首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Ants are important predators in agricultural systems, and have complex and often strong effects on lower trophic levels. Agricultural intensification reduces habitat complexity, food web diversity and structure, and affects predator communities. Theory predicts that strong top-down cascades are less likely to occur as habitat and food web complexity decrease. 2. To examine relationships between habitat complexity and predator effects, we excluded ants from coffee plants in coffee agroecosystems varying in vegetation complexity. Specifically, we studied the effects of eliminating ants on arthropod assemblages, herbivory, damage by the coffee berry borer and coffee yields in four sites differing in management intensification. We also sampled ant assemblages in each management type to see whether changes in ant assemblages relate to any observed changes in top-down effects. 3. Removing ants did not change total arthropod densities, herbivory, coffee berry borer damage or coffee yields. Ants did affect densities of some arthropod orders, but did not affect densities of different feeding groups. The effects of ants on lower trophic levels did not change with coffee management intensity. 4. Diversity and activity of ants on experimental plants did not change with coffee intensification, but the ant species composition differed. 5. Although variation in habitat complexity may affect trophic cascades, manipulating predatory ants across a range of coffee agroecosystems varying in management intensity did not result in differing effects on arthropod assemblages, herbivory, coffee berry borer attack or coffee yields. Thus, there is no clear pattern that top-down effects of ants in coffee agroecosystems intensify or dampen with decreased habitat complexity.  相似文献   

2.
Shaded coffee agroecosystems traditionally have few pest problems potentially due to higher abundance and diversity of predators of herbivores. However, with coffee intensification (e.g., shade tree removal or pruning), some pest problems increase. For example, coffee leaf miner outbreaks have been linked to more intensive management and increased use of agrochemicals. Parasitic wasps control the coffee leaf miner, but few studies have examined the role of predators, such as ants, that are abundant and diverse in coffee plantations. Here, we examine linkages between arboreal ant communities and coffee leaf miner incidence in a coffee plantation in Mexico. We examined relationships between incidence and severity of leaf miner attack and: (1) variation in canopy cover, tree density, tree diversity, and relative abundance of Inga spp. shade trees; (2) presence of Azteca instabilis, an arboreal canopy dominant ant; and (3) the number of arboreal twig‐nesting ant species and nests in coffee plants. Differences in vegetation characteristics in study plots did not correlate with leaf miner damage perhaps because environmental factors act on pest populations at a larger spatial scale. Further, presence of A. instabilis did not influence presence or severity of leaf miner damage. The proportion of leaves with leaf miner damage was significantly lower where abundance of twig‐nesting ants was higher but not where twig‐nesting ant richness was higher. These results indicate that abundance of twig‐nesting ants in shaded coffee plantations may contribute to maintenance of low leaf miner populations and that ants provide important ecosystem services in coffee agroecosystems.  相似文献   

3.
The ant fauna of oak forest canopies in Northern Bavaria was studied by canopy fogging on 45 trees in August 2000 and May 2001. The study focused on a comparison of several different forestry management practices resulting in several types of canopy cover. Forests surveyed were: (1) high forest (high canopy cover), (2) coppice with standards (low canopy cover), (3) forest pasture with mostly solitary trees (very low canopy cover) and (4) transitional forest from former coppice with standards to high forest (approaching high canopy cover). This comprised a full gradient of canopy coverage. On the 45 oak trees sampled, a total of 17 ant species were found. Species composition was dependent on the different forestry management practices. The total number of species and the number of species listed in the Red Data Books of both Germany and Bavaria were much higher in the forest pasture and the coppice with standards, as compared to the high forest. The transitional forest was at an intermediate level. The highest number of ant species was found in the forest pasture. This can be explained by the occurrence of species of open habitats and thermophilous species. In the coppice with standards, forest dwelling and arboricolous species dominated, whereas the high forest showed much lower frequencies of arboricolous species like Temnothorax corticalis, Dolichoderus quadripunctatus and Temnothorax affinis. A multivariate analysis revealed that canopy cover (measured as “shade”, in percentage intervals of canopy cover) was the best parameter for explaining species distribution and dataset variation, and to a lesser extent the amount of dead wood, canopy and trunk diameter. Thus ant fauna composition was mostly driven by structural differences associated to the different forestry management practices. Many ant species clearly preferred the more open and light forest stands of the coppice with standards as compared to the dense and shady high forest.  相似文献   

