首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmodium falciparum and Plasmodium malariae infections are prevalent in malaria-endemic countries. However, very little is known about their interactions especially the effect of P. malariae on P. falciparum genetic diversity. This study aimed to assess P. falciparum genetic diversity in P. falciparum and mixed infection P. falciparum/P. malariae isolates among the asymptomatic populations in Southern Benin. Two hundred and fifty blood samples (125 of P. falciparum and 125 P. falciparum/P. malariae isolates) were analysed by a nested PCR amplification of msp1 and msp2 genes. The R033 allelic family was the most represented for the msp1 gene in mono and mixed infection isolates (99.2% vs 86.4%), while the K1 family had the lowest frequency (38.3% vs 20.4%). However, with the msp2 gene, the two allelic families displayed similar frequencies in P. falciparum isolates while the 3D7 allelic family was more represented in P. falciparum/P. malariae isolates (88.7%). Polyclonal infections were also lower (62.9%) in P. falciparum/P. malariae isolates (p < 0.05). Overall, 96 individual alleles were identified (47 for msp1 and 49 for msp2) in P. falciparum isolates while a total of 50 individual alleles were identified (23 for msp1 and 27 for msp2) in P. falciparum/P. malariae isolates. The Multiplicity of Infection (MOI) was lower in P. falciparum/P. malariae isolates (p < 0.05). This study revealed a lower genetic diversity of P. falciparum in P. falciparum/P. malariae isolates using msp1 and msp2 genes among the asymptomatic population in Southern Benin.  相似文献   

2.

Background

Plasmodium knowlesi is a simian malaria parasite that has been identified to cause malaria in humans. To date, several thousand cases of human knowlesi malaria have been reported around Southeast Asia. Thus far, there is no detailed study on genetic diversity and natural selection of P. knowlesi circumsporozoite protein (CSP), a prominent surface antigen on the sporozoite of the parasite. In the present study, the genetic diversity and natural selection acting on the nonrepeat regions of the gene encoding P. knowlesi CSP were investigated, focusing on the T-cell epitope regions at the C-terminal of the protein.

Methods

Blood samples from 32 knowlesi malaria patients and 2 wild monkeys (Macaca fascicularis) were used. The CSP of the P. knowlesi isolates was amplified by PCR, cloned into Escherichia coli, and sequenced. The nonrepeat regions of the CSP gene were analysed for genetic diversity, natural selection and haplotypic grouping using MEGA5 and DnaSP version 5.10.00 programmes. A haplotype network was constructed based on the C-terminal (Th2R/Th3R) T-cell epitope regions using the Median-Joining method in the NETWORK version 4.6.1.2 programme. Previously published sequences from other regions (Malaysia Borneo, Singapore) were also included in the analysis.

Results

A total of 123 P. knowlesi CSP sequences were analysed. Multiple sequence alignment revealed 58 amino acid changes, and 42 novel amino acid haplotypes were identified. Polymorphism was higher in the C-terminal Th2R/Th3R epitope (π = 0.0293, n = 123) region compared to the overall combined nonrepeat regions (π = 0.0120, n = 123). Negative natural selection was observed within the nonrepeat regions of the CSP gene. Within the C-terminal Th2R/Th3R epitope regions, there was evidence of slight positive selection. Based on haplotype network analysis of the Th2R/Th3R regions, five abundant haplotypes were identified. Sharing of haplotypes between humans and macaques were observed.

Conclusion

This study contributes to the understanding of the type and distribution of naturally occurring polymorphism in the P. knowlesi CSP gene. This study also provides a measurement of the genetic diversity of P. knowlesi and identifies the predominant haplotypes within Malaysia based on the C-terminal Th2R/Th3R regions.  相似文献   

