首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The mucins found as components of mucus gel layers at mucosal surfaces throughout the body play roles in protection as part of the defensive barrier on an organ and tissue specific basis.

Scope of the review

The human MUC gene family codes up to 20 known proteins, which can be divided into secreted and membrane-associated forms each with a typical protein domain structure. The secreted mucins are adapted to cross link in order to allow formation of the extended mucin networks found in the secreted mucus gels. The membrane-associated mucins possess membrane specific domains which enable their various biological functions as part of the glycocalyx. All mucins are highly O-glycosylated and this is tissue specific and linked with specific biological functions at these locations. Mucin biology is dynamic and the processes of degradation and turnover are well integrated with biosynthesis to maintain a continuous mucosal protection against all external aggressive forces. Interaction of mucins with microflora plays an important role in normal function. Mucins are modified in a variety of diseases and this may be due to abberant mucin peptide or glycosylation.

Major conclusions

Mucins represent a family of glycoprotein having fundamental roles in mucosal protection and communication with external environment.

General significance

The review emphasises the nature of mucins as glycoproteins and their role in presenting an array of glycan structures at the mucosal cell surface.  相似文献   

2.
Mucin glycoproteins consist of tandem-repeating glycosylated regions flanked by non-repetitive protein domains with little glycosylation. These non-repetitive domains are involved in polymerization of mucin and play an important role in the pH-dependent gelation of gastric mucin, which is essential for protecting the stomach from autodigestion. We examine folding of the non-repetitive sequence of PGM-2X (242 amino acids) and the von Willebrand factor vWF-C1 domain (67 amino acids) at neutral and low pH using discrete molecular dynamics (DMD) in an implicit solvent combined with a four-bead peptide model. Using the same implicit solvent parameters, folding of both domains is simulated at neutral and low pH. In contrast to vWF-C1, PGM-2X folding is strongly affected by pH as indicated by changes in the contact order, radius of gyration, free-energy landscape, and the secondary structure. Whereas the free-energy landscape of vWF-C1 shows a single minimum at both neutral and low pH, the free-energy landscape of PGM-2X is characterized by multiple minima that are more numerous and shallower at low pH. Detailed structural analysis shows that PGM-2X partially unfolds at low pH. This partial unfolding is facilitated by the C-terminal region GLU236-PRO242, which loses contact with the rest of the domain due to effective “mean-field” repulsion among highly positively charged N- and C-terminal regions. Consequently, at low pH, hydrophobic amino acids are more exposed to the solvent. In vWF-C1, low pH induces some structural changes, including an increased exposure of CYS at position 67, but these changes are small compared to those found in PGM-2X. For PGM-2X, the DMD-derived average β-strand propensity increases from 0.26 ± 0.01 at neutral pH to 0.38 ± 0.01 at low pH. For vWF-C1, the DMD-derived average β-strand propensity is 0.32 ± 0.02 at neutral pH and 0.35 ± 0.02 at low pH. The DMD-derived structural information provides insight into pH-induced changes in the folding of two distinct mucin domains and suggests plausible mechanisms of the aggregation/gelation of mucin.  相似文献   

3.
Herein we detail the first glycoproteomic analysis of a human pathogen. We describe an approach that enables the identification of organelle and cell surface N-linked glycoproteins from Trypanosoma cruzi, the causative agent of Chagas' disease. This approach is based on a subcellular fractionation protocol to produce fractions enriched in either organelle or plasma membrane/cytoplasmic proteins. Through lectin affinity capture of the glycopeptides from each subcellular fraction and stable isotope labeling of the glycan attachment sites with H(2)18O, we unambiguously identified 36 glycosylation sites on 35 glycopeptides which mapped to 29 glycoproteins. We also present the first expression evidence for 11 T. cruzi specific glycoproteins and provide experimental data indicating that the mucin associated surface protein family (MASP) and dispersed gene family (DGF-1) are post-translationally modified by N-linked glycans.  相似文献   