4.
Abstract.  1. This study examines limitation of nesting resources for leaf-litter and twig-nesting ants as a mechanism of diversity loss across an intensification gradient of coffee production in Colombia. Twelve farms were selected and classified into four management types: forest, polygeneric shade coffee, monogeneric shade coffee, and sun coffee (unshaded coffee monocultures).
2. At each of the farms, four treatment subplots were established at the corners of each of 10 25 m2 plots: (i) twig augmentation (adding 10 empty bamboo twigs); (ii) litter augmentation (tripling existing litter profile); (iii) twig and litter augmentation; and (iv) no manipulation control, for a total of 480 subplots. A twig addition experiment was also performed on coffee bushes.
3. The results showed significantly more ant colonies in the forest and monogeneric shade coffee litter augmentation plots after 4 months. Litter-nesting ant species richness was higher in all three shade systems than in the sun coffee. The identities of ants nesting on coffee bushes were different from those in the soil level litter. Fewer species nested in bamboo twigs placed in litter in the most intensive systems.
4. More ants nested in the resource addition treatments, and more ant species were found in forested habitats; however, a single mechanism cannot explain the observed patterns. It was concluded that a combination of bottom-up and top-down effects might lead to the loss of associated fauna with the intensification of these agroecosystems.  相似文献   

5.
Agriculture of varying management intensity dominates fragmented tropical areas and differentially impacts organisms across and within taxa. We examined impacts of local and landscape characteristics on four groups of ants in an agricultural landscape in Chiapas, Mexico comprised of forest fragments and coffee agroecosystems varying in habitat quality. We sampled ground ants found in leaf litter and rotten logs and arboreal ants found in hollow coffee twigs and on tree trunks. Then using vegetation and agrochemical indices and conditional inference trees, we examined the relative importance of local (e.g. vegetation, elevation, agrochemical) and landscape variables (e.g. distance to and amount of nearby forest and rustic coffee) for predicting richness and abundance of ants. Leaf litter ant abundance increased with vegetation complexity; richness and abundance of ants from rotten logs, twig-nests, and tree trunks were not affected by vegetation complexity. Agrochemical use did not affect species richness or abundance of any ant group. Several local factors (including humus mass, degree of decay of logs, number of hollow twigs, tree circumference, and absence of fertilizers) were significant positive predictors of abundance and richness of some ant groups. Two landscape factors (forest within 200 m, and distance from forest) predicted richness and abundance of twig-nesting and leaf litter ants. Thus, different ant groups were influenced by different characteristics of agricultural landscapes, but all responded primarily to local characteristics. Given that ants provide ecosystem services (e.g. pest control) in coffee farms, understanding ant responses to local and landscape characteristics will likely inform farm management decisions.  相似文献   

6.
Insect herbivory has been observed to be affected by habitat loss and fragmentation, although the mechanisms by which these anthropogenic disturbances affect this process are not well understood. To aid in clarifying this issue, we assessed the relation between forest cover and leaf damage caused by herbivorous insects on a representative tropical forest understory plant family, the Rubiaceae. We measured leaf area loss of Rubiaceae plants in 20 forest sites located in the Brazilian Atlantic forest, and also tested whether variation in forest cover, abundance of insectivorous birds (predators) and of Rubiaceae plants (resources) could explain the observed variation in leaf damage. Herbivory levels varied between 2.6 and 12.5 percent leaf area lost and increased with decreasing forest cover, whereas the other explanatory variables did not provide additional explanatory power. Therefore, forest loss appears to be the main driver of changes in local herbivory, and ecological processes such as top-down and bottom-up control may not account for the deforestation-related increase in herbivory levels. Other mechanisms, for example leaf quality and/or the influence of the adjoining land uses, have to be explored in future studies.  相似文献   

