首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular pharming is a cost-effective platform for the production of recombinant proteins in plants. Although the biopharmaceutical industry still relies on a small number of standardized fermentation-based technologies for the production of recombinant proteins there is now a greater awareness of the advantages of molecular pharming particularly in niche markets. Here we discuss some of the technical, economic and regulatory barriers that constrain the clinical development and commercialization of plant-derived pharmaceutical proteins. We also discuss strategies to increase productivity and product quality/homogeneity. The advantages of whole plants should be welcomed by the industry because this will help to reduce the cost of goods and therefore expand the biopharmaceutical market into untapped sectors.  相似文献   

2.
An economic and cheap production of large amounts of recombinant allergenic proteins might become a prerequisite for the common use of microarray-based diagnostic allergy assays which allow a component-specific diagnosis. A molecular pharming strategy was applied to express the major allergen of Artemisia vulgaris pollen, Art v 1, in tobacco plants and tobacco cell cultures. The original Art v 1 with its endogenous signal peptide which directs Art v 1 to the secretory pathway, was expressed in transiently transformed tobacco leaves but was lost in stable transformed tobacco plants during the alternation of generations. Using a light-regulated promoter and “hiding” the recombinant Art v 1 in the ER succeeded in expression of Art v 1 over three generations of tobacco plants and in cell cultures generated from stable transformed plants. However, the amounts of the recombinant allergen were sufficient for analysis but not high enough to allow an economic production. Although molecular pharming has been shown to work well for the production of non-plant therapeutic proteins, it might be less efficient for closely related plant proteins.  相似文献   

3.
随着分子生物学和植物基因工程的迅猛发展以及分子医药和现代农业等学科的交叉融合,植物生物反应器已成为分子医药农业的核心内容。利用植物生物反应器生产抗体、疫苗和功能性食品,具有规模化、成本低、安全性高、周期短等优势。2022年2月,加拿大卫生部批准了新型冠状病毒疫苗Covifenz®,这是世界首款植物源人体疫苗,标志着以植物生物反应器为代表的分子医药农业时代的来临。综述植物叶片和种子等代表性的植物生物反应器类型,分析瞬时表达系统和稳定表达系统的构建原理和应用,探讨通过启动子和密码子优化、糖基化过程“人源化”、基因沉默抑制和蛋白酶作用抑制等优化植物生物反应器的策略,总结国内外抗体、疫苗和功能性食品等植物源产品的开发进展,以期为我国植物生物反应器的研究及其在分子医药领域的应用提供参考。  相似文献   

4.
Transgenic rice endosperm as a bioreactor for molecular pharming   总被引:1,自引:0,他引:1  
Plants provide a promising expression platform for producing recombinant proteins with several advantages in terms of high expression level, lower production cost, scalability, and safety and environment-friendly. Molecular pharming has been recognized as an emerging industry with strategic importance that could play an important role in economic development and healthcare in China. Here, this review represents the significant advances using transgenic rice endosperm as bioreactor to produce various therapeutic recombinant proteins in transgenic rice endosperm and large-scale production of OsrHSA, and discusses the challenges to develop molecular pharming as an emerging industry with strategic importance in China.  相似文献   

5.
Since its inception 20 years ago, the animal pharming industry has promoted transgenic animals as a cost-effective method of biopharmaceutical production. However, it took until 2006 for the first therapeutic product to gain regulatory approval. This was an important milestone, but scepticism still abounds. Can pharming regain investor confidence, and will society accept transgenic livestock as a production method? There is some cause for optimism, biopharmaceuticals are a large, expanding market and animal pharming has already made considerable strides. A novel production platform has been established, groundbreaking technologies developed, a necessary regulatory framework put in place. Nevertheless, despite cost advantages, pharming has become a niche production method and its long term success may depend on products unique to transgenic animals.  相似文献   

6.
分子医药农业是利用转基因植物为载体,以农业生产的方式规模化生产各种有治疗用途的重组蛋白质及多肽。近20年来,随着植物生物反应器技术的多元化发展以及日趋成熟,植物分子医药农业产业悄然而生。近几年,一些分子医药农业生产的植物源医药产品已实现规模化生产,并进入市场。文中结合国内外最新的研究进展,重点对几种主要植物生物反应器的研究、产品的规模化生产以及产业化进程进行了阐述,以期为我国分子医药农业领域的研究与应用提供参考。  相似文献   

7.
分子医药农业研究进展   总被引:1,自引:0,他引:1  
分子医药农业是利用转基因植物为载体,以农业生产的方式规模化生产各种有治疗用途的重组蛋白质及多肽。近20年来,随着植物生物反应器技术的多元化发展以及日趋成熟,植物分子医药农业产业悄然而生。近几年,一些分子医药农业生产的植物源医药产品已实现规模化生产,并进入市场。文中结合国内外最新的研究进展,重点对几种主要植物生物反应器的研究、产品的规模化生产以及产业化进程进行了阐述,以期为我国分子医药农业领域的研究与应用提供参考。  相似文献   