3.
RTS,S is the most advanced malaria vaccine candidate, currently under phase-III clinical trials in Africa. This Plasmodium falciparum vaccine contains part of the central repeat region and the complete C-terminal T cell epitope region (Th2R and Th3R) of the circumsporozoite protein (CSP). Since naturally occurring polymorphisms at the vaccine candidate loci are critical determinants of the protective efficacy of the vaccines, it is imperative to investigate these polymorphisms in field isolates. In this study we have investigated the genetic diversity at the central repeat, C-terminal T cell epitope (Th2R and Th3R) and N-terminal T cell epitope regions of the CSP, in P. falciparum isolates from Madhya Pradesh state of India. These isolates were collected through a 5-year prospective study aimed to develop a well-characterized field-site for the future evaluation of malaria vaccine in India. Our results revealed that the central repeat (63 haplotypes, n = 161) and C-terminal Th2R/Th3R epitope (24 haplotypes, n = 179) regions were highly polymorphic, whereas N-terminal non-repeat region was less polymorphic (5 haplotypes, n = 161) in this population. We did not find any evidence of the role of positive natural selection in maintaining the genetic diversity at the Th2R/Th3R regions of CSP. Comparative analysis of the Th2R/Th3R sequences from this study to the global isolates (n = 1160) retrieved from the GenBank database revealed two important points. First, the majority of the sequences (∼61%, n = 179) from this study were identical to the Dd2/Indochina type, which is also the predominant Th2R/Th3R haplotype in Asia (∼59%, n = 974). Second, the Th2R/Th3R sequences in Asia, South America and Africa are geographically distinct with little allele sharing between continents. In conclusion, this study provides an insight on the existing polymorphisms in the CSP in a parasite population from India that could potentially influence the efficacy of RTS,S vaccine in this region.  相似文献   

4.
Molecular methods elucidate evolutionary and ecological processes in parasites, where interaction between hosts and parasites enlighten the evolution of parasite lifestyles and host defenses. Population genetics of Plasmodium vivax parasites accurately describe transmission dynamics of the parasites and evaluation of malaria control measures. As a first generation vaccine candidate against malaria, the Circumsporozoite Protein (CSP) has demonstrated significant potential in P. falciparum. Extensive polymorphism hinders the development of a potent malaria vaccine. Hence, the genetic diversity of Pvcsp was investigated for the first time in 60 Sri Lankan clinical isolates by obtaining the nucleotide sequence of the central repeat (CR) domain and examining the polymorphism of the peptide repeat motifs (PRMs), the genetic diversity indices and phylogenetic relationships. PCR amplicons determined size polymorphism of 610, 700 and 710 bp in Pvcsp of Sri Lanka where all amino acid sequences obtained were of the VK210 variant, consisting variable repeats of 4 different PRMs. The two most abundant PRMs of the CR domain, GDRADGQPA and GDRAAGQPA consisted ~ 2-4 repeats, while GNRAAGQPA was unique to the island. Though, different nucleotide sequences termed repeat allotypes (RATs) were observed for each PRM, these were synonymous contributing to a less polymorphic CR domain. The genetic diversity of Pvcsp in Sri Lanka was due to the number of repetitive peptide repeat motifs, point mutations, and intragenic recombination. The 19 amino acid haplotypes defined were exclusive to Sri Lanka, whereas the 194 Pvcsp sequences of global isolates generated 57 more distinct a.a. haplotypes of the VK210 variant. Strikingly, the CR domain of both VK210 and VK247 variants was under purifying selection interpreting the scarcity of CSP non-synonymous polymorphisms. Insights to the distribution of RATs in the CR region with geographic clustering of the P. vivax VK210 variant were revealed. The cladogram reiterated this unique geographic clustering of local (VK210) and global isolates (VK210 and VK247), which was further validated by the elevated fixation index values of the VK210 variant.  相似文献   

5.
The Asian green mussel Perna viridis is ecologically and economically important in the coastal regions of China. In order to characterize the genetic diversity and population connectivity of P. viridis in South China Sea, a 664 bp region of mitochondrial COI gene and a 293 bp region of 16S rRNA gene were sequenced and analyzed for 78 and 92 individuals from four populations in South China Sea, respectively. A total of 15 haplotypes were defined by 14 variable nucleotide sites in COI gene, and 7 haplotypes by 6 variable nucleotide sites in 16S rRNA gene. High haplotype diversity and low nucleotide diversity were observed in COI gene, while moderate haplotype diversity and low nucleotide diversity were observed in 16S rRNA gene. Pairwise FST values of COI gene were all negative and those of 16S rRNA gene ranged from −0.01409 to 0.10289. The results showed that no significant genetic divergence (or shallow genetic structure) and high levels of population connectivity among the four populations of P. viridis in South China Sea.  相似文献   