4.
Atomic force microscopy (AFM) has been applied to the study of heterogeneity in the structure and function of individual biopolymers with complex structures such as glycoproteins, polysaccharides and nucleic acids. In this work we describe experiments which shed light on the heterogeneity of human ocular mucin gene products. By separating samples of native human ocular mucins on a caesium chloride density gradient, at least three populations consisting predominantly of products of the gene MUC5AC can be identified. Separation on the caesium chloride density gradient is governed by molecular architecture and charge density, and thus provides a route to the discrimination between different glycoforms within a glycoprotein sample. AFM images of these populations show that each is characterised by different conformational properties and polymer diameters, both of which can be attributed to differences in the degree and nature of glycosylation. These differences in glycosylation are likely to be the result of post-translational processing and may also have functional consequences. The AFM's ability to examine the composition of a predominantly single gene product population at the level of the single molecule allows the consequences of post-translational process heterogeneity to be examined at high resolution.  相似文献   

5.
In this report we describe an on-column method for glycopeptide enrichment with cellulose as a solid-phase extraction material. The method was developed using tryptic digests of several standard glycoproteins and validated with more complex standard protein digest mixtures. Glycopeptides of different masses containing neutral and acidic glycoforms of both N- and O-linked sugars were obtained in good yield by this method. Upon isolation, glycopeptides may be subjected to further glycoproteomic and glycomic workflows for the purpose of identifying glycoproteins present in the sample and characterizing their glycosylation sites, as well as their global and site-specific glycosylation profiles at the glycopeptide level. Detailed structural analysis of glycoforms may then be performed at the glycan level upon chemical or enzymatic release of the oligosaccharides. Aiming at complementing other purification methods, this technique is extremely simple, cost-effective, and efficient. Glycopeptide enrichment was verified and validated by nano liquid chromatography-tandem mass spectrometry (LC-MS/MS) combining electron-transfer dissociation (ETD) and collision-activated dissociation (CAD) fragmentation techniques.  相似文献   

6.
Mucin-type glycoproteins.   总被引:22,自引:0,他引:22  
Considerable advances have been made in recent years in our understanding of the biochemistry of mucin-type glycoproteins. This class of compounds is characterized mainly by a high level of O-linked oligosaccharides. Initially, the glycoproteins were solely known as the major constituents of mucus. Recent studies have shown that mucins from the gastrointestinal tract, lungs, salivary glands, sweat glands, breast, and tumor cells are structurally related to high-molecular-weight glycoproteins, which are produced by epithelial cells as membrane proteins. During mucin synthesis, an orchestrated sequence of events results in giant molecules of Mr 4 to 6 x 10(6), which are stored in mucous granules until secretion. Once secreted, mucin forms a barrier, not only to protect the delicate epithelial cells against the extracellular environment, but also to select substances for binding and uptake by these epithelia. This review is designed to critically examine relations between structure and function of the different compounds categorized as mucin glycoproteins.  相似文献   

7.
Mucin glycoproteins in neoplasia   总被引:30,自引:0,他引:30  
Mucins are high molecular weight glycoproteins that are heavily glycosylated with many oligosaccharide side chains linked O-glycosidically to the protein backbone. With the recent application of molecular biological methods, the structures of apomucins and regulation of mucin genes are beginning to be understood. At least nine human mucin genes have been identified to date. Although a complete protein sequence is known for only three human mucins (MUC1, MUC2, and MUC7), common motifs have been identified in many mucins. The pattern of tissue and cell-specific expression of these mucin genes are emerging, suggesting a distinct role for each member of this diverse mucin gene family. In epithelial cancers, many of the phenotypic markers for pre-malignant and malignant cells have been found on the carbohydrate and peptide moieties of mucin glycoproteins. The expression of carbohydrate antigens appears to be due to modification of peripheral carbohydrate structures and the exposure of inner core region carbohydrates. The expression of some of the sialylated carbohydrate antigens appears to correlate with poor prognosis and increased metastatic potential in some cancers. The exposure of peptide backbone structures of mucin glycoproteins in malignancies appears to be due to abnormal glycosylation during biosynthesis. Dysregulation of tissue and cell-specific expression of mucin genes also occurs in epithelial cancers. At present, the role of mucin glycoproteins in various stages of epithelial cell carcinogenesis (including the preneoplastic state and metastasis), in cancer diagnosis and immunotherapy is under investigation.  相似文献   

