stages. Yet recent studies provide evidence that under certain conditions structural heterogeneity can arise much earlier in stand development. Here we combined LiDAR data and forest growth modeling based on individual trees to develop a workflow for studying forest development in post-disturbed areas in the upper montane regions of the national park. The current forest structure was derived from LiDAR data of individually detected trees and a set of forest structural attributes were derived. The results served as input to simulate tree development spatio-temporally for a period of 80 years. Several spatial statistics, including landscape and spatial point pattern metrics, were calculated to assess the structural heterogeneity. The results showed that naturally regenerating forests on post-disturbed sites reveal structural heterogeneity already at the early-seral stage. Moreover, a significant portion of the eventual old-growth structural heterogeneity might already be determined in the early successional stages. Our workflow highlights the use of multi-sensor aerial remote sensing to provide detailed structural information useful for the investigation of early-phase forest dynamics.  相似文献   

7.
Tropical forests currently play a key role in regulating the terrestrial carbon cycle and abating climate change by storing carbon in wood. However, there remains considerable uncertainty as to whether tropical forests will continue to act as carbon sinks in the face of increased pressure from expanding human activities. Consequently, understanding what drives productivity in tropical forests is critical. We used permanent forest plot data from the Gola Rainforest National Park (Sierra Leone) – one of the largest tracts of intact tropical moist forest in West Africa – to explore how (1) stand basal area and tree diversity, (2) past disturbance associated with past logging, and (3) underlying soil nutrient gradients interact to determine rates of aboveground wood production (AWP). We started by statistically modeling the diameter growth of individual trees and used these models to estimate AWP for 142 permanent forest plots. We then used structural equation modeling to explore the direct and indirect pathways which shape rates of AWP. Across the plot network, stand basal area emerged as the strongest determinant of AWP, with densely packed stands exhibiting the fastest rates of AWP. In addition to stand packing density, both tree diversity and soil phosphorus content were also positively related to productivity. By contrast, historical logging activities negatively impacted AWP through the removal of large trees, which contributed disproportionately to productivity. Understanding what determines variation in wood production across tropical forest landscapes requires accounting for multiple interacting drivers – with stand structure, tree diversity, and soil nutrients all playing a key role. Importantly, our results also indicate that logging activities can have a long‐lasting impact on a forest's ability to sequester and store carbon, emphasizing the importance of safeguarding old‐growth tropical forests.  相似文献   

8.
Aim Few studies have explicitly examined the influence of spatial attributes of forest fragments when examining the impacts of fragmentation on woody species. The aim of this study was to assess the diverse impacts of fragmentation on forest habitats by integrating landscape‐level and species‐level approaches. Location The investigation was undertaken in temperate rain forests located in southern Chile. This ecosystem is characterized by high endemism and by intensive recent changes in land use. Method Measures of diversity, richness, species composition, forest structure and anthropogenic disturbances were related to spatial attributes of the landscape (size, shape, connectivity, isolation and interior forest area) of forest fragments using generalized linear models. A total of 63 sampling plots distributed in 51 forest fragments with different spatial attributes were sampled. Results Patch size was the most important attribute influencing different measures of species composition, stand structure and anthropogenic disturbances. The abundance of tree and shrub species associated with interior and edge habitats was significantly related to variation in patch size. Basal area, a measure of forest structure, significantly declined with decreasing patch size, suggesting that fragmentation is affecting successional processes in the remaining forests. Small patches also displayed a greater number of stumps, animal trails and cow pats, and lower values of canopy cover as a result of selective logging and livestock grazing in relatively accessible fragments. However, tree richness and β‐diversity of tree species were not significantly related to fragmentation. Main conclusions This study demonstrates that progressive fragmentation by logging and clearance is associated with dramatic changes in the structure and composition of the temperate forests in southern Chile. If this fragmentation process continues, the ability of the remnant forests to maintain their original biodiversity and ecological processes will be significantly reduced.  相似文献   

9.
Understanding the causes underlying changes in species diversity is a fundamental pursuit of ecology. Animal species richness and composition often change with decreased forest structural complexity associated with logging. Yet differences in latitude and forest type may strongly influence how species diversity responds to logging. We performed a meta‐analysis of logging effects on local species richness and composition of birds across the world and assessed responses by different guilds (nesting strata, foraging strata, diet, and body size). This approach allowed identification of species attributes that might underlie responses to this anthropogenic disturbance. We only examined studies that allowed forests to regrow naturally following logging, and accounted for logging intensity, spatial extent, successional regrowth after logging, and the change in species composition expected due to random assembly from regional species pools. Selective logging in the tropics and clearcut logging in temperate latitudes caused loss of species from nearly all forest strata (ground to canopy), leading to substantial declines in species richness (up to 27% of species). Few species were lost or gained following any intensity of logging in lower‐latitude temperate forests, but the relative abundances of these species changed substantially. Selective logging at higher‐temperate latitudes generally replaced late‐successional specialists with early‐successional specialists, leading to no net changes in species richness but large changes in species composition. Removing less basal area during logging mitigated the loss of avian species from all forests and, in some cases, increased diversity in temperate forests. This meta‐analysis provides insights into the important role of habitat specialization in determining differential responses of animal communities to logging across tropical and temperate latitudes.  相似文献   

