首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specific mutations in the pfcrt and pfmdr1 genes have been reported to be associated with chloroquine-resistant falciparum malaria parasites worldwide. These genetic markers are considered to be useful tools for the elucidation of several aspects of the epidemiology of drug resistant malaria. In this study, Plasmodium falciparum isolates from three distinct areas of the Philippines were analyzed for drug-resistance-associated genetic mutations, and their association with the in vitro chloroquine (CQ) response. Two novel pfcrt 72–76 allelic types, CVMDT and SVMDT, were detected. The frequency of the pfcrt K76T mutation in the isolates that were successfully tested for in vitro CQ susceptibility was found to be 100% in Kalinga, 80% in Palawan, and 87% in Mindanao. The frequency of the pfmdr1 N86Y mutation was 39% in Kalinga, 35% in Palawan, and 93% in Mindanao isolates. No mutations were found at positions 1042 and 1246 of pfmdr1. However, there were no significant associations found between polymorphisms in these genes and in vitro CQ susceptibility. The results of this study indicate that mutations in pfcrt and pfmdr1 are not predictive of in vitro CQ resistance in Philippine isolates and may therefore not be suitable as molecular markers for surveillance.  相似文献   

2.
Wang Z  Parker D  Meng H  Wu L  Li J  Zhao Z  Zhang R  Fan Q  Wang H  Cui L  Yang Z 《PloS one》2012,7(5):e30927
Drug resistance has always been one of the most important impediments to global malaria control. Artemisinin resistance has recently been confirmed in the Greater Mekong Subregion (GMS) and efforts for surveillance and containment are intensified. To determine potential mechanisms of artemisinin resistance and monitor the emergence and spread of resistance in other regions of the GMS, we investigated the in vitro sensitivity of 51 culture-adapted parasite isolates from the China-Myanmar border area to four drugs. The 50% inhibitory concentrations (IC50s) of dihydroartemisinin, mefloquine and lumefantrine were clustered in a relatively narrow, 3- to 6-fold range, whereas the IC50 range of artesunate was 12-fold. We assessed the polymorphisms of candidate resistance genes pfcrt, pfmdr1, pfATP6, pfmdr6 and pfMT (a putative metabolite/drug transporter). The K76T mutation in pfcrt reached fixation in the study parasite population, whereas point mutations in pfmdr1 and pfATP6 had low levels of prevalence. In addition, pfmdr1 gene amplification was not detected. None of the mutations in pfmdr1 and pfATP6 was associated significantly with in vitro sensitivity to artemisinin derivatives. The ABC transporter gene pfmdr6 harbored two point mutations, two indels, and number variations in three simple repeats. Only the length variation in a microsatellite repeat appeared associated with altered sensitivity to dihydroartemisinin. The PfMT gene had two point mutations and one codon deletion; the I30N and N496– both reached high levels of prevalence. However, none of the SNPs or haplotypes in PfMT were correlated significantly with resistance to the four tested drugs. Compared with other parasite populations from the GMS, our studies revealed drastically different genotype and drug sensitivity profiles in parasites from the China-Myanmar border area, where artemisinins have been deployed extensively for over 30 years.  相似文献   

3.
Despite the clear public health benefit of insecticide-treated bednets (ITNs), the impact of malaria transmission-reduction by vector control on the spread of drug resistance is not well understood. In the present study, the effect of sustained transmission reduction by ITNs on the prevalence of Plasmodium falciparum gene mutations associated with resistance to the antimalarial drugs sulfadoxine-pyrimethamine (SP) and chloroquine (CQ) in children under the age of five years was investigated during an ITN trial in Asembo area, western Kenya. During the ITN trial, the national first line antimalarial treatment changed from CQ to SP. Smear-positive samples collected from cross sectional surveys prior to ITN introduction (baseline, n = 250) and five years post-ITN intervention (year 5 survey, n = 242) were genotyped for single nucleotide polymorphisms (SNPs) at dhfr-51, 59, 108, 164 and dhps-437, 540 (SP resistance), and pfcrt-76 and pfmdr1-86 (CQ resistance). The association between the drug resistance mutations and epidemiological variables was evaluated. There were significant increases in the prevalence of SP dhps mutations and the dhfr/dhps quintuple mutant, and a significant reduction in the proportion of mixed infections detected at dhfr-51, 59 and dhps-437, 540 SNPs from baseline to the year 5 survey. There was no change in the high prevalence of pfcrt-76 and pfmdr1-86 mutations. Multivariable regression analysis further showed that current antifolate use and year of survey were significantly associated with more SP drug resistance mutations. These results suggest that increased antifolate drug use due to drug policy change likely led to the high prevalence of SP mutations 5 years post-ITN intervention and reduced transmission had no apparent effect on the existing high prevalence of CQ mutations. There is no evidence from the current study that sustained transmission reduction by ITNs reduces the prevalence of genes associated with malaria drug resistance.  相似文献   