7.
We tested integrative bottom-up and top-down trophic cascade hypotheses with manipulative experiments in a tropical wet forest, using the ant-plant Piper cenocladum and its associated arthropod community. We examined enhanced nutrients and light along with predator and herbivore exclusions as sources of variation in the relative biomass of plants, their herbivores (via rates of herbivory), and resident predaceous ants. The combined manipulations of secondary consumers, primary consumers, and plant resources allowed us to examine some of the direct and indirect effects on each trophic level and to determine the relative contributions of bottom-up and top-down cascades to the structure of the community. We found that enhanced plant resources (nutrients and light) had direct positive effects on plant biomass. However, we found no evidence of indirect (cascading through the herbivores) effects of plant biomass on predators or top predators. In contrast, ants had indirect effects on plant biomass by decreasing herbivory on the plants. This top-down cascade occurred whether or not plant resources were enriched, conditions which are expected to modify top-down forces. Received: 9 August 1998 / Accepted: 1 December 1998  相似文献   

8.
Testing hypotheses of trophic level interactions: a boreal forest ecosystem   总被引:1,自引:0,他引:1  
Models of community organization involve variations of the top-down (predator control) or bottom-up (nutrient limitation) hypotheses. Verbal models, however, can be interpreted in different ways leading to confusion. Therefore, we predict from first principles the range of possible trophic level interactions, and define mathematically the instantaneous effects of experimental perturbations. Some of these interactions are logically and biologically unfeasible. The remaining set of 27 feasible models is based on an initial assumption, for simplicity, of linear interactions between trophic levels. Many more complex and non-linear models are logically feasible but, for parsimony, simple ones are tested first. We use an experiment in the boreal forest of Canada to test predictions of instantaneous changes to trophic levels and distinguish between competing models. Seven different perturbations systematically removed each trophic level or, for some levels, supplemented them. The predictions resulting from the perturbations were concerned with the direction of change in biomass in the other levels. The direct effects of each perturbation produced strong top-down and bottom-up changes in biomass. At both the vegetation and herbivore levels top-down was stronger than bottom-up despite some compensatory growth stimulated by herbivory. The combination of experiments produced results consistent with two-way (reciprocal) interactions at each level. Indirect effects on one or two levels removed from the perturbation were either very weak or undetectable. Top-down effects were strong when direct but attenuated quickly. Bottom-up effects were less strong but persisted as indirect effects to higher levels. Although the 'pure reciprocal' model best fits our results for the boreal forest system different models may apply to different ecosystems around the world.  相似文献   

9.
Species’ functional traits are an important part of the ecological complexity that determines the provisioning of ecosystem services. In biological pest control, predator response to pest density variation is a dynamic trait that impacts the provision of this service in agroecosystems. When pest populations fluctuate, farmers relying on biocontrol services need to know how natural enemies respond to these changes. Here we test the effect of variation in coffee berry borer (CBB) density on the biocontrol efficiency of a keystone ant species (Azteca sericeasur) in a coffee agroecosystem. We performed exclosure experiments to measure the infestation rate of CBB released on coffee branches in the presence and absence of ants at four different CBB density levels. We measured infestation rate as the number of CBB bored into fruits after 24 hours, quantified biocontrol efficiency (BCE) as the proportion of infesting CBB removed by ants, and estimated functional response from ant attack rates, measured as the difference in CBB infestation between branches. Infestation rates of CBB on branches with ants were significantly lower (71%-82%) than on those without ants across all density levels. Additionally, biocontrol efficiency was generally high and did not significantly vary across pest density treatments. Furthermore, ant attack rates increased linearly with increasing CBB density, suggesting a Type I functional response. These results demonstrate that ants can provide robust biological control of CBB, despite variation in pest density, and that the response of predators to pest density variation is an important factor in the provision of biocontrol services. Considering how natural enemies respond to changes in pest densities will allow for more accurate biocontrol predictions and better-informed management of this ecosystem service in agroecosystems.  相似文献   

