首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolic labeling of glycans with a bioorthogonal chemical reporter such as the azide enables their visualization in cells and organisms as well as the enrichment of specific glycoprotein types for proteomic analysis. This process involves two steps. Azido sugars are fed to cells or organisms and integrated by the glycan biosynthetic machinery into various glycoconjugates. The azido sugars are then covalently tagged with imaging probes or epitope tags, either ex vivo or in vivo, using an azide-specific reaction. This protocol details the syntheses of the azido sugars N-azidoacetylmannosamine (ManNAz), N-azidoacetylgalactosamine (GalNAz), N-azidoacetylglucosamine (GlcNAz) and 6-azidofucose (6AzFuc), and the detection reagents phosphine-FLAG and phosphine-FLAG-His6. Applications to the visualization of cellular glycans and enrichment of glycoproteins for proteomic analysis are described. The synthesis of the azido sugars (ManNAz, GalNAz, GlcNAz or 6AzFuc) or detection reagents (phosphine-FLAG or phosphine-FLAG-His6) can be completed in approximately 1 week. A cell metabolic labeling experiment can be completed in approximately 4 d.  相似文献   

2.
Polysaccharides containing galactofuranosyl and arabinofuranosyl residues are key components of many microorganisms. Recent investigations have provided a greater understanding of the biosynthetic pathways by which these glycans are assembled. Concomitant with these biochemical studies, an increasing number of chemical syntheses of oligofuranosides have been reported and new methods for their assembly have been developed.  相似文献   

3.
An efficient synthesis of tri-, tetra-, and pentasaccharide cyclic phosphates 1-5, structurally related to natural inositol phosphate glycans, is reported. The title compounds were assembled by PhSeOTf-promoted glycosylation of the known glucosamine precursor, t-butyldimethylsilyl 2-azido-3,6-di-O-benzyl-2-deoxy-beta-D-glucopyranoside (8) with protected 1-methylthio mono-, di-, and trimannosides 7a-c, and, after conversion into glycosyl fluorides, Cp2ZrCl2- AgOTf-promoted glycosylation of differentially protected optically pure 1D-myo-inositol 11. The syntheses were completed by installing the cyclic phosphate moieties with methylpyridinium dichlorophosphate and finally, removal of all protecting groups by dissolving-metal reduction.  相似文献   

4.
There is increasing evidence that in several fungi, rhamnose-containing glycans are involved in processes that affect host-pathogen interactions, including adhesion, recognition, virulence, and biofilm formation. Nevertheless, little is known about the pathways for the synthesis of these glycans. We show that rhamnose is present in glycans isolated from the rice pathogen Magnaporthe grisea and from the plant pathogen Botryotinia fuckeliana. We also provide evidence that these fungi produce UDP-rhamnose. This is in contrast to bacteria where dTDP-rhamnose is the activated form of this sugar. In bacteria, formation of dTDP-rhamnose requires three enzymes. Here, we demonstrate that in fungi only two genes are required for UDP-Rha synthesis. The first gene encodes a UDP-glucose-4,6-dehydratase that converts UDP-glucose to UDP-4-keto-6-deoxyglucose. The product was shown by time-resolved (1)H NMR spectroscopy to exist in solution predominantly as a hydrated form along with minor amounts of a keto form. The second gene encodes a bifunctional UDP-4-keto-6-deoxyglucose-3,5-epimerase/-4-reductase that converts UDP-4-keto-6-deoxyglucose to UDP-rhamnose. Sugar composition analysis and gene expression studies at different stages of growth indicate that the synthesis of rhamnose-containing glycans is under tissue-specific regulation. Together, our results provide new insight into the formation of rhamnose-containing glycans during the fungal life cycle. The role of these glycans in the interactions between fungal pathogens and their hosts is discussed. Knowledge of the metabolic pathways involved in the formation of rhamnose-containing glycans may facilitate the development of drugs to combat fungal diseases in humans, as to the best of our knowledge mammals do not make these types of glycans.  相似文献   

5.
Chemical syntheses of complex-type glycans derived from the eggs of parasitic helminths, Schistosoma mansoni and Schistosoma japonicum were achieved. In addition, their analogs, which lack xylose and/or fucose residue(s), are described. These branched sugar chains were synthesized regio- and stereoselectively by using beta-mannosylation, desilylation under high-pressure and glycosylation in frozen solvent as key transformations.  相似文献   