4.
In Uganda, artemether-lumefantrine was introduced as an artemisinin-based combination therapy (ACT) for malaria in 2006. We have previously reported a moderate decrease in ex vivo efficacy of lumefantrine in Northern Uganda, where we also detected ex vivo artemisinin-resistant Plasmodium falciparum. Therefore, it is necessary to search for candidate partner alternatives for ACT. Here, we investigated ex vivo susceptibility to four ACT partner drugs as well as quinine and chloroquine, in 321 cases between 2013 and 2018. Drug-resistant mutations in pfcrt and pfmdr1 were also determined. Ex vivo susceptibility to amodiaquine, quinine, and chloroquine was well preserved, whereas resistance to mefloquine was found in 45.8%. There were few cases of multi-drug resistance. Reduced sensitivity to mefloquine and lumefantrine was significantly associated with the pfcrt K76 wild-type allele, in contrast to the association between chloroquine resistance and the K76T allele. Pfmdr1 duplication was not detected in any of the cases. Amodiaquine, a widely used partner drug for ACT in African countries, may be the first promising alternative in case lumefantrine resistance emerges. Therapeutic use of mefloquine may not be recommended in this area. This study also emphasizes the need for sustained monitoring of antimalarial susceptibility in Northern Uganda to develop proper treatment strategies.  相似文献   

5.
Polymorphisms in the Plasmodium falciparum multidrug resistance protein 1 (pfmdr1) gene and the Plasmodium falciparum chloroquine resistance transporter (pfcrt) gene alter the malaria parasite’s susceptibility to most of the current antimalarial drugs. However, the precise mechanisms by which PfMDR1 contributes to multidrug resistance have not yet been fully elucidated, nor is it understood why polymorphisms in pfmdr1 and pfcrt that cause chloroquine resistance simultaneously increase the parasite’s susceptibility to lumefantrine and mefloquine—a phenomenon known as collateral drug sensitivity. Here, we present a robust expression system for PfMDR1 in Xenopus oocytes that enables direct and high-resolution biochemical characterizations of the protein. We show that wild-type PfMDR1 transports diverse pharmacons, including lumefantrine, mefloquine, dihydroartemisinin, piperaquine, amodiaquine, methylene blue, and chloroquine (but not the antiviral drug amantadine). Field-derived mutant isoforms of PfMDR1 differ from the wild-type protein, and each other, in their capacities to transport these drugs, indicating that PfMDR1-induced changes in the distribution of drugs between the parasite’s digestive vacuole (DV) and the cytosol are a key driver of both antimalarial resistance and the variability between multidrug resistance phenotypes. Of note, the PfMDR1 isoforms prevalent in chloroquine-resistant isolates exhibit reduced capacities for chloroquine, lumefantrine, and mefloquine transport. We observe the opposite relationship between chloroquine resistance-conferring mutations in PfCRT and drug transport activity. Using our established assays for characterizing PfCRT in the Xenopus oocyte system and in live parasite assays, we demonstrate that these PfCRT isoforms transport all 3 drugs, whereas wild-type PfCRT does not. We present a mechanistic model for collateral drug sensitivity in which mutant isoforms of PfMDR1 and PfCRT cause chloroquine, lumefantrine, and mefloquine to remain in the cytosol instead of sequestering within the DV. This change in drug distribution increases the access of lumefantrine and mefloquine to their primary targets (thought to be located outside of the DV), while simultaneously decreasing chloroquine’s access to its target within the DV. The mechanistic insights presented here provide a basis for developing approaches that extend the useful life span of antimalarials by exploiting the opposing selection forces they exert upon PfCRT and PfMDR1.  相似文献   

