首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We used the Muskwa-Kechika Management Area in northeast British Columbia, Canada as a case study to determine potential conflicts between future resource development and high-value habitats of large mammals in an undeveloped boreal landscape. More than 50 % of high-value habitats for caribou, moose, elk, wolves and grizzly bears were located in Special Resource Management Zones, where natural resource developments could occur. We developed geographic information system (GIS) layers of potential forest resources, oil and gas, minerals, wind power, all resources combined, and roads; and quantified the proportions of high-value habitats overlapping these potentials. Greater proportions of high-value habitats across seasons for moose, elk, and wolves overlapped areas with high cumulative resource potential (winter, 49–70 %, growing season, 35–63 %) more than for three other species (grizzly bears, Stone’s sheep, mountain goats). This pattern was similar for forest resources, oil and gas, wind power, and roads. Caribou were more seasonally influenced. The proportions of their high-value habitat in areas with high cumulative resource potential (winter, 53 %, growing season, 16 %), as well as high forest and oil and gas potentials, were greatest in winter; in contrast, overlap with high mineral potential was greatest during the growing season. We recommend a quantitative and visual GIS approach to scenario planning in the Muskwa-Kechika to maintain the abundance and diversity of wildlife populations there. Resource development would likely increase early seral habitats, presumably benefiting moose, elk, and wolves, but could adversely affect caribou and grizzly bears through habitat loss and increased access.  相似文献   

2.
Documenting trophic niche partitioning and resource use within a community is critical to evaluate underlying mechanisms of coexistence, competition, or predation. Detailed knowledge about foraging is essential as it may influence the vital rates, which, in turn, can affect trophic relationships between species, and population dynamics. The aims of this study were to evaluate resource and trophic niche partitioning in summer/autumn between the endangered Atlantic‐Gaspésie caribou (Rangifer tarandus caribou) population, moose (Alces americanus) and their incidental predators, the black bear (Ursus americanus) and coyote (Canis latrans), and to quantify the extent to which these predators consumed caribou. Bayesian isotopic analysis showed a small overlap in trophic niche for the two sympatric ungulates suggesting a low potential for resource competition. Our results also revealed that caribou occupied a larger isotopic niche area than moose, suggesting a greater diversity of resources used by caribou. Not surprisingly, coyotes consumed mainly deer (Odocoileus virginianus), moose, snowshoe hare (Lepus americanus), and occasionally caribou, while bears consumed mainly vegetation and, to a lesser extent, moose and caribou. As coyotes and bears also feed on plant species, we documented trophic niche overlap between caribou and their predators, as searching for similar resources can force them to use the same habitats and thus increase the encounter rate and, ultimately, mortality risk for caribou. Although the decline in the Gaspésie caribou population is mostly driven by habitat‐mediated predation, we found evidence that the low level of resource competition with moose, added to the shared resources with incidental predators, mainly bears, may contribute to jeopardize the recovery of this endangered caribou population. Highlighting the trophic interaction between species is needed to establish efficient conservation and management strategies to insure the persistence of endangered populations. The comparison of trophic niches of species sharing the same habitat or resources is fundamental to evaluate the mechanisms of coexistence or competition and eventually predict the consequences of ecosystem changes in the community.  相似文献   

3.
Human-caused habitat change has been implicated in current woodland caribou (Rangifer tarandus caribou) population declines across North America. Increased early seral habitat associated with industrial footprint can result in an increase in ungulate densities and subsequently those of their predator, wolves (Canis lupus). Higher wolf densities can result in increased encounters between wolves and caribou and consequently higher caribou mortality. We contrasted changes in moose (Alces alces) and deer (Odocoileus spp.) densities and assessed their effects on wolf–caribou dynamics in northeastern Alberta, Canada, pre (1994–1997) versus post (2005–2009) major industrial expansion in the region. Observable white-tailed deer (O. virginianus) increased 17.5-fold but moose remained unchanged. Wolf numbers also increased from approximately 6–11.5/1,000 km2. Coincident with these changes, spatial overlap between wolf pack territories and caribou range was high relative to the mid-1990s. The high number of wolf locations in caribou range suggests that forays were not merely exploratory, but rather represented hunting forays and denning locations. Scat analysis indicated that wolf consumption of moose declined substantively during this time period, whereas use of deer increased markedly and deer replaced moose as the primary prey of wolves. Caribou increased 10-fold in the diet of wolves and caribou population trends in the region changed from stable to declining. Wolf use of beaver (Castor canadensis) increased since the mid-1990s. We suggest that recent declines in woodland caribou populations in the southerly extent of their range have occurred because high deer densities resulted in a numeric response by wolves and consequently higher incidental predation on caribou. Our results indicate that management actions to conserve caribou must now include deer in primary prey and wolf reduction programs. © 2010 The Wildlife Society  相似文献   