6.
A Ono  A Matsuda  J Zhao    D V Santi 《Nucleic acids research》1995,23(22):4677-4682
A general approach for the synthesis of oligonucleotide-triplet phosphoramidites and the synthesis of four such blocks are described. A strategy was devised to minimize the number of dimer precursors needed for synthesis of a complete set of triplet-amidite blocks encoding all 20 amino acids. Whereas synthesis of 20 triplet-amidite blocks consisting of codon sequences requires 16 dimer blocks, just seven dimer blocks are required to synthesize all required antisense sequences. The antisense sequences are then converted to codons in template mediated replication. Using a mixture of four triplet-amidites and conventional automated solid-phase DNA synthesis, short (6mer) and medium length (30mer) oligonucleotide mixtures were synthesized and analyzed. The latter was replicated in vitro and used as a mutagenic cassette to produce four mutants of Asp 221 in the enzyme thymidylate synthase. The method establishes the direction and utility for the production and use of triplet-amidite blocks in DNA synthesis.  相似文献   

7.
Sugar nucleotide-dependent glycosyltransferases (GTs) are key enzymes that catalyze the formation of glycosidic bonds in nature. They have been increasingly applied in the synthesis of complex carbohydrates and glycoconjugates with or without in situ generation of sugar nucleotides. Human GTs are becoming more accessible and new bacterial GTs have been identified and characterized. An increasing number of crystal structures elucidated for GTs from mammalian and bacterial sources facilitate structure-based design of mutants as improved catalysts for synthesis. Automated platforms have also been developed for chemoenzymatic synthesis of carbohydrates. Recent progress in applying sugar nucleotide-dependent GTs in enzymatic and chemoenzymatic synthesis of mammalian glycans and glycoconjugates, bacterial surface glycans, and glycosylated natural products from bacteria and plants are reviewed.  相似文献   

8.
The coordination of the syntheses of the several cellular lipid classes with one another and with cell cycle control were investigated in proliferating L6 myoblasts and fibroblasts (WI-38 and CEF). Cells cultured in lipid-depleted medium containing one of two inhibitors of hydroxymethylglutaryl-CoA reductase, 25-hydroxycholesterol or compactin, display a rapid, dose-dependent inhibition of cholesterol synthesis. Inhibition of the syntheses of each of the other lipid classes is first apparent after the rate of sterol synthesis is depressed severalfold. 24 h after the addition of the inhibitor, the syntheses of DNA, RNA, and protein also decline. The inhibition of sterol synthesis leads to a threefold reduction in the sterol:phospholipid ratio that parallels the development of proliferative and G1 cell cycle arrests and alterations in cellular morphology. All of these responses are reversed upon reinitiation of cholesterol synthesis or addition of exogenous cholesterol. A comparison of the timing of these responses with respect to the development of the G1 arrest indicates that the primary factor limiting cell cycling is the availability of cholesterol provided either from an exogenous source or by de novo synthesis. The G1 arrest appears to be responsible for the general inhibition of macromolecular synthesis in proliferating cells treated with 25-hydroxycholesterol. In contrast, the apparent coordinated inhibition of lipid synthesis is not a consequence of the G1 arrest but may in fact give rise to it. Sequential inhibition of lipid syntheses is also observed in cycling cells when the synthesis of choline-containing lipids is blocked by choline deprivation and is observed in association with G1 arrests caused by confluence or differentiation. In the nonproliferating cells, the syntheses of lipid and protein do not appear coupled.  相似文献   

9.
10.
β-Phenetyl alcohol and procaine hydrochloride are known to alter membrane structure. Their effects on the syntheses of tyramine oxidase and arylsulfatase were studied in Klebsiella aerogenes. β-Phenetyl alcohol inhibited the syntheses of membrane-bound tyramine oxidase and arylsulfatase, located in the periplasm, under non-repressing and derepressing conditions, but did not affect the syntheses of β-galactosidase and histidase, which are located internally. In contrast, procaine hydrochloride stimulated the synthesis of tyramine oxidase and derepressed the synthesis of arylsulfatase, but inhibited non-repressed synthesis of arylsulfatase. Thus, derepressed synthesis of cellular arylsulfatase was affected by the level of tyramine oxidase synthesis. Structural alterations in the cell membrane seem to impair the formation of active-arylsulfatase protein in the periplasmic space.  相似文献   