6.
Mutations in the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT) are major determinants of verapamil (VP)‐reversible CQ resistance (CQR). In the presence of mutant PfCRT, additional genes contribute to the wide range of CQ susceptibilities observed. It is not known if these genes influence mechanisms of chemosensitization by CQR reversal agents. Using quantitative trait locus (QTL) mapping of progeny clones from the HB3 × Dd2 cross, we show that the P. falciparum multidrug resistance gene 1 (pfmdr1) interacts with the South‐East Asia‐derived mutant pfcrt haplotype to modulate CQR levels. A novel chromosome 7 locus is predicted to contribute with the pfcrt and pfmdr1 loci to influence CQR levels. Chemoreversal via a wide range of chemical structures operates through a direct pfcrt‐based mechanism. Direct inhibition of parasite growth by these reversal agents is influenced by pfcrt mutations and additional loci. Direct labelling of purified recombinant PfMDR1 protein with a highly specific photoaffinity CQ analogue, and lack of competition for photolabelling by VP, supports our QTL predictions. We find no evidence that pfmdr1 copy number affects CQ response in the progeny; however, inheritance patterns indicate that an allele‐specific interaction between pfmdr1 and pfcrt is part of the complex genetic background of CQR.  相似文献   

7.

Background

Drug resistance remains a chief concern for malaria control. In order to determine the genetic markers of drug resistant parasites, we tested the genome-wide associations (GWA) of sequence-based genotypes from 35 Kenyan P. falciparum parasites with the activities of 22 antimalarial drugs.

Methods and Principal Findings

Parasites isolated from children with acute febrile malaria were adapted to culture, and sensitivity was determined by in vitro growth in the presence of anti-malarial drugs. Parasites were genotyped using whole genome sequencing techniques. Associations between 6250 single nucleotide polymorphisms (SNPs) and resistance to individual anti-malarial agents were determined, with false discovery rate adjustment for multiple hypothesis testing. We identified expected associations in the pfcrt region with chloroquine (CQ) activity, and other novel loci associated with amodiaquine, quinazoline, and quinine activities. Signals for CQ and primaquine (PQ) overlap in and around pfcrt, and interestingly the phenotypes are inversely related for these two drugs. We catalog the variation in dhfr, dhps, mdr1, nhe, and crt, including novel SNPs, and confirm the presence of a dhfr-164L quadruple mutant in coastal Kenya. Mutations implicated in sulfadoxine-pyrimethamine resistance are at or near fixation in this sample set.

Conclusions/Significance

Sequence-based GWA studies are powerful tools for phenotypic association tests. Using this approach on falciparum parasites from coastal Kenya we identified known and previously unreported genes associated with phenotypic resistance to anti-malarial drugs, and observe in high-resolution haplotype visualizations a possible signature of an inverse selective relationship between CQ and PQ.  相似文献   

8.

Background

Potentially chloroquine resistant P. falciparum, identified by the 76T haplotype in the chloroquine resistance transporter (pfcrt 76T), are highly prevalent throughout Africa. In Guinea-Bissau, normal and double dose chloroquine have respective efficacies of 34% and 78% against P.falciparum with pfcrt 76T and approximately three times the normal dose of chloroquine is routinely taken. Proportions of pfcrt 76T generally increase during high transmission seasons, as P.falciparum with pfcrt 76T commonly survive treatment with normal dose chloroquine. In Guinea-Bissau, there should be no seasonal increase of pfcrt 76T if the high doses of CQ commonly used are effective.

Methods and Findings

P. falciparum parasite density, age, sex, the proportion of chloroquine resistance associated haplotypes pfcrt 76T and P. falciparum multidrug resistance gene 1 86Y were assessed in 988 samples collected from children between 2002 and 2007. There was no seasonal accumulation of any allele. During the high and low transmission periods the pfcrt 76T proportions were 24% (95% CI, 21–27%) and 26% (95% CI, 20–33%). There was no significant change of pfcrt 76T (OR 1.05, 95% CI; 0.94–1.16 p = 0.39) or pfmdr1 86Y (OR 0.92, 95%CI; 0.83–1.01 p = 0.08) proportions between 2003 and 2007. Lower median parasite density (P.falciparum/µl) was associated with pfcrt 76T (15254 [95% CI, 12737–17772]; n = 164) compared to pfcrt 76K (18664 [95% CI, 16676–20653]; p = 0.003; n = 591). Similarly, pfmdr1 86Y was associated with a lower median parasite density (16320 [95% CI, 13696–18944]; n = 224) compared to pfmdr1 86N, (18880 [95% CI, 16701–21059]; P = 0.018; n = 445).