10.
The green scale, Coccus viridis (Green) (Hemiptera: Coccidae), is an insect pest of coffee and several other perennial cultivated plant species. We investigated changes in alkaloid and phenolic contents in coffee plants as a response to herbivory by this insect. Greenhouse‐grown, 11‐month‐old coffee plants were artificially infested with the coccid and compared with control, uninfested plants. Leaf samples were taken at 15, 30, 45, and 60 days after infestation, and high‐performance liquid chromatography was used to identify and quantify alkaloid and phenolic compounds induced by the coccids at each sampling date. Of the compounds investigated, caffeine was the main coffee alkaloid detected in fully developed leaves, and its concentration in infested plants was twice as high as in the control plants. The main coffee phenolics were caffeic and chlorogenic acid, and a significant increase in their concentrations occurred only in plants infested by C. viridis. A positive and significant relationship was found between alkaloid and phenolic concentrations and the infestation level by adults and nymphs of C. viridis. Caffeine and chlorogenic acid applied on coffee leaves stimulated the locomotory activity of the green scale, thus reducing their feeding compared to untreated leaves. This is the first study to show increased levels of coffee alkaloids and phenolics in response to herbivory by scale insects. The elevation of caffeine and chlorogenic acid levels in coffee leaves because of C. viridis infestation seems to affect this generalist insect by stimulating the locomotion of crawlers.  相似文献   

11.
Throughout the tropics, agroforests are often the only remaining habitat with a considerable tree cover. Agroforestry systems can support high numbers of species and are therefore frequently heralded as the future for tropical biodiversity conservation. However, anthropogenic habitat modification can facilitate species invasions that may suppress native fauna. We compared the ant fauna of lower canopy trees in natural rainforest sites with that of cacao trees in agroforests in Central Sulawesi, Indonesia in order to assess the effects of agroforestry on occurrence of the Yellow Crazy Ant Anoplolepis gracilipes, a common invasive species in the area, and its effects on overall ant richness. The agroforests differed in the type of shade-tree composition, tree density, canopy cover, and distance to the village. On average, 43% of the species in agroforests also occurred in the lower canopy of nearby primary forest and the number of forest ant species that occurred on cacao trees was not related to agroforestry characteristics. However, A. gracilipes was the most common non-forest ant species, and forest ant richness decreased significantly with the presence of this species. Our results indicate that agroforestry may have promoted the occurrence of A. gracilipes, possibly because tree management in agroforests negatively affects ant species that depend on trees for nesting and foraging, whereas A. gracilipes is a generalist when it comes to nesting sites and food preference. Thus, agroforestry management that includes the thinning of tree stands can facilitate ant invasions, thereby threatening the potential of cultivated land for the conservation of tropical ant diversity.  相似文献   

12.
Agroecology and conservation must overlap to protect biodiversity and farmer livelihoods. Coffee agroecosystems with complex shade canopies protect biodiversity. Yet, few have examined biodiversity in coffee agroecosystems in Asia relative to the Americas and many question whether coffee agroecosystems can play a similar role for conservation. We examined vegetation, ant and bird diversity, coffee yields and revenues, and harvest of alternative products in coffee farms and forests in SW Sumatra, Indonesia near Bukit Barisan Selatan National Park (BBS). BBS is among the last habitats for large mammals in Sumatra and >15,000 families illegally cultivate coffee inside of BBS. As a basis for informing management recommendations, we compared the conservation potential and economic outputs from farms inside and outside of BBS. Forests had higher canopy cover, canopy depth, tree height, epiphyte loads, and more emergent trees than coffee farms. Coffee farms inside BBS had more epiphytes and trees and fewer coffee plants than farms outside BBS. Tree, ant, and bird richness was significantly greater in forests than in coffee farms, and richness did not differ in coffee farms inside and outside of BBS. Species similarity of forest and coffee trees, ants, and birds was generally low (<50%). Surprisingly, farms inside the park were significantly older, but farm size, coffee yields, and revenues from coffee did not depend on farm location. Farmers outside BBS received higher prices for their coffee and also more often produced other crops in their coffee fields such that incentives could be created to draw illegal farmers out of the park. We also discuss these results with reference to similar work in Chiapas, Mexico to compare the relative contribution of coffee fields to conservation in the two continents, and discuss implications for working with farmers in Sumatra towards conservation plans incorporating sustainable coffee production.  相似文献   