8.
The O-glycosylated domains of mucins and mucin-type glycoproteins contain 50-80% of carbohydrate and possess expanded conformations. Herein, we describe a flow cytometry (FCM) method for determining the carbohydrate-binding specificities of lectins to mucin. Biotinylated mucin was immobilized on streptavidin-coated beads, and the binding specificities of the major mucin sugar chains, as determined by GC-MS and MALDI-ToF, were monitored using fluorescein-labeled lectins. The specificities of lectins toward specific biotinylated glycans were determined as controls. The advantage of flexibility, multiparametric data acquisition, speed, sensitivity, and high-throughput capability makes flow cytometry a valuable tool to study diverse interactions between glycans and proteins.  相似文献   

9.
Mi W  Jia W  Zheng Z  Wang J  Cai Y  Ying W  Qian X 《Glycoconjugate journal》2012,29(5-6):411-424
Cell surface glycoproteins are one of the most frequently observed phenomena correlated with malignant growth. Hepatocellular carcinoma (HCC) is one of the most malignant tumors in the world. The majority of hepatocellular carcinoma cell surface proteins are modified by glycosylation in the process of tumor invasion and metastasis. Therefore, characterization of cell surface glycoproteins can provide important information for diagnosis and treatment of liver cancer, and also represent a promising source of potential diagnostic biomarkers and therapeutic targets for hepatocellular carcinoma. However, cell surface glycoproteins of HCC have been seldom identified by proteomics approaches because of their hydrophobic nature, poor solubility, and low abundance. The recently developed cell surface-capturing (CSC) technique was an approach specifically targeted at membrane glycoproteins involving the affinity capture of membrane glycoproteins using glycan biotinylation labeling on intact cell surfaces. To characterize the cell surface glycoproteome and probe the mechanism of tumor invasion and metastasis of HCC, we have modified and evaluated the cell surface-capturing strategy, and applied it for surface glycoproteomic analysis of hepatocellular carcinoma cells. In total, 119 glycosylation sites on 116 unique glycopeptides were identified, corresponding to 79 different protein species. Of these, 65 (54.6?%) new predicted glycosylation sites were identified that had not previously been determined experimentally. Among the identified glycoproteins, 82?% were classified as membrane proteins by a database search, 68?% had transmembrane domains (TMDs), and 24?% were predicted to contain 2-13 TMDs. Moreover, a total of 26 CD antigens with 50 glycopeptides were detected in the membrane glycoproteins of hepatocellular carcinoma cells, comprising 43?% of the total glycopeptides identified. Many of these identified glycoproteins are associated with cancer such as CD44, CD147 and EGFR. This is a systematic characterization of cell surface glycoproteins of HCC. The membrane glycoproteins identified in this study provide very useful information for probing the mechanism of liver cancer invasion and metastasis.  相似文献   