Conclusions

In contrast to the rest of Africa, P. falciparum parasites resistant to normal dose chloroquine do not have a selective advantage great enough to become the dominant P.falciparum type in Guinea-Bissau. This is most likely due to the efficacy of high-dose chloroquine as used in Guinea-Bissau, combined with a loss of fitness associated with pfcrt 76T.  相似文献   

9.
Emerging resistance to first‐line antimalarial combination therapies threatens malaria treatment and the global elimination campaign. Improved therapeutic strategies are required to protect existing drugs and enhance treatment efficacy. We report that the piperazine‐containing compound ACT‐451840 exhibits single‐digit nanomolar inhibition of the Plasmodium falciparum asexual blood stages and transmissible gametocyte forms. Genome sequence analyses of in vitro‐derived ACT‐451840‐resistant parasites revealed single nucleotide polymorphisms in pfmdr1, which encodes a digestive vacuole membrane‐bound ATP‐binding cassette transporter known to alter P. falciparum susceptibility to multiple first‐line antimalarials. CRISPR‐Cas9 based gene editing confirmed that PfMDR1 point mutations mediated ACT‐451840 resistance. Resistant parasites demonstrated increased susceptibility to the clinical drugs lumefantrine, mefloquine, quinine and amodiaquine. Stage V gametocytes harboring Cas9‐introduced pfmdr1 mutations also acquired ACT‐451840 resistance. These findings reveal that PfMDR1 mutations can impart resistance to compounds active against asexual blood stages and mature gametocytes. Exploiting PfMDR1 resistance mechanisms provides new opportunities for developing disease‐relieving and transmission‐blocking antimalarials.  相似文献   

10.
Plasmodium falciparum parasites resistant to antimalarial treatments have hindered malaria disease control. Sulfadoxine-pyrimethamine (SP) was used globally as a first-line treatment for malaria after wide-spread resistance to chloroquine emerged and, although replaced by artemisinin combinations, is currently used as intermittent preventive treatment of malaria in pregnancy and in young children as part of seasonal malaria chemoprophylaxis in sub-Saharan Africa. The emergence of SP-resistant parasites has been predominantly driven by cumulative build-up of mutations in the dihydrofolate reductase (pfdhfr) and dihydropteroate synthetase (pfdhps) genes, but additional amplifications in the folate pathway rate-limiting pfgch1 gene and promoter, have recently been described. However, the genetic make-up and prevalence of those amplifications is not fully understood. We analyse the whole genome sequence data of 4,134 P. falciparum isolates across 29 malaria endemic countries, and reveal that the pfgch1 gene and promoter amplifications have at least ten different forms, occurring collectively in 23% and 34% in Southeast Asian and African isolates, respectively. Amplifications are more likely to be present in isolates with a greater accumulation of pfdhfr and pfdhps substitutions (median of 1 additional mutations; P<0.00001), and there was evidence that the frequency of pfgch1 variants may be increasing in some African populations, presumably under the pressure of SP for chemoprophylaxis and anti-folate containing antibiotics used for the treatment of bacterial infections. The selection of P. falciparum with pfgch1 amplifications may enhance the fitness of parasites with pfdhfr and pfdhps substitutions, potentially threatening the efficacy of this regimen for prevention of malaria in vulnerable groups. Our work describes new pfgch1 amplifications that can be used to inform the surveillance of SP drug resistance, its prophylactic use, and future experimental work to understand functional mechanisms.  相似文献   