11.
Over a half of all proteins are glycosylated, and their proper glycosylation is essential for normal function. Unfortunately, because of structural complexity of nonlinear branched glycans and the absence of genetic template for their synthesis, the knowledge about glycans is lagging significantly behind the knowledge about proteins or DNA. Using a recently developed quantitative high throughput glycan analysis method we quantified components of the plasma N-glycome in 99 children with attention-deficit hyperactivity disorder (ADHD), 81 child and 5 adults with autism spectrum disorder, and a total of 340 matching healthy controls. No changes in plasma glycome were found to associate with autism spectrum disorder, but several highly significant associations were observed with ADHD. Further structural analysis of plasma glycans revealed that ADHD is associated with increased antennary fucosylation of biantennary glycans and decreased levels of some complex glycans with three or four antennas. The design of this study prevented any functional conclusions about the observed associations, but specific differences in glycosylation appears to be strongly associated with ADHD and warrants further studies in this direction.  相似文献   

12.
Endoplasmic reticulum-associated degradation of newly synthesized glycoproteins has been demonstrated previously using various mammalian cell lines. Depending on the cell type, glycoproteins bearing Man9 glycans and glycoproteins bearing Man5 glycans can be efficiently degraded. A wide variety of variables can lead to defective synthesis of lipid-linked oligosaccharides and, therefore, in mammalian cells, species derived from Man9GlcNAc2 or Man5GlcNAc2 are often recovered on newly synthesized glycoproteins. The degradation of glycoproteins bearing these two species has not been studied. We used a Chinese hamster ovary cell line lacking Glc-P-Dol-dependent glucosyltransferase I to generate various proportions of Man5GlcNAc2 and Man9GlcNAc2 on newly synthesized glycoproteins. By studying the structure of the soluble oligomannosides produced by degradation of these glycoproteins, we demonstrated the presence of a higher proportion of soluble oligomannosides originating from truncated glycans, showing that glycoproteins bearing Man5GlcNAc2 glycans are degraded preferentially.  相似文献   

13.
Synthetic DNA probes attached to microarrays usually range in length from 25 to 70 nucleotides. There is a compromise between short probes with lower sensitivity, which can be accurately synthesized in higher yields, and long probes with greater sensitivity but lower synthesis yields. Described here are microarrays printed with spots containing a mixture of two short probes, each designed to hybridize at noncontiguous sites in the same targeted sequence. We have shown that, for a printed microarray, mixed probe spots containing a pair of 30mers show significantly greater hybridization than spots containing a single 30mer and can approach the amount of hybridization to spots containing a 60mer or a 70mer. These spots with mixed oligonucleotide probes display cooperative hybridization signals greater than those that can be achieved by either probe alone. Both the higher synthesis yields of short probes and the greater sensitivity of long oligonucleotides can be utilized. This strategy provides new design options for microarray hybridization assays to detect RNA abundance, RNA splice variants, or sequence polymorphisms.  相似文献   

14.

Background

An efficient method for synthesizing homogenous glycoproteins is essential for elucidating the structural and functional roles of glycans of glycoproteins. We have focused on the transglycosylation activity of endo-β-N-acetylglucosaminidase from Mucor hiemalis (Endo-M) as a tool for glycoconjugate syntheses, since it can transfer en bloc the oligosaccharide of not only high-mannose type but also complex-type N-glycan onto various acceptors having an N-acetylglucosamine residue. However, there are two major bottlenecks for its practical application: the low yield of the transglycosylation product and the difficulty to obtain the activated sugar oxazoline substrate, especially the sialo-complex type one.

Methods

We carried out the transglycosylation using a glycosynthase-like N175Q mutant of Endo-M, which was found to possess enhanced transglycosylation activity with sugar oxazoline as a donor substrate, in combination with an easy preparation of the sialo-complex-type sugar oxazoline from natural sialoglycopeptide in egg yolk.

Results

Endo-M-N175Q showed efficient transglycosylation toward sialo-complex-type sugar oxazoline onto bioactive peptides and bovine ribonuclease B, and each sialylated compound was obtained in significantly high yield.

Conclusions

Highly efficient and simple chemo-enzymatic syntheses of various sialylated compounds were enabled, by a combination of a simple synthesis of sialo-complex-type sugar oxazoline and the Endo-M-N175Q catalyzed transglycosylation.