10.
Schäffer C  Messner P 《Biochimie》2001,83(7):591-599
Over the last two decades, a significant change of perception has taken place regarding prokaryotic glycoproteins. For many years, protein glycosylation was assumed to be limited to eukaryotes; but now, a wealth of information on structure, function, biosynthesis and molecular biology of prokaryotic glycoproteins has accumulated, with surface layer (S-layer) glycoproteins being one of the best studied examples. With the designation of Archaea as a second prokaryotic domain of life, the occurrence of glycosylated S-layer proteins had been considered a taxonomic criterion for differentiation between Bacteria and Archaea. Extensive structural investigations, however, have demonstrated that S-layer glycoproteins are present in both domains. Among Gram-positive bacteria, S-layer glycoproteins have been identified only in bacilli. In Gram-negative organisms, their presence is still not fully investigated; presently, there is no indication for their existence in this class of bacteria. Extensive biochemical studies of the S-layer glycoprotein from Halobacterium halobium have, at least in part, unravelled the glycosylation pathway in Archaea; molecular biological analyses of these pathways have not been performed, so far. Significant observations concern the occurrence of unusual linkage regions both in archaeal and bacterial S-layer glycoproteins. Regarding S-layer glycoproteins of bacteria, first genetic data have shed some light into the molecular organization of the glycosylation machinery in this domain. In addition to basic S-layer glycoprotein research, the biotechnological application potential of these molecules has been explored. With the development of straightforward molecular biological methods, fascinating possibilities for the expression of prokaryotic glycoproteins will become available. S-layer glycoprotein research has opened up opportunities for the production of recombinant glycosylation enzymes and tailor-made S-layer glycoproteins in large quantities, which are commercially not yet available. These bacterial systems may provide economic technologies for the production of biotechnologically and medically important glycan structures in the future.  相似文献   

11.
Signaling mucins are large transmembrane glycoproteins that regulate signal transduction pathways. Recent advances have shown that two major types of post-translational modifications, protein glycosylation and proteolytic processing, play important and unexpected roles in regulating signaling mucin function. New O-glycosyltransferases and proteases have been identified, and the structure of the domain that undergoes auto-proteolysis has been solved. A picture is beginning to emerge where specific glycosyl modifications and regulated processing control the signaling and adherence properties of signaling glycoproteins and contribute to the routing of signals to specific pathways.  相似文献   

12.
Abstract

Considerable advances have been made in recent years in our understanding of the biochemistry of mucin-type glycoproteins. This class of compounds is characterized mainly by a high level of O-linked oligosaccharides. Initially, the glycoproteins were solely known as the major constituents of mucus. Recent studies have shown that mucins from the gastrointestinal tract, lungs, salivary glands, sweat glands, breast, and tumor cells are structurally related to high-molecular-weight glycoproteins, which are produced by epithelial cells as membrane proteins. During mucin synthesis, an orchestrated sequence of events results in giant molecules of Mr 4 to 6·106, which are stored in mucous granules until secretion. Once secreted, mucin forms a barrier, not only to protect the delicate epithelial cells against the extracellular environment, but also to select substances for binding and uptake by these epithelia. This review is designed to critically examine relations between structure and function of the different compounds categorized as mucin glycoproteins.  相似文献   

13.
Abnormal glycosylation of proteins is known to be either resultant or causative of a variety of diseases. This makes glycoproteins appealing targets as potential biomarkers and focal points of molecular studies on the development and progression of human ailment. To date, a majority of efforts in disease glycoproteomics have tended to center on either determining the concentration of a given glycoprotein, or on profiling the total population of glycans released from a mixture of glycoproteins. While these approaches have demonstrated some diagnostic potential, they are inherently insensitive to the fine molecular detail which distinguishes unique and possibly disease relevant glycoforms of specific proteins. As a consequence, such analyses can be of limited sensitivity, specificity, and accuracy because they do not comprehensively consider the glycosylation status of any particular glycoprotein, or of any particular glycosylation site. Therefore, significant opportunities exist to improve glycoproteomic inquiry into disease by engaging in these studies at the level of individual glycoproteins and their exact loci of glycosylation. In this concise review, the rationale for glycoprotein and glycosylation site specificity is developed in the context of human disease glycoproteomics with an emphasis on N-glycosylation. Recent examples highlighting disease-related perturbations in glycosylation will be presented, including those involving alterations in the overall glycosylation of a specific protein, alterations in the occupancy of a given glycosylation site, and alterations in the compositional heterogeneity of glycans occurring at a given glycosylation site. Each will be discussed with particular emphasis on how protein-specific and site-specific approaches can contribute to improved discrimination between glycoproteomes and glycoproteins associated with healthy and unhealthy states.  相似文献   