11.
Efforts to control malaria worldwide have been hindered by the development and expansion of parasite populations resistant to many first-line antimalarial compounds. Two of the best-characterized determinants of drug resistance in the human malaria parasite Plasmodium falciparum are pfmdr1 and pfcrt, although the mechanisms by which resistance is mediated by these genes is still not clear. In order to determine whether mutations in pfmdr1 associated with chloroquine resistance affect the capacity of the parasite to persist when drug pressure is removed, we conducted competition experiments between P. falciparum strains in which the endogenous pfmdr1 locus was modified by allelic exchange. In the absence of selective pressure, the component of chloroquine resistance attributable to mutations at codons 1034, 1042 and 1246 in the pfmdr1 gene also gave rise to a substantial fitness cost in the intraerythrocytic asexual stage of the parasite. The loss of fitness incurred by these mutations was calculated to be 25% with respect to an otherwise genetically identical strain in which wild-type polymorphisms had been substituted at these three codons. At least part of the fitness loss may be attributed to a diminished merozoite viability. These in vitro results support recent in vivo observations that in several countries where chloroquine use has been suspended because of widespread resistance, sensitive strains are re-emerging.  相似文献   

12.
Worldwide spread of Plasmodium falciparum drug resistance to conventional antimalarials, chloroquine and sulfadoxine/pyrimethamine, has been imposing a serious public health problem in many endemic regions. Recent discovery of drug resistance-associated genes, pfcrt, pfmdr1, dhfr, and dhps, and applications of microsatellite markers flanking the genes have revealed the evolution of parasite resistance to these antimalarials and the geographical spread of drug resistance. Here, we review our recent knowledge of the evolution and spread of parasite resistance to chloroquine and sulfadoxine/pyrimethamine. In both antimalarials, resistance appears to be largely explained by the invasion of limited resistant lineages to many endemic regions. However, multiple, indigenous evolutionary origins of resistant lineages have also been demonstrated. Further molecular evolutionary and population genetic approaches will greatly facilitate our understanding of the evolution and spread of parasite drug resistance, and will contribute to developing strategies for better control of malaria.  相似文献   

13.
High‐throughput Plasmodium genomic data is increasingly useful in assessing prevalence of clinically important mutations and malaria transmission patterns. Understanding parasite diversity is important for identification of specific human or parasite populations that can be targeted by control programmes, and to monitor the spread of mutations associated with drug resistance. An up‐to‐date understanding of regional parasite population dynamics is also critical to monitor the impact of control efforts. However, this data is largely absent from high‐burden nations in Africa, and to date, no such analysis has been conducted for malaria parasites in Tanzania countrywide. To this end, over 1,000 P. falciparum clinical isolates were collected in 2017 from 13 sites in seven administrative regions across Tanzania, and parasites were genotyped at 1,800 variable positions genome‐wide using molecular inversion probes. Population structure was detectable among Tanzanian P. falciparum parasites, approximately separating parasites from the northern and southern districts and identifying genetically admixed populations in the north. Isolates from nearby districts were more likely to be genetically related compared to parasites sampled from more distant districts. Known drug resistance mutations were seen at increased frequency in northern districts (including two infections carrying pfk13‐R561H), and additional variants with undetermined significance for antimalarial resistance also varied by geography. Malaria Indicator Survey (2017) data corresponded with genetic findings, including average region‐level complexity‐of‐infection and malaria prevalence estimates. The parasite populations identified here provide important information on extant spatial patterns of genetic diversity of Tanzanian parasites, to which future surveys of genetic relatedness can be compared.  相似文献   

14.

Background

Evaluating copy numbers of given genes in Plasmodium falciparum parasites is of major importance for laboratory-based studies or epidemiological surveys. For instance, pfmdr1 gene amplification has been associated with resistance to quinine derivatives and several genes involved in anti-oxidant defence may play an important role in resistance to antimalarial drugs, although their potential involvement has been overlooked.

Methods

TheΔΔCt method of relative quantification using real-time quantitative PCR with SYBR Green I detection was adapted and optimized to estimate copy numbers of three genes previously indicated as putative candidates of resistance to quinolines and artemisinin derivatives: pfmdr1, pfatp6 (SERCA) and pftctp, and in six further genes involved in oxidative stress responses.

Results

Using carefully designed specific RT-qPCR oligonucleotides, the methods were optimized for each gene and validated by the accurate measure of previously known number of copies of the pfmdr1 gene in the laboratory reference strains P. falciparum 3D7 and Dd2. Subsequently, Standard Operating Procedures (SOPs) were developed to the remaining genes under study and successfully applied to DNA obtained from dried filter blood spots of field isolates of P. falciparum collected in São Tomé & Principe, West Africa.

