首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated broad patterns in communities of ectomycorrhizal fungi from three Florida habitats (sandhills, scrub, and pine rocklands) and the ability of spore bank fungi to associate with Pinus elliottii (slash pine) and Pinus densa (south Florida slash pine). Efforts to replant pines in the endangered pine rocklands are vital to the persistence of this habitat, yet little is known about the ectomycorrhizal fungi communities or how they may differ from those in other pine-dominated habitats in Florida. We used high-throughput amplicon sequencing (HTS) to assess baseline fungal communities and greenhouse bioassays to bait ectomycorrhizal fungi using seedlings. HTS soil data recovered 188 ectomycorrhizal species but only a few subsequently colonized the bioassay seedlings. We recovered 21 ectomycorrhizal species on pine seedlings including common spore bank fungi such as Cenococcum, Suillus, and Tuber, but Rhizopogon species were dominant across all sites and habitats. Habitat type and site were significant variables influencing the community composition of the total soil fungal community, soil ectomycorrhizal community, and the fungi found on seedling root tips. However, we found no significant differences between the ectomycorrhizal communities on seedling roots from the two Pinus species.  相似文献   

2.
Pine species have become invasive throughout the globe and threaten to replace native biota. The threat of pine invasion is particularly pressing in parts of the tropics where there are no native pines. The factors that govern pine invasion are not often well understood. However, key to pine survival is an obligate and mutualistic interaction with ectomycorrhizal fungi. Thus for pines to successfully invade new habitats compatible ectomycorrhizal fungi must already be present, or be co-introduced. The purpose of this study was to examine the community structure of non-native ectomycorrhizal fungi associated with pine invasions in the Hawaiian Islands. To accomplish this we executed a field and greenhouse study and used a molecular ecology approach to identify the fungi associating with invasive pines in Hawai‘i. We show that: (1) ectomycorrhizal fungal species richness in non-native pine plantations is far less than what is found in pine’s native range, (2) there was a significant decrease in average ectomycorrhizal fungal species richness as distance from pine plantations increased and, (3) Suillus species were the dominant fungi colonizing pines outside plantations. The keystone ectomycorrhizal fungal taxa responsible for pine establishment in Hawai‘i are within genera commonly associated with pine invasions throughout the globe. We surmise that these fungi share functional traits such as the ability for long-distance dispersal from plantations and host tree colonization via spore that lead to their success when introduced to new habitats.  相似文献   

3.
We asked if exotic Pinus elliotti seedlings can survive and form ectomycorrhizas at higher elevations and long distances from their current range, and which ECM partners disperse to these soils. We selected three plots at four grassland sites along an altitudinal gradient (900, 1600, 2200, and 2700 m asl) established at c. 110, 3000, 6000, and 9000 m from the closest pine plantation, respectively. We combined field experiments with glasshouse assays to assess survival and ECM fungi in roots and soils. A pine plantation close to the lowest site was also selected for DNA metabarcoding of soils. Pine seedlings survived at all altitudes but not all formed mycorrhizas. They formed mycorrhizas with Suillus granulatus at 900, 1600, and 2200 m asl (i.e. up to 6000 m from the closest pine plantation), and with Rhizopogon pseudoroseolus and Thelephora terrestris at lower altitudes and distances. Twelve ECM fungal OTUs were found in grasslands and 34 were detected in the pine plantation. Although richness and abundance of ECM fungi decreased with increasing distance from the pine plantation, there was at least one non-native ECM fungal species present in each sampling site, even at 2700 masl and 9000 m distance from the closest plantation. This study provides evidence that the availability of suitable fungal symbionts might constrain but not hinder the expansion of a pine species over wide distances and altitudinal zones even in areas with no native ECM fungi.  相似文献   