8.
By the end of 2017, the Food and Drug Administration had approved a total of 77 therapeutic monoclonal antibodies (mAbs), most of which are still manufactured today. Furthermore, global sales of mAbs topped $90 billion in 2017 and are projected to reach $125 billion by 2020. The mAbs approved for human therapy are mostly produced using Chinese hamster ovary (CHO) cells, which require expensive infrastructure for production and purification. Molecular pharming in plants is an alternative approach with the benefits of lower costs, greater scalability, and intrinsic safety. For some platforms, the production cycle is also much quicker. But do these advantages really stack up in economic terms? Earlier techno-economic evaluations have focused on specific platforms or processes and have used different methods, making direct comparisons challenging and the overall benefits of molecular pharming difficult to gauge. Here, we present a simplified techno-economic model for the manufacturing of mAbs, which can be applied to any production platform by focusing on the most important factors that determine the efficiency and cost of bulk drug manufacturing. This model develops economic concepts to identify variables that can be used to achieve cost savings by simultaneously modeling the dynamic costs of upstream production at different scales and the corresponding downstream processing costs for different manufacturing modes (sequential, serial, and continuous). The use of simplified models will help to achieve meaningful comparisons between diverse manufacturing technologies.  相似文献   

9.
Genetic material in plants is distributed into nucleus, plastids and mitochondria. Plastid has a central role of carrying out photosynthesis in plant cells. Plastid transformation is becoming more popular and an alternative to nuclear gene transformation because of various advantages like high protein levels, the feasibility of expressing multiple proteins from polycistronic mRNAs, and gene containment through the lack of pollen transmission. Recently, much progress in plastid engineering has been made. In addition to model plant tobacco, many transplastomic crop plants have been generated which possess higher resistance to biotic and abiotic stresses and molecular pharming. In this mini review, we will discuss the features of the plastid DNA and advantages of plastid transformation. We will also present some examples of transplastomic plants developed so far through plastid engineering, and the various applications of plastid transformation.  相似文献   

10.
植物生物反应器作为分子医药农业的核心内容,与动物反应器和微生物反应器相比具有操作简便、成本低、规模化、周期短等优势,越来越多地被人们认识和应用。阐述了植物生物反应器转化载体构建和基因优化的方法、常用的植物受体种类,以及植物表达系统类型三个方面的研究进展。随着药用蛋白需求量的大幅度增加,植物生物反应器以其低成本的优势将显示出广阔的应用前景。  相似文献   

11.
12.
Recombinant proteins expressed in plants have been emerged as a novel branch of the biopharmaceutical industry, offering practical and safety advantages over traditional approaches. Cultivable in various platforms (i.e. open field, greenhouses or bioreactors), plants hold great potential to produce different types of therapeutic proteins with reduced risks of contamination with human and animal pathogens. To maximize the yield and quality of plant-made pharmaceuticals, crucial factors should be taken into account, including host plants, expression cassettes, subcellular localization, post-translational modifications, and protein extraction and purification methods. DNA technology and genetic transformation methods have also contributed to great parts with substantial improvements. To play their proper function and stability, proteins require multiple post-translational modifications such as glycosylation. Intensive glycoengineering research has been performed to reduce the immunogenicity of recombinant proteins produced in plants. Important strategies have also been developed to minimize the proteolysis effects and enhance protein accumulation. With growing human population and new epidemic threats, the need for new medications will be paramount so that the traditional pharmaceutical industry will not be alone to answer medication demands for upcoming generations. Here, we review several aspects of plant molecular pharming and outline some important challenges that hamper these ambitious biotechnological developments.  相似文献   

13.
Hypertension is a major and highly prevalent risk factor for various diseases. Among the most frequently prescribed antihypertensive first-line drugs are synthetic angiotensin I-converting enzyme inhibitors (ACEI). However, since  their use in hypertension therapy has been linked to various side effects, interest in the application of food-derived ACEI peptides (ACEIp) as antihypertensive agents is rapidly growing. Although promising, the industrial production of ACEIp through conventional methods such as chemical synthesis or enzymatic hydrolysis of food proteins has been proven troublesome. We here provide an overview of current antihypertensive therapeutics, focusing on ACEI, and illustrate how biotechnology and bioengineering can overcome the limitations of ACEIp large-scale production. Latest advances in ACEIp research and current genetic engineering-based strategies for heterologous production of ACEIp (and precursors) are also presented. Cloning approaches include tandem repeats of single ACEIp, ACEIp fusion to proteins/polypeptides, joining multivariate ACEIp into bioactive polypeptides, and producing ACEIp-containing modified plant storage proteins. Although bacteria have been privileged ACEIp heterologous hosts, particularly when testing for new genetic engineering strategies, plants and microalgae-based platforms are now emerging. Besides being generally safer, cost-effective and scalable, these “pharming” platforms can perform therelevant posttranslational modifications and produce (and eventually deliver) biologically active protein/peptide-based antihypertensive medicines.  相似文献   