General significance

Our method would be very useful for a practical synthesis of biologically important glycopeptides and glycoproteins.  相似文献   

15.
High-mannose-type oligosaccharides have been shown to play important roles in protein quality control. Several intracellular proteins, such as lectins, chaperones and glycan-processing enzymes, are involved in this process. These include calnexin/calreticulin, UDP-glucose:glycoprotein glucosyltransferase (UGGT), cargo receptors (such as VIP36 and ERGIC-53), mannosidase-like proteins (e.g. EDEM and Htm1p) and ubiquitin ligase (Fbs). They are thought to recognize high-mannose-type glycans with subtly different structures, although the precise specificities are yet to be clarified. In order to gain a clear understanding of these protein-carbohydrate interactions, comprehensive synthesis of high-mannose-type glycans was conducted. In addition, two approaches to the synthesis of artificial glycoproteins with homogeneous oligosaccharides were investigated. Furthermore, a novel substrate of UGGT was discovered.  相似文献   

16.
With the continuing advancement of carbohydrate chemical synthesis, bacterial glycomes have become increasingly attractive and accessible synthetic targets. Although bacteria also produce carbohydrate-containing secondary metabolites, our review here will cover recent chemical synthetic efforts on bacterial surface glycans. The obtained compounds are excellent candidates for the development of improved structurally defined glycoconjugate vaccines to combat bacterial infections. They are also important probes for investigating glycan–protein interactions. Glycosylation strategies applied for the formation of some challenging glycosidic bonds of various uncommon sugars in a number of recently synthesized bacterial surface glycans are highlighted.  相似文献   

17.
Newly designed linear-type glycoclusters were synthesized which involve a chondroitin repeating disaccharide ligand and a hydrophobic octyl ether spacer. The spacer mimics the corresponding disaccharide unit. Repeating elongation of the pseudo-tetrasaccharide that was derived from the common cluster unit [-->8)-octyl-(1-->3)-beta-D-Gal-NAc-(1-->4)-beta-D-GlcA-(1-->] allowed the syntheses of up to the pseudo-decasaccharide analog of chondroitin. An enzymatic D-GlcA transfer at the non-reducing end of the synthesized artificial glycans by GlcATase II was observed.  相似文献   

18.
O-mannosyl-linked glycans constitute a third of all brain O-linked glycoproteins, and yet very little is understood about their functions. Several congenital muscular dystrophies with central nervous system defects are caused by genetic disruptions in glycosyltransferases responsible for the synthesis of O-mannosyl glycans. The glycosyltransferase GnT-Vb, also known as GnT-IX, is expressed abundantly in the brain and testis and is proposed to be the enzyme that branches O-mannosyl-linked glycans. In this study, we show in a human neuronal model that GnT-Vb expression enhances neurite outgrowth on laminin. GnT-Vb has been shown to perform both N-linked and O-mannosyl-linked glycosylation. To determine if the effect on neurite outgrowth was due to N-linked or O-mannosyl-linked glycosylation by GnT-Vb we suppressed the expression of glycosyltransferases important for the elongation of both N-linked and O-mannosyl-linked glycans using RNA interference. Our results suggest that GnT-Vb and PomGnT1, enzymes involved in the O-mannosyl glycosylation pathway, play an active role in modulating integrin and laminin-dependent adhesion and migration of human neuronal cells.  相似文献   

19.
In the solid-phase synthesis of oligonucleotides containing the pyrimidine(6-4)pyrimidone photoproduct using a dinucleotide building block, considerable amounts of by-products were found as the chain length increased. The by-products were the major product when a 49mer was synthesized on a 40 nmol scale. It was assumed that these by-products were formed by the coupling of phosphoramidites with the N3 imino function of the 5' component of the (6-4) photoproduct. We examined imidazolium triflate and benzimidazolium triflate to find an alternative activator for DNA synthesis. Imidazolium triflate prevented by-product formation to some extent, but the coupling yields were low. Benzimidazolium triflate was comparable to tetrazole in coupling efficiency and reduced by-product formation to a great extent, without modification of the synthesizer program. The obtained 49mer was used to detect proteins that recognize UV-damaged DNA in HeLa cell extracts. Two major protein-DNA complexes were found when a 49mer duplex was used as probe, while a 30mer duplex failed to detect one of them. This application showed the usefulness of long chain 'damaged' oligonucleotides in biochemical studies.  相似文献   

20.
The requirement for phage protein synthesis for the inhibition of host deoxyribonucleic acid synthesis has been investigated by using a phage mutant unable to catalyze the production of any phage deoxyribonucleic acid. It has been concluded that the major pathway whereby phage inhibit host syntheses requires protein synthesis. The inhibition of host syntheses by phage ghosts is not affected by inhibitors of protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号