4.
Spores and sclerotia are the main propagules that allow fungi to persist through unfavorable conditions and disperse into new environments. Despite their importance, very little is known about their longevity and dormancy, especially in ectomycorrhizal fungi. To assess the viability of ectomycorrhizal fungal spores in forest soil, we collected and buried non-sterile forest soil, in pots, in the field distant from an inoculum source. After 6 yr, a subset of this soil was assayed for viable spores by baiting the fungi with Bishop pine (Pinus muricata) seedlings. Our results show that the three most frequent colonizers in year 1 continued to colonize significant percentages of seedlings in year 6: Wilcoxina mikolae (77 %), Rhizopogon vulgaris (13 %) and Suillus brevipes (9 %). While three species that colonized low percentages of seedlings in year 1, Suillus pungens (1 %), Rhizopogon salebrosus (2 %), and Thelephora terrestris (5 %) were not recovered in year 6. Laccaria proxima, a species not seen in year 1, was recovered on a single seedling in year 6. This is the first report of long-term survival of S. brevipes and W. mikolae. Our results reveal a more complete picture of ectomycorrhizal fungal spore longevity in soil spore banks.  相似文献   

5.
H. Setälä 《Oecologia》2000,125(1):109-118
Mycorrhizal plants are commonly believed to direct much more of their photosynthates into the soil than non-mycorrhizal plants. As the growth of most organisms of the detrital food web is limited by energy, the flow of C through mycorrhizal plants into the below-ground milieu is widely assumed to nourish a variety of decomposer organisms in soils. In the current experiment, I explored whether some representatives of soil mesofauna, either fungivores or microbi-detritivores, derive benefit from the presence of ectomycorrhizal (EM) fungi growing on the roots of Scots pine (Pinus sylvestris). I also investigated whether the role of soil mesofauna in affecting pine growth depends on the presence of EM fungi in the pine rhizosphere. The study was established in microcosms with a mixture of raw humus and sand. The soil was defaunated, reinoculated with 10 species of soil bacteria and 11 species of saprophytic soil fungi, and pine seedlings, either infected or non-infected with four taxa of EM fungi, were planted in the microcosms. Five treatments with different food web configurations were established: (1) saprophytic microbes alone, (2) as (1) but with the omnivorous enchytraeid species Cognettia sphagnetorum present, (3) as (1) but with Collembola (Hypogastrura assimilis), (4) as (1) but with four species of oribatid mites (Acari) involved, and (5) as 1) but with C. sphagnetorum, H. assimilis and the Acari. The microcosms were incubated in a climate chamber with varying temperature and illumination regimes for two growing periods for the pine. After 60 weeks, pine biomass production was significantly greater in the mycorrhizal systems, the total biomass being 1.43 times higher in the presence than absence of EM fungi. Similarly, almost ten times more fungal biomass was detected on pine roots growing in the mycorrhizal than in the non-mycorrhizal systems. The presence of EM fungi was also associated with significantly lowered pH and percent organic matter of the soil. Despite the clearly larger biomass of both the pines and the fungi on the pine roots, neither the numbers nor biomasses of the mesofauna differed significantly between the EM and non-EM systems. The presence of Collembola and C. sphagnetorum had a positive influence on pine growth, particularly in the absence of EM fungi, whereas oribatid mites had no effects on pine growth. The complexity of the mesofaunal community was not related to the biomass production of the pines in a straightforward manner; for example, the complex systems with each faunal group present did not produce more pine biomass than the simple systems where C. sphagnetorum existed alone. The results of this experiment suggest that the short-term role of EM fungi in fuelling the detrital food web is less significant than generally considered, but that their role as active decomposers and/or stimulators of the activity of saprophytic microbes can be more important than is often believed. Received: 22 December 1999 / Accepted: 14 April 2000  相似文献   

6.
Lilleskov EA  Bruns TD 《Mycologia》2005,97(4):762-769
Patterns of fungal spore dispersal affect gene flow, population structure and fungal community structure. Many Basidiomycota produce resupinate (crust-like) basidiocarps buried in the soil. Although spores are actively discharged, they often do not appear to be well positioned for aerial dispersal. We investigated the potential spore dispersal mechanisms of one exemplar of this growth form, Tomentella sublilacina. It is a widespread ectomycorrhizal fungus that sporulates in the soil organic horizon, can establish from the spore bank shortly after disturbance, but also can be a dominant species in mature forest stands. We investigated whether its spores could be dispersed via spore-based food webs. We examined external surfaces, gut contents and feces from arthropod fungivores (mites, springtails, millipedes, beetles, fly larvae) and arthropod and vertebrate predators (centipedes, salamanders) from on and around T. sublilacina sporocarps. Spore densities were high in the guts of many individuals from all fungivore groups. Centipede gut contents, centipede feces and salamander feces contained undigested invertebrate exoskeletons and many apparently intact spores. DAPI staining of spores from feces of fungivores indicated that 7-73% of spores contained intact nuclei, whereas spores from predators had lower percentages of intact nuclei. The spiny spores often were lodged on invertebrate exoskeletons. To test the viability of spores that had passed through invertebrate guts we used fecal droppings of the millipede Harpaphe haydeniana to successfully inoculate seedlings of Pinus muricata (Bishop pine). These results indicate the potential for T. sublilacina spore dispersal via invertebrates and their predators in soil food webs and might help to explain the widespread distribution of this species. It is likely that this is a general mechanism of dispersal for fungi producing resupinate sporocarps, indicating a need to develop a fuller understanding of the linkages of soil food webs and spore dispersal.  相似文献   