4.
Taenia tapeworms of Finnish and Swedish wolves (Canis lupus) and Finnish brown bears (Ursus arctos), and muscle cysticerci of Svalbard reindeer (Rangifer tarandus platyrhynchus), Alaskan Grant's caribou (Rangifer tarandus granti) and Alaskan moose (Alces americanus) were identified on the basis of the nucleotide sequence of a 396 bp region of the mitochondrial cytochrome c oxidase subunit 1 gene. Two species were found from wolves: Taenia hydatigena and Taenia krabbei. The cysticerci of reindeer, caribou and one moose also represented T. krabbei. Most of the cysticercal specimens from Alaskan moose, however, belonged to an unknown T. krabbei-like species, which had been reported previously from Eurasian elks (Alces alces) from Finland. Strobilate stages from two bears belonged to this species as well. The present results suggest that this novel Taenia sp. has a Holarctic distribution and uses Alces spp. as intermediate and ursids as final hosts.  相似文献   

5.
The impact of anthropogenic disturbance on the fitness of prey should depend on the relative effect of human activities on different trophic levels. This verification remains rare, however, especially for large animals. We investigated the functional link between habitat selection of female caribou (Rangifer tarandus) and the survival of their calves, a fitness correlate. This top-down controlled population of the threatened forest-dwelling caribou inhabits a managed forest occupied by wolves (Canis lupus) and black bears (Ursus americanus). Sixty-one per cent of calves died from bear predation within two months following their birth. Variation in habitat selection tactics among mothers resulted in different mortality risks for their calves. When calves occupied areas with few deciduous trees, they were more likely to die from predation if the local road density was high. Although caribou are typically associated with pristine forests, females selected recent cutovers without negative impact on calf survival. This selection became detrimental, however, as regeneration took place in harvested stands owing to increased bear predation. We demonstrate that human disturbance has asymmetrical consequences on the trophic levels of a food web involving multiple large mammals, which resulted in habitat selection tactics with a greater short-term fitness payoff and, therefore, with higher evolutionary opportunity.  相似文献   

6.
In sub-Arctic and north-temperate ecosystems, opportunistic carnivores, such as black bears (Ursus americanus) and brown bears (Ursus arctos), are active on the landscape for a shorter period annually than sympatric gray wolves (Canis lupus). Therefore, bear movement patterns and habitat use might be expected to be more deliberate and of greater consequence, in terms of energy acquisition, than those of predators not undergoing hibernation. Habitat choices concerning feeding, bedding, and denning grounds made by black bears therefore should reflect seasonal abundance and distribution of vegetation and key prey items as these are sites where bears remain and forage for prolonged periods of time. We recorded the movement patterns of 6 GPS-collared black bears from den emergence to onset of moose (Alces alces) parturition in 2003. Over approximately 3 weeks prior to parturition, results from average distance calculations suggest that black bears moved closer to probable moose calving-site habitat. Additionally, the seasonal habitat use by black bears surrounding dens reflected the same trend for areas where cow moose gave birth in spring 2003, with a propensity to use needleleaf forest more than any other habitat.  相似文献   

7.
Species recovery is often impeded by inadequate knowledge on mechanisms of community interactions that cause and exacerbate species endangerment. Caribou and wild reindeer Rangifer tarandus are declining in many regions of their circumpolar range likely because of human‐induced landscape changes. In general, their niche specialization enables Rangifer to survive in nutrient‐poor habitats spatially separated from other ungulates and their shared predators. Research has indicated that shifts in primary prey distribution following human landscape alteration may result in spatial overlap with Rangifer. We studied overlap relationships of woodland caribou R. t. caribou and moose Alces alces, quantified by their differential use of environmental resources, and evaluated the role of human landscape alteration in spatial separation in south‐western Canada. Anthropogenic conversion of old‐growth forests to early seral stands is hypothesized to decrease the spatial separation between caribou and moose, the dominant prey for wolves Canis lupus, contributing to increased caribou mortality. Redundancy analysis (RDA) was first used to examine coarse scale resource separation across our study area. Second, at a finer spatial scale, we used logistic regression to compare resource‐ and spatial separation of sympatric pairs of 17 moose and 17 caribou. Finally, we tested if the frequency of predator‐caused caribou mortalities was higher in regions with higher moose resource use. Although environmental resource separation was strong at the coarser scale, we observed substantial spatial overlap (>50%) at the finer scale. In summer we reported a significant positive relationship between spatial overlap of moose and caribou and the degree of human landscape alteration. Most importantly, locations of caribou mortalities corresponded with areas of high resource use by moose in summer. Thus, consistent with the spatial separation hypothesis, our research suggests that early successional forest stages may decrease spatial separation between caribou and moose, resulting in increased mortality risk for threatened caribou.  相似文献   