10.
Many studies have demonstrated the importance of early‐successional forest habitat for breeding bird abundance, composition, and diversity. However, very few studies directly link measures of bird diversity, composition and abundance to measures of forest composition, and structure and their dynamic change over early succession. This study examines the relationships between breeding bird community composition and forest structure in regenerating broadleaf forests of southern New England, USA, separating the influences of ecological succession from retained stand structure. We conducted bird point counts and vegetation surveys across a chronosequence of forest stands that originated between 2 and 24 years previously in shelterwood timber harvests, a silvicultural method of regenerating oak‐mixed broadleaf forests. We distinguish between vegetation variables that relate to condition of forest regeneration and those that reflect legacy stand structure. Using principal components analyses, we confirmed the distinction between regeneration and legacy vegetation variables. We ran regression analysis to test for relationships between bird community variables, including nesting and foraging functional guild abundances, and vegetation variables. We confirmed these relationships with hierarchical partitioning. Our results demonstrate that regenerating and legacy vegetation correlate with bird community variables across stand phases and that the strength with which they drive bird community composition changes with forest succession. While measures of regeneration condition explain bird abundance and diversity variables during late initiation, legacy stand structure explains them during stem exclusion. Canopy cover, ground‐story diversity, and canopy structure diversity are the most powerful and consistent explanatory variables. Our results suggest that leaving varied legacy stand structure to promote habitat heterogeneity in shelterwood harvests contributes to greater bird community diversity. Interestingly, this is particularly important during the structurally depauperate phase of stem exclusion of young regenerating forests.  相似文献   

11.
A study was carried out in Sariska Tiger Reserve in India to investigate the effects of anthropogenic disturbance caused by biomass extraction on the bird communities of tropical dry forests. The study was based on comparisons of the avifaunal community as well as vegetation structure between strictly protected ('undisturbed') and intensively used ('disturbed') sites that were demarcated a priori on the basis of disturbance indicators. There was no significant difference in the number of recorded species and bird abundance between disturbed and undisturbed sites. However, bird species diversity was significantly lower in disturbed sites. Bird species composition was found to differ significantly between disturbed and undisturbed sites and was associated with the measured disturbance indicators. Changes in bird species composition occurred because of seven of 26 locally abundant bird species (26.9%) responding significantly to the disturbance regime. All the affected bird species are primarily insectivorous. Bird species composition was significantly related to six vegetation structural variables, including two that were significantly altered by disturbance. Changes in vegetation structure accounted for all the changes in bird species composition caused by disturbance. However, vegetation structure had additional effects on bird species composition besides those caused simply by disturbance. Thus, our study indicates that forest use in the form of chronic biomass extraction can have significant effects upon bird diversity and species composition of tropical dry forest. There is a need to retain a proportion of natural ecosystems as inviolate if the full complement of biodiversity is to be conserved.  相似文献   

12.
In human‐modified tropical landscapes (HMLs) the conservation of biodiversity, functions and services of forest ecosystems depends on persistence of old growth forest remnants, forest regeneration in abandoned agricultural fields, and restoration of degraded lands. Understanding the impacts of agricultural land uses (ALUs) on forest regeneration is critical for biodiversity conservation in HMLs. Here, we develop a conceptual framework that considers the availability of propagules and the environment prevailing after field abandonment as two major determinants of forest regeneration in HMLs. The framework proposes that regeneration potential decreases with size, duration and severity of agricultural disturbance, reducing propagule availability and creating ill‐suited environmental conditions for regeneration. We used studies from Southern Mexico to assess this framework. First, we identify regeneration bottlenecks that trees face during transit from seed to follow‐up life stages, using demographic analysis of dominant pioneer species in recently abandoned fields. Then, we explore effects of ALUs on forest regeneration at the field and landscape scales, addressing major legacies. Finally, we integrate agricultural disturbance with landscape composition to predict attributes of successful second growth forests in HMLs, and provide indicators useful to select tree native species for active restoration. An indicator of disturbance inflicted by ALUs, based on farmers’ information, predicted better regeneration potential than measurements of soil and microclimate conditions at time of abandonment. Cover of cattle pastures in the landscape was a stronger indicator of forest regenerating attributes than cover of old growth forest remnants. To conclude, we offer recommendations to promote forest regeneration and biodiversity conservation in HMLs.  相似文献   