7.
Environmental disturbances define the diversity and assemblage of species, affecting the functioning of ecosystems. Fire is a major disturbance of Mediterranean pine forests. Pines are highly dependent on the ectomycorrhizal (EM) fungal symbiosis, which is critical for tree recruitment under primary succession. To determine the effects of time since fire on the structure and recovery of EM fungal communities, we surveyed the young Pinus pinaster regenerate in three sites differing in the elapsed time after the last fire event. Pine roots were collected, and EM fungi characterized by sequencing the internal transcribed spacer (ITS) and the large subunit (LSU) regions of the nuclear ribosomal (nr)-DNA. The effects of the elapsed time after fire on the EM community structure (richness, presence/absence of fungi, phylogenetic diversity) and on soil properties were analysed. Fungal richness decreased with the elapsed time since the fire; although, the phylogenetic diversity of the EM community increased. Soil properties were different depending on the elapsed time after fire and particularly, the organic matter, carbon-to-nitrogen (C/N) ratio, nitrogen and iron significantly correlated with the assemblage of fungal species. Ascomycetes, particularly Tuberaceae and Pezizales, were significantly over-represented on saplings in the burned site. On seedlings, a significant over-representation of Rhizopogonaceae and Atheliaceae was observed in the most recently burned site, while other fungi (i.e. Cortinariaceae) were significantly under-represented. Our results are consistent with the hypothesis that fire can act as a selective agent by printing a phylogenetic signal on the EM fungal communities associated with naturally regenerated pines, pointing out to some groups as potential fire-adapted fungi.  相似文献   

8.
Soil fungi play a crucial role in ecosystem functioning and there is increasing evidence that exotic plants invading forests can affect soil fungal communities. We examined potential effects of the invasive plant Impatiens glandulifera on hyphal biomass of ectomycorrhizal fungi, their genetic diversity and the diversity of other soil fungi in deciduous forests in Switzerland. We compared invaded patches with patches where I. glandulifera had been removed, by establishing pairs of 3-m long transect lines at the edge of seven areas of either type. Along the transects we assessed the length of ectomycorrhizal fungal hyphae using the ‘ingrowth mesh bag method’, and used terminal restriction fragment length polymorphism (T-RFLP) analysis to examine fungal genetic diversity. The invasive plant reduced fungal hyphal biomass by 30–80%: the reduction was largest in the centre of the patch. I. glandulifera did not alter fungal richness, but affected the composition of fungal communities. This is probably the result of a decrease of mycorrhizal fungi, coupled with an increase of saprotrophic fungi. Our findings demonstrate the adverse impacts of an annual invasive plant species on both fungal hyphal biomass and the composition of soil fungal communities. This may negatively affect forest nutrient and carbon cycling, soil stability and the functionality of the fungal community, with major consequences for forest ecosystem functioning.  相似文献   

9.
Ectomycorrhizas (EM) are among the most active components of forest soil biomass because they represent the dominant soil carbon efflux from forests. However, temporal patterns of EM biomass in relation to climatic factors and host tree growth remain unclear. We sampled EM and fine roots of pine each month for 6 years (May 2003 to June 2009) in a 40–50-year-old Pinus densiflora forest in Japan. Tree ring width of host pines in the plot was measured to assess the chronological sequence of annual tree growth. EM biomass was not stable during the 6 years of monitoring and seasonal patterns were indistinct. Multiple correlation analyses revealed that the autumn precipitation in the previous year was the most determinative factor of EM biomass in the current year, with a negative correlation. In contrast, tree ring width generally showed a stable annual growth pattern throughout the monitoring period. Clarification of such a carbon allocation pattern is important in understanding forest carbon dynamics under a temperate monsoon climate.  相似文献   