8.
Sympatric black bears (Ursus americanus) and brown bears (Ursus arctos) are common in many boreal systems; however, few predator assemblages are known to coexist on a single seasonally abundant large prey item. In lowland southwestern interior Alaska, black bears and brown bears are considered the primary cause of moose (Alces alces) calf mortality during the first 6 weeks of life. The objective of this study was to document habitat use of global-positioning system (GPS)-collared black bears during peak and non-peak seasons of black bear-induced and brown bear-induced moose calf mortality within southwestern interior Alaska, in spring 2002. We compared habitats of GPS-collared black bears to those of presumably uncollared black bears and brown bears at their moose calf mortality sites. Results from this study suggest that GPS-collared black bears use similar habitat as conspecifics more than expected during the peak period of black bear predation on moose calves, whereas they use habitat in proportion to home range availability during the peak in brown bear predation on moose calves. Sex-specific Ivlev's electivity indices describe greater than expected use of mixed-deciduous forest and needleleaf forest by male GPS-collared black bears during the peak of moose calf predation, whereas females have a tendency to use these habitats less than expected. Juvenile GPS-collared black bears largely use the same habitat as other sympatric predators during the peak of moose calf predation, whereas during the non-peak period juveniles use opposite habitats as adult GPS-collared black bears. The outcome of this study offers possible explanations (e.g., sex, age) for spatial overlap or segregation in one member of a complex predator guild in relation to a seasonal pulse of preferred prey.  相似文献   

9.
Summary The biomass of forage, herbivores (caribou and moose) and predators (wolf) were estimated for four assemblages of large mammals along a latitudinal gradient in the Québec-Labrador peninsula and related to predictions made by two types of multitrophic level models. Wolves were present in three study areas, but they had been extirpated in the last one. Annual production of preferred forage exhibited a clear north-south increase for moose, but not for caribou. Neither the herbivore nor predator biomass increased along the latitudinal gradient: the highest herbivore biomass occurred in the wolf-free area and in the northernmost site, while the greatest predator density was observed in the southernmost site. Consequently, the ratio of the herbivore to forage biomass was the highest in the area devoid of wolves and in the northernmost site occupied by migratory caribou. Availability of forage per herbivore was the greatest in the moose-wolf and the caribou-moose-wolf assemblages. The observed data supported the multitrophic level model incorporating classical predator-prey relationships and producing stepwise accrual of trophic level biomass with increasing food chain length. In the northernmost site, the system was limited to two functional trophic levels and caribou were regulated by summer forage. Three functional trophic levels appeared to exist in the central study area where caribou and moose were preyed upon by wolves. Both herbivores were at very low density, the first one due probably to its poor adaptation to predation and the second because of an unproductive range. In the southernmost site, moose were clearly regulated by predation and kept much below the carrying capacity. With the extirpation of wolves in the last study area, moose were regulated by forage and the density exceeded that in the moose-wolf system by seven times even in a less productive range. Caribou, having primarily evolved under resource limitation, is replaced by a cervid better adapted to predation, the moose, in more productive three-link ecosystems.  相似文献   