6.
We have analysed the whole mitochondrial (mt) genome sequences (each ~6 kilo nucleotide base pairs in length) of four field isolates of the malaria parasite Plasmodium falciparum collected from different locations in India. Comparative genomic analyses of mt genome sequences revealed three novel India-specific single nucleotide polymorphisms. In general, high mt genome diversity was found in Indian P. falciparum, at a level comparable to African isolates. A population phylogenetic tree placed the presently sequenced Indian P. falciparum with the global isolates, while a previously sequenced Indian isolate was an outlier. Although this preliminary study is limited to a few numbers of isolates, the data have provided fundamental evidence of the mt genome diversity and evolutionary relationships of Indian P. falciparum with that of global isolates.  相似文献   

7.
We characterized the complete nucleic and amino acid sequences of the Plasmodium inui circumsporozoite protein (Pincsp) gene and analyzed nucleotide diversity across the entire Pincsp gene by using 7 field isolates and strains Taiwan I and II obtained from Formosan macaques (Macaca cyclopis) in Taiwan. The length of the circumsporozoite protein ( CSP ) gene ranged from 1077 to 1125 bp. Size polymorphisms were due to variations in the number of tandem repeat units. The non-repetitive (NR) region exhibited high homology (99.1 ~ 100 and 98.7 ~ 100% at the nucleotide and amino acid levels, respectively) and was conserved among the variants (nucleotide diversities, π, of the 5'NR and 3'NR regions were 0.00364 and 0.00392, respectively). In the central repetitive (CR) region, we decomposed the sequences into 2 kinds of repeating amino acid motifs, i.e., a repeat unit R1, PA(P/A)(P/A)A(E)GG (n = 11-13), and a following repeat unit R2: P(A/G)(A/P/G)(P/Q)AQ(N/K) (n = 9-10). Analyzing these repeat sequences showed evidence of 3 genetic mechanisms for generating variations in the repeats of the Pincsp gene, i.e., point mutation, insertion, and recombination. These findings suggest that polymorphisms in the Pincsp gene are essentially limited to the CR region, which showed much greater variability in terms of length, number of repeats, and sequence.  相似文献   

8.
The genetic diversity displayed by Plasmodium falciparum, the most deadly Plasmodium species, is a significant obstacle for effective malaria vaccine development. In this study, we identified genetic polymorphisms in P. falciparum glutamate-rich protein (GLURP), which is currently being tested in clinical trials as a malaria vaccine candidate, from isolates found circulating in the Brazilian Amazon at variable transmission levels. The study was performed using samples collected in 1993 and 2008 from rural villages situated near Porto Velho, in the state of Rondônia. DNA was extracted from 126 P. falciparum-positive thick blood smears using the phenol-chloroform method and subjected to a nested polymerase chain reaction protocol with specific primers against two immunodominant regions of GLURP, R0 and R2. Only one R0 fragment and four variants of the R2 fragment were detected. No differences were observed between the two time points with regard to the frequencies of the fragment variants. Mixed infections were uncommon. Our results demonstrate conservation of GLURP-R0 and limited polymorphic variation of GLURP-R2 in P. falciparum isolates from individuals living in Porto Velho. This is an important finding, as genetic polymorphisms in B and T-cell epitopes could have implications for the immunological properties of the antigen.  相似文献   

9.
The evolutionary history and age of Plasmodium vivax has been inferred as both recent and ancient by several studies, mainly using mitochondrial genome diversity. Here we address the age of P. vivax on the Indian subcontinent using selectively neutral housekeeping genes and tandem repeat loci. Analysis of ten housekeeping genes revealed a substantial number of SNPs (n = 75) from 100 P. vivax isolates collected from five geographical regions of India. Neutrality tests showed a majority of the housekeeping genes were selectively neutral, confirming the suitability of housekeeping genes for inferring the evolutionary history of P. vivax. In addition, a genetic differentiation test using housekeeping gene polymorphism data showed a lack of geographical structuring between the five regions of India. The coalescence analysis of the time to the most recent common ancestor estimate yielded an ancient TMRCA (232,228 to 303,030 years) and long-term population history (79,235 to 104,008) of extant P. vivax on the Indian subcontinent. Analysis of 18 tandem repeat loci polymorphisms showed substantial allelic diversity and heterozygosity per locus, and analysis of potential bottlenecks revealed the signature of a stable P. vivax population, further corroborating our ancient age estimates. For the first time we report a comparable evolutionary history of P. vivax inferred by nuclear genetic markers (putative housekeeping genes) to that inferred from mitochondrial genome diversity.  相似文献   