10.
We aimed to evaluate if exotic ectomycorrhizal fungi from exotic pine plantations disperse through non-native, but also native, mammals in a mountain ecosystem devoid of native ECM plants. Among four non-native and three native mammal species, feces of non-native wild boar (Sus scrofa) and brown hare (Lepus europaeus), and native pampa fox (Lycalopex gymnocercus) were selected to inoculate seedlings of Pinus elliottii. These feces came from two transects in an elevation gradient (1350–2250 m asl) and different distances from a pine plantation (100–6000 m). We show that feces of wild boar, brown hare (non-native), and pampa fox (native) were effective as inoculum for establishing ectomycorrhizal pine seedlings. Through molecular analyses, we determined that two species are mostly consumed and successfully form ectomycorrhizas with pine roots: Suillus granulatus and Rhizopogon pseudoroseolus. We provide novel evidence for the long-distance dispersal of exotic ectomycorrhizal fungi by non-native and native animal vectors.  相似文献   

11.
Despite the importance of mammal‐fungal interactions, tools to estimate the mammal‐assisted dispersal distances of fungi are lacking. Many mammals actively consume fungal fruiting bodies, the spores of which remain viable after passage through their digestive tract. Many of these fungi form symbiotic relationships with trees and provide an array of other key ecosystem functions. We present a flexible, general model to predict the distance a mycophagous mammal would disperse fungal spores. We modeled the probability of spore dispersal by combining animal movement data from GPS telemetry with data on spore gut‐retention time. We test this model using an exemplar generalist mycophagist, the swamp wallaby (Wallabia bicolor). We show that swamp wallabies disperse fungal spores hundreds of meters—and occasionally up to 1,265 m—from the point of consumption, distances that are ecologically significant for many mycorrhizal fungi. In addition to highlighting the ecological importance of swamp wallabies as dispersers of mycorrhizal fungi in eastern Australia, our simple modeling approach provides a novel and effective way of empirically describing spore dispersal by a mycophagous animal. This approach is applicable to the study of other animal‐fungi interactions in other ecosystems.  相似文献   

12.
Most wood-inhabiting fungi are assumed to be dispersed primarily by wind, with the exception of a few species involved in mutualistic relationships with insects. In this study we tested whether several species of wood-inhabiting insects can function as dispersal vectors for non-mutualistic fungi, which would indicate that wood-inhabiting fungi can benefit from targeted animal-mediated dispersal. We sampled wood-inhabiting beetles (Coleoptera) from freshly felled wood experimentally added to forests and used DNA metabarcoding to investigate the fungal DNA carried by these insects. Staphylinid beetles rarely contained fungal DNA, while Endomychus coccineus, Glischrochilus hortensis and Glischrochilus quadripunctatus frequently carried fungal DNA with a composition specific to the insect taxon. A large proportion of the obtained fungal sequences (34%) represented decomposer fungi, including well-known wood-decay fungi such as Fomitopsis pinicola, Fomes fomentarius, Trichaptum abietinum and Trametes versicolor. Scanning electron microscopy further showed that some of the fungal material was carried as spores or yeast cells on the insect exoskeletons. Our results suggest that insect-vectored dispersal is of broader importance to wood-inhabiting fungi than previously assumed.  相似文献   

13.
《Acta Oecologica》2002,23(5):337-347
Vesicular-arbuscular mycorrhizal (VAM) colonization and spore numbers in the rhizosphere of Cyperus iria L. and Crotundus L., growing in a semi-arid tropical grassland, was studied during the 1993 and 1994 monsoons. In addition, climatic and chemical properties of the soils were determined in order to investigate their influence on mycorrhizal variables. VAM fungal association in the sedges was confirmed by plant- and root-trap culture techniques. The soil nutrients exhibited seasonal variations, but were highly variable between years. Intercellular hyphae and vesicles with occasional intraradical spores characterized mycorrhizal association in sedges. Dark septate fungi also colonized roots of sedges. Temporal variations in mycorrhizal colonization and spore numbers occurred, indicating seasonality. However, the patterns of mycorrhizal colonization and spore numbers were different during both the years. The VAM fungal structures observed were intercellular hyphae and vesicles. Changes in the proportion of root length with VAM structures, total colonization levels and spore numbers were related to climatic and edaphic factors. However, the intensity of influence of climatic and soil factors on VAM tended to vary with sedge species.  相似文献   