Conclusion

The SOPs reported here may be used as a high throughput tool to investigate the role of these drug resistance gene candidates in laboratory studies or large scale epidemiological surveys.  相似文献   

15.

Background

Results from numerous studies point convincingly to correlations between mutations at selected genes and phenotypic resistance to antimalarials in Plasmodium falciparum isolates. In order to move molecular assays for point mutations on resistance-related genes into the realm of applied tools for surveillance, we investigated a selection of P. falciparum isolates that were imported during the year 2001 into Europe to study the prevalence of resistance-associated point mutations at relevant codons. In particular, we tested for parasites which were developing resistance to antifolates and chloroquine. The screening results were used to map the prevalence of mutations and, thus, levels of potential drug resistance in endemic areas world-wide.

Results

337 isolates have been tested so far. Prevalence of mutations that are associated with resistance to chloroquine on the pfcrt and pfmdr genes of P. falciparum was demonstrated at high levels. However, the prevalence of mutations associated with resistance to antifolates at the DHFR and DHPS genes was unexpectedly low, rarely exceeding 60% in endemic areas.

Conclusions

Constant screening of imported isolates will enable TropNetEurop to establish a screening tool for emerging resistance in endemic areas.  相似文献   

16.

Background

Atovaquone is part of the antimalarial drug combination atovaquone-proguanil (Malarone®) and inhibits the cytochrome bc1 complex of the electron transport chain in Plasmodium spp. Molecular modelling showed that amino acid mutations are clustered around a putative atovaquone-binding site resulting in a reduced binding affinity of atovaquone for plasmodial cytochrome b, thus resulting in drug resistance.

Methods

The prevalence of cytochrome b point mutations possibly conferring atovaquone resistance in Plasmodium falciparum isolates in atovaquone treatment-naïve patient cohorts from Lambaréné, Gabon and from South Western Ethiopia was assessed.

Results

Four/40 (10%) mutant types (four different single polymorphisms, one leading to an amino acid change from M to I in a single case) in Gabonese isolates, but all 141/141 isolates were wild type in Ethiopia were found.

Conclusion

In the absence of drug pressure, spontaneous and possibly resistance-conferring mutations are rare.  相似文献   

17.
In Bangladesh, despite the official introduction of artemisinin combination therapy in 2004, chloroquine+sulfadoxine/pyrimethamine has been used for the treatment of uncomplicated malaria. To assess the distribution of pfcrt, pfmdr1, dhfr, and dhps genotypes in Plasmodium falciparum, we conducted hospital- and community-based surveys in Bandarban, Bangladesh (near the border with Myanmar) in 2007 and 2008. Using nested PCR followed by digestion, 139 P. falciparum isolates were genotyped. We found fixation of a mutation at position 76 in pfcrt and low prevalence of a mutation at position 86 in pfmdr1. In dhfr, the highest pyrimethamine resistant genotype quadruple mutant was found in 19% of isolates, which is significantly higher prevalence than reported in a previous study in Khagrachari (1%) in 2002. Microsatellite haplotypes flanking dhfr of the quadruple mutants in Bangladesh were identical or very similar to those found in Thailand and Cambodia, indicating a common origin for the mutant in these countries. These observations suggest that the higher prevalence of the dhfr quadruple mutant in Bandarban is because of parasite migration from Myanmar. However, continuous use of sulfadoxine/pyrimethamine would have also played a role through selection for the dhfr quadruple mutant. These results indicate an urgent need to collect molecular epidemiological information regarding dhfr and dhps genes, and a review of current sulfadoxine/pyrimethamine usage with the aim of avoiding the widespread distribution of high levels of resistant parasites in Bangladesh.  相似文献   

18.
Resistance of Plasmodium spp. to anti-malarial drugs is the primary obstacle in the fight against malaria, and molecular markers for the drug resistance have been applied as an adjunct in the surveillance of the resistance. In this study, we investigated the prevalence of mutations in pvmdr1, pvcrt-o, pvdhfr, and pvdhps genes in temperate-zone P. vivax parasites from central China. A total of 26 isolates were selected, including 8 which were previously shown to have a lower susceptibility to chloroquine in vitro. For pvmdr1, pvcrt-o, and pvdhps genes, no resistance-conferring mutations were discovered. However, a highly prevalent (69.2%), single-point mutation (S117N) was found in pvdhfr gene. In addition, tandem repeat polymorphisms existed in pvdhfr and pvdhps genes, which warranted further studies in relation to the parasite resistance to antifolate drugs. The study further suggests that P. vivax populations in central China may still be relatively susceptible to chloroquine and sulfadoxine-pyrimethamine.  相似文献   

19.