13.
Tree functional traits together with processes such as forest regeneration, growth, and mortality affect forest and tree structure. Forest management inherently impacts these processes. Moreover, forest structure, biodiversity, resilience, and carbon uptake can be sustained and enhanced with forest management activities. To assess structural complexity of individual trees, comprehensive and quantitative measures are needed, and they are often lacking for current forest management practices. Here, we utilized 3D information from individual Scots pine (Pinus sylvestris L.) trees obtained with terrestrial laser scanning to, first, assess effects of forest management on structural complexity of individual trees and, second, understand relationship between several tree attributes and structural complexity. We studied structural complexity of individual trees represented by a single scale‐independent metric called “box dimension.” This study aimed at identifying drivers affecting structural complexity of individual Scots pine trees in boreal forest conditions. The results showed that thinning increased structural complexity of individual Scots pine trees. Furthermore, we found a relationship between structural complexity and stem and crown size and shape as well as tree growth. Thus, it can be concluded that forest management affected structural complexity of individual Scots pine trees in managed boreal forests, and stem, crown, and growth attributes were identified as drivers of it.  相似文献   

14.
Forest ecosystems are the most important terrestrial carbon (C) storage globally, and presently mitigate anthropogenic climate change by acting as a large and persistent sink for atmospheric CO2. Yet, forest C density varies greatly in space, both globally and at stand and landscape levels. Understanding the multi-scale drivers of this variation is a prerequisite for robust and effective climate change mitigation in ecosystem management. Here, we used airborne light detection and ranging (Lidar) and a novel high-resolution simulation model of landscape dynamics (iLand) to identify the drivers of variation in C density for an old-growth forest landscape in Oregon, USA. With total ecosystem C in excess of 1?Gt?ha?1 these ecosystems are among the most C-rich globally. Our findings revealed considerable spatial variability in stand-level C density across the landscape. Notwithstanding the distinct environmental gradients in our mountainous study area only 55.3% of this variation was explained by environmental drivers, with radiation and soil physical properties having a stronger influence than temperature and precipitation. The remaining variation in C stocks was largely attributable to emerging properties of stand dynamics (that is, stand structure and composition). Not only were density- and size-related indicators positively associated with C stocks but also diversity in composition and structure, documenting a close link between biodiversity and ecosystem functioning. We conclude that the complexity of old-growth forests contributes to their sustained high C levels, a finding that is relevant to managing forests for climate change mitigation.  相似文献   

15.
Abstract

The most commonly used old‐growth forest indicators are structural attributes; nevertheless, they do not necessarily represent the biodiversity value of old‐growth forests. The aim of this study is to analyse the relationships between species richness data of different taxa and structural indicators of old‐growth and to identify taxonomic/functional groups, species and structural attributes that may be used as indicators of old‐growth. To achieve this goal we sampled forest structure, vascular plants, lichens, bryophytes, fungi, saproxylic beetles and birds in mature and old‐growth stands in southern Italy. We calculated Spearman’s correlation coefficients between species richness data and structural attributes. Analyses of indicator species, co‐occurrences and two‐way clusters were performed on the multi‐taxonomic list. The group of vascular plants most significantly correlated with other groups in terms of species richness; furthermore, it displays the highest proportion of between‐group co‐occurrences. The resulting multi‐taxonomic list of potential indicators may serve as an effective means of detecting and monitoring forest ecosystems; however, for this goal, structure‐based indicators, such as forest structural attributes and vascular plant species composition, are of primary importance.  相似文献   

16.
Recent debate about the fate of tropical forests has focused attention on the consequences of forest degradation and fragmentation for their diversity and composition, and the likely functional consequences of these changes. Existing data suggest that the responses of tropical forest plant and animal communities to habitat change are idiosyncratic, although a few consistent patterns are emerging. In particular, it is apparent that conventional diversity and richness metrics may not adequately represent anthropogenic changes to community structure and organisation. A widespread trend is towards ‘biotic homogenisation’: while disturbed forests may often have an equal or even a greater number of species than undisturbed forests, these species are typically drawn from a restricted pool; and endemic, restricted-range or habitat-specialist species are most likely to decline or go extinct. Similarly, studies have documented marked changes in the structure of food webs, even where the richness and diversity of component species remains little altered. What are the likely consequences of such changes for the important ecosystem functions performed by biodiversity, such as pollination and decomposition? Much of the extensive literature on the relationship between biodiversity and ecosystem function is of limited utility for answering this question, because experimental designs do not consider species-specific contributions to ecosystem function, abundance, degree of redundancy, or extinction-proneness; and few such studies have been carried out under realistic levels of diversity under field conditions, particularly in high-diversity ecosystems such as tropical forests. Furthermore, the focus has almost always been on richness as the explanatory variable, rather than the composition or structural attributes of communities. I briefly review recent papers that have begun to tackle these important issues, and consider how future research might help us understand the functional consequences of realistic changes to species composition and food-web ‘biostructure’ in tropical forests.  相似文献   