14.
Ectomycorrhizal (EM) basidiomycete fungi are obligate mutualists of pines and hardwoods that receive fixed C from the host tree. Though they often share most recent common ancestors with wood-rotting fungi, it is unclear to what extent EM fungi retain the ability to express enzymes that break down woody substrates. In this study, we tested the hypothesis that the dominant EM fungus in a pure pine system retains the ability to produce enzymes that break down woody substrates in a natural setting, and that this ability is inducible by reduction of host photosynthetic potential via partial defoliation. To achieve this, pines in replicate blocks were defoliated 50% by needle removal, and enzyme activities were measured in individual EM root tips that had been treated with antibiotics to prevent possible bacterial activity. Results indicate that the dominant EM fungal species (Suillus granulatus) expressed all enzymes tested (endocellulase D-glucosidase, laccase, manganese peroxidase, lignin peroxidase, phosphatase and protease), and that activities of these enzymes increased significantly (P < 0.001) in response to defoliation. Thus, this EM fungus (one of the more specialized mutualists of pine) has the potential to play a significant role in C, N and P cycling in this forested ecosystem. Therefore, many above-ground factors that reduce photosynthetic potential or divert fixed C from roots may have wide-reaching ecosystem effects.  相似文献   

15.
Conifers, which are widely planted as fast growing tree crops, are invading forested and treeless environments across the globe, causing important changes in biodiversity. However, how small-scale impacts on plant diversity differ according to pine size and habitat context remains unclear. We assessed the effects of different stages of pine invasion on plant communities in forest and steppe sites located in southern Chile. In each site, we sampled plant diversity under and outside the canopy of Pinus contorta individuals, using paired plots. We assessed the relative impact of pine invasion on plant species richness and cover. In both sites, richness and cover beneath pine canopy decreased with increasing pine size (i.e. height and canopy area). A significant negative impact of pines on species richness and plant cover was detected for pines over 4 m in height. The impact of pines on plant richness and cover depended on pine size (i.e. canopy area) and habitat type. Larger pines had more negative impacts than smaller pines in both sites, with a greater impact for a given pine size in the Patagonian steppe compared to the A. araucaria forest. Species composition changed between under and outside canopy plots when pines were 4 m or taller. Pine presence reduced cover of most species. The impacts of pine invasions are becoming evident in forested and treeless ecosystems of southern Chile. Our results suggest that the magnitude of pine invasion impacts could be related to how adapted the invaded community is to tree cover, with the treeless environment more impacted by the invasion.  相似文献   

16.
Australian temperate forests support a high diversity of truffle-like fungi, and a rich assortment of mammals that feed upon them. We sampled seasonal diets of four sympatric mammals (two rodents, two marsupials) in an eastern Australian wet sclerophyll forest and identified all dietary fungi. Fifty-two different spore types were found in diets, most of which were from truffle-like fungi. All mammals consumed fungi, but occurrence of fungi and the variety of taxa in the diets peaked in winter and spring. Bush rats (Rattus fuscipes) were significantly more mycophagous than other mammals sampled in terms of proportion of scats containing fungi, number of taxa per sample, and overall diversity of dietary fungi. Most fungal taxa were eaten only occasionally, but a few truffle-like taxa dominated diets and appear to be staple food for the small mammal community. Our work supports the view that mycophagous mammals are important for maintenance of ecosystem health through their spore dispersal abilities.  相似文献   