Background

In Malawi, there has been a return of Plasmodium falciparum sensitivity to chloroquine (CQ) since sulfadoxine-pyrimethamine (SP) replaced CQ as first line treatment for uncomplicated malaria. When used for prophylaxis, Amodiaquine (AQ) was associated with agranulocytosis but is considered safe for treatment and is increasingly being used in Africa. Here we compare the efficacy, safety and selection of resistance using SP or CQ+SP or artesunate (ART)+SP or AQ+SP for the treatment of uncomplicated falciparum malaria.

Methodology and Findings

455 children aged 1–5 years were recruited into a double-blinded randomised trial comparing SP to the three combination therapies. Using intention to treat analysis with missing outcomes treated as successes, and without adjustment to distinguish recrudescence from new infections, the day 28 adequate clinical and parasitological response (ACPR) rate for SP was 25%, inferior to each of the three combination therapies (p<0.001). AQ+SP had an ACPR rate of 97%, higher than CQ+SP (81%) and ART+SP (70%), p<0.001. Nineteen children developed a neutropenia of ≤0.5×103 cells/µl by day 14, more commonly after AQ+SP (p = 0.03). The mutation pfcrt 76T, associated with CQ resistance, was detected in none of the pre-treatment or post-treatment parasites. The prevalence of the pfmdr1 86Y mutation was higher after treatment with AQ+SP than after SP, p = 0.002.

Conclusions

The combination AQ+SP was highly efficacious, despite the low efficacy of SP alone; however, we found evidence that AQ may exert selective pressure for resistance associated mutations many weeks after treatment. This study confirms the return of CQ sensitivity in Malawi and importantly, shows no evidence of the re-emergence of pfcrt 76T after treatment with CQ or AQ. Given the safety record of AQ when used as a prophylaxis, our observations of marked falls in neutrophil counts in the AQ+SP group requires further scrutiny.

Trial Registration

Controlled-Trials.com ISRCTN22075368  相似文献   

20.
The emergence of resistance to artemisinin derivatives in Southeast Asia, manifested as delayed clearance of Plasmodium falciparum following treatment with artemisinins, is a major concern. Recently, the artemisinin resistance phenotype was attributed to mutations in portions of a P. falciparum gene (PF3D7_1343700) encoding kelch (K13) propeller domains, providing a molecular marker to monitor the spread of resistance. The P. falciparum cysteine protease falcipain-2 (FP2; PF3D7_1115700) has been shown to contribute to artemisinin action, as hemoglobin degradation is required for potent drug activity, and a stop mutation in the FP2 gene was identified in parasites selected for artemisinin resistance. Although delayed parasite clearance after artemisinin-based combination therapy (ACT) has not yet been noted in Uganda and ACTs remain highly efficacious, characterizing the diversity of these genes is important to assess the potential for resistance selection and to provide a baseline for future surveillance. We therefore sequenced the K13-propeller domain and FP2 gene in P. falciparum isolates from children previously treated with ACT in Uganda, including samples from 2006–7 (n = 49) and from 2010–12 (n = 175). Using 3D7 as the reference genome, we identified 5 non-synonymous polymorphisms in the K13-propeller domain (133 isolates) and 35 in FP2 (160 isolates); these did not include the polymorphisms recently associated with resistance after in vitro selection or identified in isolates from Asia. The prevalence of K13-propeller and FP2 polymorphisms did not increase over time, and was not associated with either time since prior receipt of an ACT or the persistence of parasites ≥2 days following treatment with an ACT. Thus, the K13-propeller and FP2 polymorphisms associated with artemisinin resistance are not prevalent in Uganda, and we did not see evidence for selection of polymorphisms in these genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号