10.
Plasmodium falciparum malaria is a major public health problem in Thailand due to the emergence of multidrug resistance. The understanding of genetic diversity of malaria parasites is essential for developing effective drugs and vaccines. The genetic diversity of the merozoite surface protein-1 (PfMSP-1) and merozoite surface protein-2 (PfMSP-2) genes was investigated in a total of 145 P. falciparum isolates collected from Mae Sot District, Tak Province, Thailand during 3 different periods (1997-1999, 2005-2007, and 2009-2010). Analysis of genetic polymorphisms was performed to track the evolution of genetic change of P. falciparum using PCR. Both individual genes and their combination patterns showed marked genetic diversity during the 3 study periods. The results strongly support that P. falciparum isolates in Thailand are markedly diverse and patterns changed with time. These 2 polymorphic genes could be used as molecular markers to detect multiple clone infections and differentiate recrudescence from reinfection in P. falciparum isolates in Thailand.  相似文献   

11.
Sugarcane streak mosaic virus (SCSMV), a member of the genus Poacevirus is an important viral pathogen affecting sugarcane production in India. The P1 gene of ten Indian isolates was sequenced and compared with previously reported SCSMV isolates. Comparative sequence analysis revealed a high level of diversity in the P1 gene (83–98% nucleotide sequence identity; 87–100% amino acid sequence identity), and the Indian SCSMV isolates were found to be the most variable (up to 9% diversity at the amino acid level). Phylogenetic tree analysis showed clustering of 17 SCSMV isolates into two groups: group I included isolates from India (except SCSMV-TPT) and Pakistan, and group II consisted of isolates from Japan, Indonesia, Thailand and SCSMV-TPT. The results obtained from phylogenetic study were further supported by the different in silico analysis viz. SNPs (single nucleotide polymorphism), INDELs (insertion and deletion) and evolutionary distance analysis. A significant proportion of recombination sites were observed at the N terminal region of P1 gene. Analysis of selection pressure indicated that the P1 gene of the Indian SCSMV isolates is under strong negative or purifying selection. It is likely that recombination identified in Indian SCSMV isolates, along with strong purifying selection, enhances the speed of elimination of deleterious mutations in the P1 gene. The evolutionary processes (recombination and selection pressure) together contributed to the observed genetic diversity and population structure of Indian SCSMV isolates.  相似文献   

12.
Human infections with Plasmodium knowlesi have been misdiagnosed by microscopy as Plasmodium malariae due to their morphological similarities. Although microscopy-identified P. malariae cases have been reported in the state of Sarawak (Malaysian Borno) as early as 1952, recent epidemiological studies suggest the absence of indigenous P. malariae infections. The present study aimed to determine the past incidence and distribution of P. knowlesi infections in the state of Sarawak based on archival blood films from patients diagnosed by microscopy as having P. malariae infections. Nested PCR assays were used to identify Plasmodium species in DNA extracted from 47 thick blood films collected in 1996 from patients in seven different divisions throughout the state of Sarawak. Plasmodium knowlesi DNA was detected in 35 (97.2%) of 36 blood films that were positive for Plasmodium DNA, with patients originating from all seven divisions. Only one sample was positive for P. malariae DNA. This study provides further evidence of the widespread distribution of human infections with P. knowlesi in Sarawak and its past occurrence. Taken together with data from previous studies, our findings suggest that P. knowlesi malaria is not a newly emergent disease in humans.  相似文献   