10.
As industrial development increases in the range of barren-ground caribou (Rangifer tarandus granti) across the warming Arctic, the need to understand the responses of caribou to development and to assess the effectiveness of mitigation measures increase accordingly. The Central Arctic Herd (CAH) of caribou ranges across northern Alaska, USA, and the herd's summer range includes the Prudhoe Bay and Kuparuk oilfields, where the herd has been exposed to oil development for >4 decades. We used location data from global positioning system (GPS) radio-collars deployed on female CAH caribou for 106 collar-years, recording locations every 2 hours during 2008–2019, to examine caribou distribution and movements during 7 different seasons of the year in relation to infrastructure in the Kuparuk oilfield, which is characterized by more design improvements and mitigation measures than the older Prudhoe Bay oilfield. We examined movement metrics in terms of distance to gravel infrastructure (roads and pads) and time before and after movements across infrastructure (crossings). We also employed integrated step-selection analysis to compare caribou movements with random movements. Caribou distribution was influenced by insect activity, distance to coast, landcover, and terrain ruggedness, and we found large seasonal differences in caribou responses to infrastructure. Consistent with previous research findings, avoidance of areas near roads and pads was strongest during the calving season and some caribou used roads and pads as insect-relief habitat when oestrid flies (warble fly [Hypoderma tarandi] and nose bot fly [Cephenemyia trompe]) were active. Caribou moved through the Kuparuk oilfield repeatedly during summer, averaging >2 road or pad crossings a day when harassment by mosquitoes (Aedes [Ochlerotatus] spp.) and oestrid flies were the predominant factors influencing caribou movements. Caribou moved faster while crossing roads and pads but showed little pattern in speed or turn angle with distance to roads and pads. These results demonstrate that the effects of petroleum development on a caribou herd with long-term exposure to industrial activity vary widely by season. Maternal caribou avoid active roads and pads during calving, but the incorporation of appropriate mitigation measures in oilfield design allows caribou to move through the Kuparuk oilfield during other snow-free seasons. © 2020 The Wildlife Society.  相似文献   

11.
Considered as absent throughout Scandinavia for >100 years, wolves (Canis lupus) have recently naturally recolonized south-central Sweden. This recolonization has provided an opportunity to study behavioral responses of moose (Alces alces) to wolves. We used satellite telemetry locations from collared moose and wolves to determine whether moose habitat use was affected by predation risk based on wolf use distributions. Moose habitat use was influenced by reproductive status and time of day and showed a different selection pattern between winter and summer, but there was weak evidence that moose habitat use depended on predation risk. The seemingly weak response may have several underlying explanations that are not mutually exclusive from the long term absence of non-human predation pressure: intensive harvest by humans during the last century is more important than wolf predation as an influence on moose behavior; moose have not adapted to recolonizing wolves; and responses may include other behavioral adaptations or occur at finer temporal and spatial levels than investigated.  相似文献   

12.
Blood was collected from selected wildlife species in specific areas of Alaska (USA) during 1976-96. A modified agglutination test was used to test sera for evidence of exposure to Toxoplasma gondii. Serum antibody prevalence was 43% (62 positive of 143 tested) for black bears (Ursus americanus), 9% (11/125) for wolves (Canis lupus), 7% (22/319) for Dall sheep (Ovis dalli), 6% (14/241) for caribou (Rangifer tarandus), 1% (3/240) for moose (Alces alces), and 1% (2/241) for bison (Bison bison). A predictive model was developed to determine the effect of sex, age, location, and year of collection on antibody prevalence for each species. Prevalence was higher in older black bears, caribou, and wolves. For black bears, prevalence was highest in the southeast region of the state. For caribou, prevalence was lowest on the Alaska Peninsula.  相似文献   

13.
Grey wolves (Canis lupus), formerly extirpated in Finland, have recolonized a boreal forest environment that has been significantly altered by humans, becoming a patchwork of managed forests and clearcuts crisscrossed by roads, power lines, and railways. Little is known about how the wolves utilize this impacted ecosystem, especially during the pup-rearing summer months. We tracked two wolves instrumented with GPS collars transmitting at 30-min intervals during two summers in eastern Finland, visiting all locations in the field, identifying prey items and classifying movement behaviors. We analyzed preference and avoidance of habitat types, linear elements and habitat edges, and tested the generality of our results against lower resolution summer movements of 23 other collared wolves. Wolves tended to show a strong preference for transitional woodlands (mostly harvested clearcuts) and mixed forests over coniferous forests and to use forest roads and low use linear elements to facilitate movement. The high density of primary roads in one wolf’s territory led to more constrained use of the home territory compared to the wolf with fewer roads, suggesting avoidance of humans; however, there did not appear to be large differences on the hunting success or the success of pup rearing for the two packs. In total, 90 kills were identified, almost entirely moose (Alces alces) and reindeer (Rangifer tarandus sspp.) calves of which a large proportion were killed in transitional woodlands. Generally, wolves displayed a high level of adaptability, successfully exploiting direct and indirect human-derived modifications to the boreal forest environment.  相似文献   