13.
  1. Observed lower levels of herbivory in mixed compared with monoculture stands have been hypothesized to depend on top-down forces, through higher predation pressure by natural enemies or through bottom-up mechanisms through plant quality effects on herbivore performance.
  2. In this study, we compared the performance measured as host plant induced mortality, cocoon weight, and predation mortality of the European pine sawfly Neodiprion sertifer (Geoffroy) (Hymenoptera, Diprionidae) in mixed and monoculture forest stands.
  3. We did not observe a difference in host plant induced mortality, cocoon weight, or predation mortality between mixed and monoculture forest stands. We did find an effect of local conditions around each experimental tree on pine sawfly performance. For example, the nitrogen content of pine needles is negatively affected by the proportion of pine around the experimental tree, which in turn increases the survival of sawfly larvae.
  4. The results suggest that local conditions around individual trees are more important for the performance of the European pine sawfly than stand type, i.e. mixed or monoculture plant stands.
  5. We conclude that the ongoing trend for diversification within commercial forestry calls for more research where the effects of both bottom-up and top-down effects are studied at several spatial scales.
  相似文献   

14.
1. Ants are ubiquitous ecosystem engineers and generalist predators and are able to affect ecological communities via both pathways. They are likely to influence any other terrestrial arthropod group either directly or indirectly caused by their high abundance and territoriality. 2. We studied the impact of two ant species common in Central Europe, Myrmica rubra and Lasius niger, on an arthropod community. Colony presence and density of these two ant species were manipulated in a field experiment from the start of ant activity in spring to late summer. 3. The experiment revealed a positive influence of the presence of one ant colony on densities of decomposers, herbivores and parasitoids. However, in the case of herbivores and parasitoids, this effect was reversed in the presence of two colonies. 4. Generally, effects of the two ant species were similar with the exception of their effect on Braconidae parasitoid densities that responded positively to one colony of M. rubra but not of L. niger. 5. Spider density was not affected by ant colony manipulation, but species richness of spiders responded positively to ant presence. This effect was independent of ant colony density, but where two colonies were present, spider richness was significantly greater in plots with two M. rubra colonies than in plots with one colony of each ant species. 6. To test whether the positive ecosystem engineering effects were purely caused by modified properties of the soil, we added in an additional experiment (i) the soil from ant nests (without ants) or (ii) unmodified soil or (iii) ant nests (including ants) to experimental plots. Ant nest soil on its own did not have a significant impact on densities of decomposers, herbivores or predators, which were significantly, and positively, affected by the addition of an intact nest. 7. The results suggest an important role of both ant species in the grassland food web, strongly affecting the densities of decomposers, herbivores and higher trophic levels. We discuss how the relative impact via bottom-up and top-down effects of ants depends on nest density, with a relatively greater top-down predatory impact at higher densities.  相似文献   

15.
Plant performance is influenced by both top-down (e.g., herbivores) and bottom-up (e.g., soil nutrients) controls. Research investigating the collective effects of such factors may provide important insight into the success and management of invasive plants. Through a combination of observational and experimental field studies, we examined top-down and bottom-up effects on the growth and reproduction of an invasive plant, Linaria dalmatica. First, we assessed attack levels and impacts of an introduced biocontrol agent, the stem-mining weevil Mecinus janthinus, on L. dalmatica plants across multiple years and sites. Then, we conducted a manipulative experiment to examine the effects of weevil attack, soil nitrogen availability, and interspecific competition on L. dalmatica. We found substantial variations in weevil attack within populations as well as across sites and years. Observational and experimental data showed that increased weevil attack was associated with a reduction in plant biomass and seed production, but only at the highest levels of attack. Nitrogen addition had a strong positive effect on plant performance, with a two-fold increase in biomass and seed production. Clipping neighboring vegetation resulted in no significant effects on L. dalmatica performance, suggesting that plants remained resource limited or continued to experienced belowground competitive effects. Overall, our research indicates that M. janthinus can exert top-down effects on L. dalmatica; however, weevil densities and attack rates observed in this study have not reached sufficient levels to yield effective control. Moreover, bottom-up controls, in particular, soil nitrogen availability, may have a large influence on the success and spread of this invasive plant.  相似文献   