13.
Polymorphisms in the isotype I β-tubulin gene are important genetic determinants of benzimidazole (BZ) resistance in a number of parasitic nematode species including Teladorsagia circumcincta, a major gastrointestinal nematode of sheep. This study investigates the genetic diversity at this locus in a BZ-resistant isolate of T. circumcincta (MTci5) derived from a sheep farm in the United Kingdom (UK) that was open to animal, and therefore parasite, migration. Pyrosequencing was used to determine the frequency of single nucleotide polymorphisms (SNPs) known to be associated with BZ resistance. This was followed by a combination of single strand conformation polymorphism (SSCP) analysis and nucleotide sequencing to sample allelic diversity in a 276 bp fragment immediately surrounding the isotype I β-tubulin F200Y mutation. The genetic diversity at this locus was extremely high, with seven different haplotypes found to contain the resistant F200Y polymorphism in this single resistant isolate. Genotyping by SSCP interfaced with pyrosequencing demonstrated that the P200Y mutation is also present on multiple haplotypes in two other BZ-resistant T. circumcincta isolates from the UK. This contrasts with much lower levels of haplotype diversity in BZ-resistant alleles present in T. circumcincta isolates from French goat farms that are closed to parasite migration. Taken together with our knowledge of T. circumcincta population genetic structure, these results are most consistent with multiple independent origins of resistance and mixing of alleles due to the large amount of livestock movement in the UK.  相似文献   

14.
The dihydropteroate synthase (dhps) genes of 44 P. malariae strains from four Asian countries were isolated. Only a limited number of polymorphisms were observed. Comparison with homologous mutations in other Plasmodium species showed that these polymorphisms are unlikely to be associated with sulfadoxine resistance.  相似文献   

15.
The vir genes are antigenic genes and are considered to be possible vaccine targets. Since India is highly endemic to Plasmodium vivax, we sequenced 5 different vir genes and investigated DNA sequence variations in 93 single-clonal P. vivax isolates. High variability was observed in all the 5 vir genes; the vir 1/9 gene was highly diverged across Indian populations. The patterns of genetic diversity do not follow geographical locations, as geographically distant populations were found to be genetically similar. The results in general present complex genetic diversity patterns in India, requiring further in-depth population genetic and functional studies.  相似文献   

16.
Colletotrichum gloeosporioides sensu lato is one of the most common and widely distributed plant pathogens in the world. Understanding fungal biodiversity is hinged on accurate identification and delimitation at the inter- and intraspecific levels. Sequences of the ITS1-5.8S-ITS2 region (ITS), β-tubulin (TUB), actin (ACT), and glyceraldehyde-3-phosphate dehydrogenase (GPDH) genes of 30 C. gloeosporioides sensu lato isolates, collected from anthracnose infected papaya fruits grown in the main production areas in Trinidad, were analyzed by in silico PCR-RFLP analysis with the aim of identifying which gene region(s) had the highest level of intraspecific polymorphism. Restriction site polymorphisms generated from 13 restriction enzymes enabled the identification of specific enzymes that were successful at intraspecific discrimination of the C. gloeosporioides isolates. Genetic distance values were reflective of the level of polymorphisms obtained for the four different gene regions. In both cases (calculated genetic distance and percentage of polymorphic loci from RFLP profiles), ACT and ITS gene regions had the highest level of restriction site polymorphisms and genetic diversity, GPDH and TUB had the lowest. Cluster analysis based on PCR-RFLP genetic distance data revealed sub-specific placement of the isolates which appeared to be gene-dependent. The implications of these findings are discussed relative to biodiversity monitoring and the need for multilocus, polyphasic investigations which must take into account the possibility of exaggerated estimates of genetic diversity.  相似文献   

17.
It is widely believed that human malaria parasites infect only man as a natural host. However, earlier morphological observations suggest that great apes are likely to be natural reservoirs as well. To identify malaria parasites in great apes, we screened 60 chimpanzees imported into Japan. Using the sequences of small subunit rRNA and the mitochondrial genome, we identified infection of Plasmodium malariae, a human malaria parasite, in two chimpanzees that were imported about thirty years ago. The chimpanzees have been asymptomatic to the present. In Japan, indigenous malaria disappeared more than fifty years ago; and thus, it is most likely inferred that the chimpanzees were infected in Africa, and P. malariae isolates were brought into Japan from Africa with their hosts, suggesting persistence of parasites at low level for thirty years. Such a long term latent infection is a unique feature of P. malariae infection in humans. To our knowledge, this is the first to report P. malariae infection in chimpanzees and a human malaria parasite from nonhuman primates imported to a nonendemic country.  相似文献   