14.
Habitat selection is a multi‐level, hierarchical process that should be a key component in the balance between food acquisition and predation risk avoidance (food–predation trade‐off). However, to date, studies have not fully elucidated how fine‐ and broad‐scale habitat decisions by individual prey can help balance food versus risk. We studied broad‐scale habitat selection by Newfoundland caribou Rangifer tarandus, focusing on trade‐offs between predation risk versus access to forage during the calving and post‐calving period. We improved traditional measures of habitat availability by incorporating fine‐scale movement patterns of caribou into the availability kernel, thus enabling separation of broad and fine scales of selection. Remote sensing and field surveys served to create a spatio‐temporal model of forage availability, whereas GPS telemetry locations from 66 black bears Ursus americanus and 59 coyotes Canis latrans provided models of predation risk. We then used GPS telemetry locations from 114 female caribou to assess food–predation trade‐offs through the prism of our refined model of caribou habitat availability. We noted that migratory movements of caribou were oriented mainly towards habitats with abundant forage and lower risk of bear and (to a lesser extent) coyote encounter. These findings were generally consistent across caribou herds and would not have been evident had we used traditional methods instead of our refined model when estimating habitat availability. We interpret these findings in the context of stereotypical migratory behaviour observed in Newfoundland caribou, which occurs despite the extirpation of wolves Canis lupus nearly a century ago. We submit that caribou are able to balance food acquisition against predation risk using a complex set of factors involving both finer and broader scale selection. Accordingly, our study provides a strong argument for using refined habitat availability estimates when assessing food–predation trade‐offs.  相似文献   

15.
Roads fragment moose habitat and cause increased mortality through moose–vehicle collisions. Previous studies have found that moose avoid areas near roads. In late winter, when moose face depleting food resources elsewhere, moose may be more prone to use areas near roads for foraging. However, this presumed trade-off between foraging and keeping away from roads has not previously been investigated. We sampled positions from global positioning system-collared moose in late winter from a high-density moose population in Southern Norway that is heavily influenced by human infrastructure. We combined data on moose positions with detailed field surveys of food abundance at sites that were, respectively, intensively used or sparsely used by moose. The probability that a site was intensively used increased with increasing abundance of high-quality browse and also with increasing distance to the nearest road. This indicates that moose trade-off foraging against keeping away from roads. We also found that spatio-temporal movements in relation to roads were influenced by variation in perceived human-derived risk; moose moved closer to smaller roads (low traffic volume) than to major roads (higher traffic volume) and closer to roads at night than at day. Males moved closer to roads than females. In conclusion, moose clearly exhibited behavioural adaptations to cope with roads and traffic in the study area. Because availability of high-quality forage substantially influenced habitat use, it may be an option to establish artificial feeding sites during winter to keep moose away from the roads.  相似文献   

16.
Abstract Roads often negatively affect terrestrial wildlife, via habitat loss or fragmentation, noise, and direct mortality. We studied moose (Alces alces) behavior relative to a road network, in an area with a history of moose-vehicle accidents, to determine when moose were crossing roadways or using areas near roads and to investigate if environmental factors were involved in this behavior. We tracked 47 adult moose with Global Positioning System collars in a study area crossed by highways and forest roads. We hypothesized that moose would avoid crossing roads but would make occasional visits to roadsides to feed on sodium-rich vegetation and avoid biting insects. Further, we expected moose avoidance to be greater for highways than forest roads. We recorded 196,710 movement segments but only observed 328 highway and 1,172 forest-road crossings (16 and 10 times lower than expected by chance). Moose usually avoided road proximity up to ≥500 m on each side but 20% of collared moose made visits to areas within 50 m of highways, which might have resulted from moose searching for sodium in vegetation and roadside salt pools. In fact, vegetation along highways had higher sodium concentrations and was browsed in similar proportions to vegetation in adjacent forest, despite moose avoidance of these zones. Moose, however, did not use areas near roads more during periods of biting insect abundance. Our results supported the hypothesis of scale-dependent selection by moose; avoidance of highways at a coarse scale may confer long-term benefits, whereas selection of highway corridors at finer scales may be part of a strategy to overcome short-term limiting factors such as sodium deficiency. We found a positive relationship between home-range size and the proportion of road axes they contained, suggesting that moose either compensated for habitat loss or made specific movements along highways to gather sodium. The presence of sodium along highways likely increases moose-vehicle accident risks. Removal of salt pools or use of a de-icing salt other than sodium chloride should render highway surroundings less attractive to moose.  相似文献   