16.
Neighbouring heterospecific plants are often observed to reduce the probability of herbivore attack on a given focal plant. While this pattern of associational resistance is frequently reported, experimental evidence for underlying mechanisms is rare particularly for potential plant species diversity effects on focal host plants and their physical environment. Here, we used an established forest diversity experiment to determine whether tree diversity effects on an important insect pest are driven by concomitant changes in host tree growth or the light environment. We examined the effects of tree species richness, canopy cover and tree growth on the probability of occurrence, the abundance, and volume of galls caused by the pineapple gall adelgid Adelges abietis on Norway spruce. Although tree diversity had no effect on gall abundance, we observed that both the probability of gall presence and gall volume (an indicator of maternal fecundity) decreased with tree species richness and canopy cover around host spruce trees. Structural equation models revealed that effects of tree species richness on gall presence and volume were mediated by concurrent increases in canopy cover rather than changes in tree growth or host tree density. As canopy cover did not influence tree or shoot growth, patterns of associational resistance appear to be driven by improved host tree quality or more favourable microclimatic conditions in monocultures compared to mixed‐stands. Our study therefore demonstrates that changes in forest structure may be critical to understanding the responses of herbivores to plant diversity and may underpin associational effects in forest ecosystems.  相似文献   

17.
Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that – despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees – suggesting the action of associational resistance processes – and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores.  相似文献   

18.
Urbanization is an important driver of the diversity and abundance of tree‐associated insect herbivores, but its consequences for insect herbivory are poorly understood. A likely source of variability among studies is the insufficient consideration of intra‐urban variability in forest cover. With the help of citizen scientists, we investigated the independent and interactive effects of local canopy cover and percentage of impervious surface on insect herbivory in the pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe. We found that the damage caused by chewing insect herbivores as well as the incidence of leaf‐mining and gall‐inducing herbivores consistently decreased with increasing impervious surface around focal oaks. Herbivory by chewing herbivores increased with increasing forest cover, regardless of impervious surface. In contrast, an increase in local canopy cover buffered the negative effect of impervious surface on leaf miners and strengthened its effect on gall inducers. These results show that—just like in non‐urban areas—plant–herbivore interactions in cities are structured by a complex set of interacting factors. This highlights that local habitat characteristics within cities have the potential to attenuate or modify the effect of impervious surfaces on biotic interactions.  相似文献   

19.
Forest management not only affects biodiversity but also might alter ecosystem processes mediated by the organisms, i.e. herbivory the removal of plant biomass by plant-eating insects and other arthropod groups. Aiming at revealing general relationships between forest management and herbivory we investigated aboveground arthropod herbivory in 105 plots dominated by European beech in three different regions in Germany in the sun-exposed canopy of mature beech trees and on beech saplings in the understorey. We separately assessed damage by different guilds of herbivores, i.e. chewing, sucking and scraping herbivores, gall-forming insects and mites, and leaf-mining insects. We asked whether herbivory differs among different forest management regimes (unmanaged, uneven-aged managed, even-aged managed) and among age-classes within even-aged forests. We further tested for consistency of relationships between regions, strata and herbivore guilds. On average, almost 80% of beech leaves showed herbivory damage, and about 6% of leaf area was consumed. Chewing damage was most common, whereas leaf sucking and scraping damage were very rare. Damage was generally greater in the canopy than in the understorey, in particular for chewing and scraping damage, and the occurrence of mines. There was little difference in herbivory among differently managed forests and the effects of management on damage differed among regions, strata and damage types. Covariates such as wood volume, tree density and plant diversity weakly influenced herbivory, and effects differed between herbivory types. We conclude that despite of the relatively low number of species attacking beech; arthropod herbivory on beech is generally high. We further conclude that responses of herbivory to forest management are multifaceted and environmental factors such as forest structure variables affecting in particular microclimatic conditions are more likely to explain the variability in herbivory among beech forest plots.  相似文献   

20.
The effects of light intensity and nutrient availability on the biomass allocation of Calamagrostis canadensis were studied under both greenhouse and field conditions In the greenhouse, seedlings from forest and wetland populations were grown in sand-peat mixtures, under three light intensities and three fertilizer levels Total above and below ground growth increased with light intensity and nutrient availability, nutrient availability, however, only altered plant growth when light intensity was above moderate levels Numbers of rhizomes were greatest under low and moderate nutrient regimes but high light was also needed for maximum numbers of rhizomes In the field, tillers and rhizomes were examined under open, 40% and 85% canopy cover Tiller and rhizome weight and diameter of rhizomes decreased with canopy closure However, proportional allocation of biomass to rhizomes was greatest and percentage total non-structural carbohydrates of rhizomes was lowest under a 40% canopy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号