14.
Asparagine‐linked glycosylation is a common post‐translational modification of proteins catalyzed by oligosaccharyltransferase that is important in regulating many aspects of protein function. Analysis of protein glycosylation, including glycoproteomic measurement of the site‐specific extent of glycosylation, remains challenging. Here, we developed methods combining enzymatic deglycosylation and protease digestion with SWATH‐MS to enable automated measurement of site‐specific occupancy at many glycosylation sites. Deglycosylation with peptide‐endoglycosidase H, leaving a remnant N‐acetylglucosamine on asparagines previously carrying high‐mannose glycans, followed by trypsin digestion allowed robust automated measurement of occupancy at many sites. Combining deglycosylation with the more general peptide‐N‐glycosidase F enzyme with AspN protease digest allowed robust automated differentiation of nonglycosylated and deglycosylated forms of a given glycosylation site. Ratiometric analysis of deglycosylated peptides and the total intensities of all peptides from the corresponding proteins allowed relative quantification of site‐specific glycosylation occupancy between yeast strains with various isoforms of oligosaccharyltransferase. This approach also allowed robust measurement of glycosylation sites in human salivary glycoproteins. This method for automated relative quantification of site‐specific glycosylation occupancy will be a useful tool for research with model systems and clinical samples.  相似文献   

15.
Protein glycosylation serves critical roles in the cellular and biological processes of many organisms. Aberrant glycosylation has been associated with many illnesses such as hereditary and chronic diseases like cancer, cardiovascular diseases, neurological disorders, and immunological disorders. Emerging mass spectrometry (MS) technologies that enable the high-throughput identification of glycoproteins and glycans have accelerated the analysis and made possible the creation of dynamic and expanding databases. Although glycosylation-related databases have been established by many laboratories and institutions, they are not yet widely known in the community. Our study reviews 15 different publicly available databases and identifies their key elements so that users can identify the most applicable platform for their analytical needs. These databases include biological information on the experimentally identified glycans and glycopeptides from various cells and organisms such as human, rat, mouse, fly and zebrafish. The features of these databases - 7 for glycoproteomic data, 6 for glycomic data, and 2 for glycan binding proteins are summarized including the enrichment techniques that are used for glycoproteome and glycan identification. Furthermore databases such as Unipep, GlycoFly, GlycoFish recently established by our group are introduced. The unique features of each database, such as the analytical methods used and bioinformatical tools available are summarized. This information will be a valuable resource for the glycobiology community as it presents the analytical methods and glycosylation related databases together in one compendium. It will also represent a step towards the desired long term goal of integrating the different databases of glycosylation in order to characterize and categorize glycoproteins and glycans better for biomedical research.  相似文献   

16.
Specific inhibitors of the glycosylation of O-glycosidically linked glycoproteins have not previously been described. When tested for their effects on mucin glycosylation in a mucin-producing colon cancer cell line, LS174T, benzyl-, phenyl-, and p-nitrophenyl-N-acetyl-alpha-galactosaminide inhibited the formation of fully glycosylated mucin in a dose-dependent manner. Free aryl-oligosaccharides were found in the medium of treated cells labeled with [3H]glucosamine, [3H]galactose, [3H]fucose, [3H]mannosamine, or phenyl-alpha-[6-3H] N-acetylgalactosamine. UDP-Gal:GalNAc-beta 1,3-galactosyltransferase was inhibited by aryl-N-acetyl-alpha-galactosaminides but not by a number of other aryl-glycosides. Treatment with these inhibitors also causes reversible morphologic changes including formation of intercellular cysts. Aryl-N-acetyl-alpha-galactosaminides can be useful for the structural and functional studies of mucin macromolecules and other O-linked glycoproteins.  相似文献   