17.
Arbuscular mycorrhizal (AM) fungi affect ecosystem processes improving plant tolerance in (hyper)arid/saline environments. However, there are no previous studies on the presence of AM fungi in the Atacama Desert (Northern Chile), the driest desert in the world. Here, we studied the root and rhizosphere in 111 samples of representative plants from three elevation gradients: (i) hyperarid desert (700–2000 m a.s.l.), (ii) pre-Puna (2000–3100 m a.s.l.) and (iii) Puna (3100–4500 m a.s.l.) elevation belts. Soil pH, electrical conductivity (EC), organic matter, cations and the AM colonization and fungal structures were determined. All plants showed colonization and fungal structures. Root colonization ranged from 3.5 to 87%, hyphae showed densities from 0.13 to 204 m g−1, and spore densities between 20 and 45,500 per 100 g of soil. The highest fungal structure abundances were found in Prosopis tamarugo, Baccharis scandens, Werneria pinnatifida, Deyeuxia curvula and Festuca deserticola rhizospheres. In general, EC and cations showed strong relationship with fungal structure abundance. Here, we reported for the first time the widespread presence of AM symbiosis in all the elevation belts of the Atacama Desert, constituting a first step to understand the ecological role that AM fungi play under extreme aridity and salinity conditions.  相似文献   

18.
Rising temperatures associated with climate change have been shown to negatively affect the photosynthetic rates of boreal forest tree saplings at their southern range limits. To quantify the responses of ectomycorrhizal (EM) fungal communities associated with poorly performing hosts, we sampled the roots of Betula papyrifera and Abies balsamea saplings growing in the B4Warmed (Boreal Forest Warming at an Ecotone in Danger) experiment. EM fungi on the root systems of both hosts were compared from ambient and +3.4 °C air and soil warmed plots at two sites in northern Minnesota. EM fungal communities were assessed with high‐throughput sequencing along with measures of plant photosynthesis, soil temperature, moisture, and nitrogen. Warming selectively altered EM fungal community composition at both the phylum and genus levels, but had no significant effect on EM fungal operational taxonomic unit (OTU) diversity. Notably, warming strongly favored EM Ascomycetes and EM fungi with short‐contact hyphal exploration types. Declining host photosynthetic rates were also significantly inversely correlated with EM Ascomycete and EM short‐contact exploration type abundance, which may reflect a shift to less carbon demanding fungi due to lower photosynthetic capacity. Given the variation in EM host responses to warming, both within and between ecosystems, better understanding the link between host performance and EM fungal community structure will to clarify how climate change effects cascade belowground.  相似文献   

19.
We conducted bioassay experiments to investigate the soil propagule banks of ectomycorrhizal (EM) fungi in old-growth forests along an elevation gradient and compared the elevation pattern with the composition of EM fungi on existing roots in the field. In total, 150 soil cores were collected from three forests on Mt. Ishizuchi, western Japan, and subjected to bioassays using Pinus densiflora and Betula maximowicziana. Using molecular analyses, we recorded 23 EM fungal species in the assayed propagule banks. Eight species (34.8 %) were shared across the three sites, which ranged from a warm–temperate evergreen mixed forest to a subalpine conifer forest. The elevation pattern of the assayed propagule banks differed dramatically from that of EM fungi on existing roots along the same gradient, where only a small proportion of EM fungal species (3.5 %) were shared across sites. The EM fungal species found in the assayed propagule banks included many pioneer fungal species and composition differed significantly from that on existing roots. Furthermore, only 4 of 23 species were shared between the two host species, indicating a strong effect of bioassay host identity in determining the propagule banks of EM fungi. These results imply that the assayed propagule bank is less affected by climate compared to EM fungal communities on existing roots. The dominance of disturbance-dependent fungal species in the assayed propagule banks may result in higher ecosystem resilience to disturbance even in old-growth temperate forests.  相似文献   

20.
We incubated 196 large-diameter aspen (Populus tremuloides), birch (Betula papyrifera), and pine (Pinus taeda) logs on the FACE Wood Decomposition Experiment encompassing eight climatically-distinct forest sites in the United States. We sampled dead wood from these large-diameter logs after 2 to 6 y of decomposition and determined wood rot type as a continuous variable using the lignin loss/density loss ratio (L/D) and assessed wood-rotting fungal guilds using high-throughput amplicon sequencing (HTAS) of the ITS-2 marker. We found L/D values in line with a white rot dominance in all three tree species, with pine having lower L/D values than aspen and birch. Based on HTAS data, white rot fungi were the most abundant and diverse wood-rotting fungal guild, and soft rot fungi were more abundant and diverse than brown rot fungi in logs with low L/D values. For aspen and birch logs, decay type was related to the wood density at sampling. For the pine logs, decay type was associated with the balance between white and brown/soft rot fungi abundance and OTU richness. Our results demonstrate that decay type is governed by biotic and abiotic factors, which vary by tree species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号