17.
In the past 30 years, many stand structural attributes (SSAs) have been suggested and structural indices have been developed to describe the complex structure of forests. Most studies, however, have explored the potential and limits of structural measures to quantify forest structures by applying multiple measures to one stand or few measures to several stands. However, the interdependencies of multiple structural attributes across many stands of different forest management types and developmental stages have not yet been explored. Using 20 structural attributes and 124 completely inventoried 1 ha sized stands we tested to what extent structural characteristics reflect different stand types and management intensities, and how these characteristics change over time. We found that single SSAs do not show the clear gradients that they were intended to reflect, suggesting that stand structure should be described by multiple structural attributes, and that these should represent different structural aspects (including vertical, and horizontal heterogeneity, density, and diversity). A principal component analysis showed that combining several SSAs, allowed us to distinguish between stand types. The structure of mature stands remained rather constant over the observed period of about 6 years, while that of young stands changed more rapidly due to ingrowth and mortality. The older the stands, the less the large trees contributed to stand growth relative to their size. We conclude that multiple stand structural attributes are needed to characterise stand types, management effects and to explain stand productivity.  相似文献   

18.
Tropical forests undergo continuous transformation to other land uses, resulting in landscapes typified by forest fragments surrounded by anthropogenic habitats. Small forest fragments, specifically strip-shaped remnants flanking streams (referred to as riparian remnants), can be particularly important for the maintenance and conservation of biodiversity within highly fragmented forests. We compared frog species diversity between riparian remnants, other forest fragments and cattle pastures in a tropical landscape in Los Tuxtlas, Mexico. We found similar species richness in the three habitats studied and a similar assemblage structure between riparian remnants and forest fragments, although species composition differed by 50 per cent. Frog abundance was halved in riparian remnants compared with forest fragments, but was twice that found in pastures. Our results suggest that riparian remnants play an important role in maintaining a portion of frog species diversity in a highly fragmented forest, particularly during environmentally stressful (hot and dry) periods. In this regard, however, the role of riparian remnants is complementary, rather than substitutive, with respect to the function of other forest fragments within the fragmented forest.  相似文献   

19.
Tropical forests are a key determinant of the functioning of the Earth system, but remain a major source of uncertainty in carbon cycle models and climate change projections. In this study, we present an updated land model (LM3PPA‐TV) to improve the representation of tropical forest structure and dynamics in Earth system models (ESMs). The development and parameterization of LM3PPA‐TV drew on extensive datasets on tropical tree traits and long‐term field censuses from Barro Colorado Island (BCI), Panama. The model defines a new plant functional type (PFT) based on the characteristics of shade‐tolerant, tropical tree species, implements a new growth allocation scheme based on realistic tree allometries, incorporates hydraulic constraints on biomass accumulation, and features a new compartment for tree branches and branch fall dynamics. Simulation experiments reproduced observed diurnal and seasonal patterns in stand‐level carbon and water fluxes, as well as mean canopy and understory tree growth rates, tree size distributions, and stand‐level biomass on BCI. Simulations at multiple sites captured considerable variation in biomass and size structure across the tropical forest biome, including observed responses to precipitation and temperature. Model experiments suggested a major role of water limitation in controlling geographic variation forest biomass and structure. However, the failure to simulate tropical forests under extreme conditions and the systematic underestimation of forest biomass in Paleotropical locations highlighted the need to incorporate variation in hydraulic traits and multiple PFTs that capture the distinct floristic composition across tropical domains. The continued pressure on tropical forests from global change demands models which are able to simulate alternative successional pathways and their pace to recovery. LM3PPA‐TV provides a tool to investigate geographic variation in tropical forests and a benchmark to continue improving the representation of tropical forests dynamics and their carbon storage potential in ESMs.  相似文献   

20.
There have been few reports of invasions in continental rain forests, especially for exotic animals. This study provides original data concerning the potential of exotic drosophilid species to colonize the Amazonian tropical rain forest. To investigate if the structure of drosophilid assemblages differed in response to anthropogenic disturbance, we performed a taxonomic survey at six sites within the Yasuni National Park in Ecuadorian Amazonia along a disturbance gradient from pristine to clearcut artificial forest. A total of 7425 individuals from 34 species were collected of which seven species were exotic. There was significant variation in the assemblage composition along this disturbance gradient; 31 percent of which was explained by the presence of exotic species, particularly at the most disturbed sites, through nonmetric multidimensional scaling and SIMPER analyses. These results confirm the susceptibility of continental rain forests to invasion by exotic species. There is an urgent need to develop and implement monitoring systems, for example, based on drosophilid assemblage surveys, to detect exotic invasions in continental tropical forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号