17.
Antibodies to Neospora caninum were determined in several species of wild animals in the United States by the Neospora agglutination test (NAT). Antibodies (NAT 1:40 or higher) were found in 5 of 249 bison (Bison bison), 5 of 160 caribou (Rangifer tarandus), 4 of 162 moose (Alces alces), 4 of 122 wolves (Canis lupus), and 1 of 224 musk ox (Ovibos moschatus) but not in 197 black bears (Ursus americanus). To our knowledge, this is the first report of antibodies to N. caninum in bison and caribou. The total absence of N. caninum antibodies in black bears indicates that bears are not a host for N. caninum and that there is no cross-reactivity between the NAT and the modified agglutination test (MAT) for Toxoplasma gondii, because more than 80% of black bears in eastern United States have MAT antibodies at a 1:25 serum solution.  相似文献   

18.
Species interactions within food webs are driven by multiple constraints, including those imposed by seasonal changes in the environment. Ecologically sound definitions of seasons may therefore be a prerequisite for clarifying predator prey interactions. Most studies define biological seasons based on fixed schedules or on temporal changes in a single movement measurement. We used a novel clustering approach based on homogeneous space‐use patterns of GPS‐collared animals to reveal 7 biological seasons for caribou Rangifer tarandus caribou, and 5 for both moose Alces alces and grey wolves Canis lupus interacting in a boreal ecosystem. Subsequent evaluation of niche overlap showed that, as predicted, wolves had a stronger spatio‐temporal connection with moose, its main prey, than with caribou. Movement constraints and limiting resource distributions similarly affected all species in some instances, but also caused temporal changes in the extent of niche overlap between wolves and its two prey. The risk that caribou faced was not only linked to the niche overlap with wolves, but also to the extent of wolf‐moose niche overlap during the same period. Food‐web properties emerged from the analysis, with temporal changes in relative niche overlap reflecting the strength of trophic interactions during the year. Our study demonstrates how the study of trophic interactions can benefit from comprehensive definitions of biological seasons.  相似文献   

19.
ABSTRACT Reduced to small isolated groups by anthropogenic habitat losses or habitat modifications, populations of many endangered species are sensitive to additive sources of mortality, such as predation. Predator control is often one of the first measures considered when predators threaten survival of a population. Unfortunately, predator ecology is often overlooked because relevant data are difficult to obtain. For example, the endangered Gaspésie caribou (Rangifer tarandus caribou) has benefited from 2 periods of predator control that targeted black bears (Ursus americanus) and coyotes (Canis latrans) in an attempt to reduce predation on caribou calves. Despite a high trapping effort, the number of predators removed has remained stable over time. To assess impact of predator movements on efficacy of a control program, we studied space use of 24 black bears and 16 coyotes over 3 years in and around the Gaspésie Conservation Park, Quebec, Canada, using Global Positioning System radiocollars. Annual home ranges of black bears averaged 260 km2 and 10 individuals frequented area used by caribou. Annual home ranges of resident coyotes averaged 121 km2, whereas dispersing coyotes covered >2,600 km2. Coyotes were generally located at lower altitudes than caribou. However, because coyotes undertook long-distance excursions, they overlapped areas used by caribou. Simulations based on observed patterns showed that 314 bears and 102 coyotes potentially shared part of their home range with areas used by female caribou during the calving period. Despite low densities of both predator species, extensive movement and use of nonexclusive territories seem to allow predators to rapidly occupy removal areas, demonstrating the need for recurrent predator removals. Our results underscore the necessity of considering complementary and alternative solutions to predator control to assure long-term protection of endangered species.  相似文献   

20.
Greater understanding of habitat selection requires investigation at the scales at which organisms perceive and respond to their environment. Such knowledge could reveal the relative importance of factors limiting populations and the extent of response to habitat changes, and so guide conservation initiatives. We conducted a novel, spatially explicit analysis of winter habitat selection by caribou (Rangifer tarandus) in Newfoundland, Canada, to elucidate the spatial scales of habitat selection. We combined conventional hierarchical habitat analysis with a newly developed geospatial approach that quantifies selection across scales as the difference in variance between available and used sites. We used both ordination and univariate analyses of lichen and plant cover, snow hardness and depth. This represents the first use of ordination with geostatistics for the assessment of habitat selection. Caribou habitat selection was driven by shallow, soft snow and high cover of Cladina lichens and was strongest at feeding microsites (craters) and broader feeding areas. Habitat selection was most evident at distance lags of up to 15 km, perhaps an indication of the perceptual abilities of caribou.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号