18.
An infection and treatment protocol involving infection with a mixture of three parasite isolates and simultaneous treatment with oxytetracycline is currently used to vaccinate cattle against Theileria parva. While vaccination results in high levels of protection in some regions, little or no protection is observed in areas where animals are challenged predominantly by parasites of buffalo origin. A previous study involving sequencing of two antigen-encoding genes from a series of parasite isolates indicated that this is associated with greater antigenic diversity in buffalo-derived T. parva. The current study set out to extend these analyses by applying high-throughput sequencing to ex vivo samples from naturally infected buffalo to determine the extent of diversity in a set of antigen-encoding genes. Samples from two populations of buffalo, one in Kenya and the other in South Africa, were examined to investigate the effect of geographical distance on the nature of sequence diversity. The results revealed a number of significant findings. First, there was a variable degree of nucleotide sequence diversity in all gene segments examined, with the percentage of polymorphic nucleotides ranging from 10% to 69%. Second, large numbers of allelic variants of each gene were found in individual animals, indicating multiple infection events. Third, despite the observed diversity in nucleotide sequences, several of the gene products had highly conserved amino acid sequences, and thus represent potential candidates for vaccine development. Fourth, although compelling evidence for population differentiation between the Kenyan and South African T. parva parasites was identified, analysis of molecular variance for each gene revealed that the majority of the underlying nucleotide sequence polymorphism was common to both areas, indicating that much of this aspect of genetic variation in the parasite population arose prior to geographic separation.  相似文献   

19.
Asymptomatic malaria parasite carriers do not seek anti-malarial treatment and may constitute a silent infectious reservoir. In order to assess the level of asymptomatic and symptomatic carriage amongst adolescents in a highly endemic area, and to identify the risk factors associated with such carriage, we conducted a cross-sectional survey of 1032 adolescents (ages 10–19 years) from eight schools located in Ibadan, southwestern Nigeria in 2016. Blood films and blood spot filter paper samples were prepared for microscopy and DNA analysis. The prevalence of asymptomatic malaria was determined using microscopy, rapid diagnostic tests and PCR for 658 randomly selected samples. Of these, we found that 80% of asymptomatic schoolchildren were positive for malaria parasites by PCR, compared with 47% and 9%, determined by rapid diagnostic tests and microscopy, respectively. Malaria parasite species typing was performed using PCR targeting the mitochondrial CoxIII gene, and revealed high rates of carriage of Plasmodium malariae (53%) and Plasmodium ovale (24%). Most asymptomatic infections were co-infections of two or more species (62%), with Plasmodium falciparum + P. malariae the most common (35%), followed by P. falciparum + P. malariae + P. ovale (21%) and P. falciparum + P. ovale (6%). Single infections of P. falciparum, P. malariae and P. ovale accounted for 24%, 10% and 4% of all asymptomatic infections, respectively. To compare the species composition of asymptomatic and symptomatic infections, further sample collection was carried out in 2017 at one of the previously sampled schools, and at a nearby hospital. Whilst the species composition of the asymptomatic infections was similar to that observed in 2016, the symptomatic infections were markedly different, with single infections of P. falciparum observed in 91% of patients, P. falciparum + P. malariae in 5% and P. falciparum + P. ovale in 4%.  相似文献   

20.
In the present investigation, the genetic structure of four populations of Catla catla, sequences of mitochondrial gene, cytochrome b (cyto b) from four populations were sequenced and analyzed. The sequences of mitochondrial regions revealed high haplotype diversity and low nucleotide diversity. The lowest 249 polymorphic sites and 0.00 parsimony informative sites were detected in populations of Fish Federation Pond (CCFFB) whereas highest 330 polymorphic sites and 56 parsimony informative sites were detected in populations of Narmada River (CCNRH) in the cyto b gene sequences in Catla catla populations. The twelve different haplotypes were detected among the four populations studied, lowest population specific haplotype as 2.00 was observed in Fish Federation Pond (CCFFB) and highest was in Population of Narmada River and Tighra reservoir. Sequencing of cyto b gene revealed 12 number of haplotypes (h) with haplotype (gene) diversity (Hd) 0.8736 and nucleotide diversity (π) 0.6474. These data clearly indicated that, feral/wild population showing highest values of polymorphisms, parsimony, haplotype diversity showing good, healthy habitat is lotic water (Narmada River) and lentic water body (Tighra reservoir). The results also concluded that the partial cyto b is polymorphic and can be a potential marker to determine ecological habitat based genetic differentiation among the populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号