17.
Mucus secretions form a protective barrier in the mucosa of the auditory, gastrointestinal, respiratory, and urogenital systems, and the conjunctiva in the eyes. A family of glycoproteins known as gel forming mucins is the major component of the mucus. Gel-forming mucins are among the largest and most complex proteins known. Their polypeptide chains comprise thousands of amino acid residues organized into different domains with diverse post-translational modifications, including O- and N-glycosylation, sulfation, proteolysis, and likely C-mannosylation. Moreover, these glycoproteins form disulfide-linked oligomers/multimers with molecular weights in the millions. Molecular polydispersity in terms of length, carbohydrate content and composition, is an invariable feature of purified mucins. This structural complexity makes it technically very difficult to study mucin biochemical and physical properties. It is not surprising, therefore, that our knowledge on mucin structure, biosynthesis and function still is incomplete. During the last decade, the use of recombinant mucins has allowed researchers to study the biochemical properties of protein domains, peptide motifs and amino acid residues common to all gel-forming mucins, and to propose specific roles for them. We review here the relative impact that these in vitro studies have had for our current understanding of two of the most important features of these macromolecules: formation of disulfide linked oligomers and mucin intragranular packaging.  相似文献   

18.
Mucins belong to a heterogeneous family of large O-glycoproteins composed of a long peptidic chain called apomucin on which are linked hundreds of oligosaccharidic chains. Among mucins, membrane-bound mucins are modular proteins and have a structural organization usually containing Pro/Thr/Ser-rich O-glycosylated domains (PTS), EGF-like and SEA domains. Via these modular domains, the membrane-bound mucins participate in cell signalling and cell interaction with their environment in normal and pathological conditions. Moreover, the recent knowledge of these domains and their biological activities led to the development of new therapeutic approaches involving mucins. In this review, we show 3D structures of EGF and SEA domains. We also describe the functional features of the evolutionary conserved domains of membrane-bound mucins and discuss consequences of splice events.  相似文献   

19.
BACKGROUND: Commonly used in vitro infection cultures do not mimic the human gastrointestinal tract with regard to pH and microaerobic conditions. Furthermore, despite the importance of mucin-Helicobacter interactions, the cell lines used have not been selected for appropriate mucin expression. To make in vitro studies more applicable to human disease, we have developed coculture methods taking these factors into account. MATERIALS AND METHODS: Nine human gastrointestinal epithelial cell lines (MKN1, MKN7, MKN28, MKN45, KATO3, HFE145, PCAA/C11 Caco-2, and LS513) were investigated. Expression and glycosylation of mucins (MUC1, 2, 3, 4, 5AC, 5B, 6, 12, 13, and 16) were determined by immunohistochemistry. We analyzed the effect of microaerobic conditions and acidic pH on cell proliferation, viability, and apoptosis. RESULTS: Microaerobic culture, which is more physiological for the bacteria, did not adversely affect mammalian cell viability, proliferation, or induce apoptosis The cell lines varied in mucin expression, with MKN7 and MKN45 being most similar to gastric mucosa and Caco-2 and LS513 to intestinal mucosa, although none exactly matched normal mucosa. However, changes in culture conditions did not cause major changes in the mucin expression within cell lines. CONCLUSIONS: Culture conditions mimicking the natural environment and allowing the bacterial cells to thrive had no effect on cell viability or apoptosis, and very little influence on mucin expression of human gastrointestinal cells. Thus, it is feasible, using the simple methods we present here, to substantially improve bacterial-mammalian cell in vitro coculture studies to make them more reflective of human infection.  相似文献   

20.
Cell surface mucin-type glycoproteins and mucin-like domains.   总被引:9,自引:2,他引:7  
Cell surface mucins and mucin-like domains comprise a diverse and heterogeneous group of cell surface glycoproteins. The heterogeneity results from both genetic variations in the polypeptides and carbohydrate differences. Mucins form extended rods from the cell surface. The mucin domains apparently serve a protective function, protecting the glycoproteins from cell surface proteolysis and protecting the cells from attack by other cells. Biosynthesis of mucin oligosaccharides is initiated near the transit of the proteins from the endoplasmic reticulum to the Golgi and proceeds rapidly during passage to the cell surface. In some carcinomas a second O-glycosylation pathway adds new oligosaccharides to the glycoproteins after they have reached the cell surface, presumably during recycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号