14.
Summary Plant protoplasts provide an enabling technology to underpin aspects of development, physiology, and genetics. Reliable procedures are available to isolate and culture protoplasts from monocotyledons and dicotyledons. Several parameters influence the topipotency of protoplasts and their derived cells, particularly the source tissue, culture medium, and environmental factors. Novel approaches to maximize the efficiency of protoplast-to-plant systems include techniques already established for animal and microbial cells, such as electrostimulation and exposure of protoplasts to surfactants and artificial respiratory gas carriers, especially perfluorochemicals and hemoglobin. Somatic hybridization by protoplast fusion is undergoing a resurgence of interest, since it enables nuclear and cytoplasmic genomes to be combined at the interspecific and intergeneric levels without prior knowledge of gene location, or involvement of recombinant DNA technology. DNA uptake into protoplasts has applications in transient and stable transformation, including the generation of transplastomic plants of commercial importance in molecular pharming. Other applications of isolated protoplasts are in studies of membrane function, cell structure, and longer-term toxicological assessments. Despite the century that has elased since protoplasts were first isolated, they still make a significant contribution to many aspects of modern plant biotechnology.  相似文献   

15.
To develop a new strategy to target recombinant proteins to the vacuolar storage system in transgenic plants, the ability of the transmembrane and cytosolic domains of Arabidopsis receptor homology-transmembrane-RING H2-1 (AtRMR1) was evaluated. A secreted version of RFP (secRFP) and a fusion of it to the transmembrane and cytosolic domains of AtRMR1 (RFP-TMCT) were produced and studied both in transient and stable expression assays. Transient expression in leaves of Nicotiana tabacum showed that secRFP is secreted to the apoplast while its fusion to TMCT of AtRMR1 is sufficient to prevent secretion of the reporter. In tobacco leaves, RFP-TMCT reporter showed an endoplasmic reticulum pattern in early expression stages while in late expression stages, it was found in the vacuolar lumen. For the first time, the role of TM and CT domains of AtRMR1 in stable expression in Arabidopsis thaliana is presented; the fusion of TMCT to secRFP is sufficient to sort RFP to the lumen of the central vacuoles in leaves and roots and to the lumen of PSV in cotyledons of mature embryos. In addition, biochemical studies performed in extract from transgenic plants showed that RFP-TMCT is an integral membrane protein. Full-length RFP-TMCT was also found in the vacuolar lumen, suggesting internalization into destination vacuole. Not colocalization of RFP-TMCT with tonoplast and plasma membrane markers were observed. This membrane vacuolar determinant sorting signal could be used for future application in molecular pharming as an alternative means to sort proteins of interest to vacuoles.  相似文献   

16.
There are many different agricultural expression systems that can be used for the large-scale production of recombinant proteins, but field-grown cereal crops are among the most attractive because recombinant proteins can be targeted to accumulate in the seed, and specifically in the endosperm, which has evolved naturally as a protein storage tissue. Within the developing endosperm, proteins are supplied with molecular chaperones and disulfide isomerases to facilitate folding and assembly, while the mature tissue is desiccated to prevent proteolytic degradation. Proteins expressed in cereal seeds can therefore remain stable for years in ambient conditions. Recent basic research has revealed a surprising diversity of protein targeting mechanisms in the endosperm, which can help to control post-translational modification and accumulation. Applied research and commercial development has seen several pharmaceutical proteins produced in cereals reach late stage preclinical development and the first clinical trials, with a number of companies now dedicated to developing cereal-based production platforms. In this review we discuss the basic science of molecular pharming in cereals, some of the lead product candidates, and challenges that remain to be addressed including the emerging regulatory framework for plant-made pharmaceuticals.  相似文献   

17.
This report describes the stable expression of a medically important antibody in the staple cereal crops rice and wheat. We successfully expressed a single-chain Fv antibody (ScFvT84.66) against carcinoembryonic antigen (CEA), a well characterized tumor-associated marker antigen. scFv constructs were engineered for recombinant antibody targeting to the plant cell apoplast and ER. Up to 30 g/g of functional recombinant antibody was detected in the leaves and seeds of wheat and rice. We confirmed that transgenic dry seeds could be stored for at least five months at room temperature, without significant loss of the amount or activity of scFvT84.66. Our results represent the first transition from model plant expression systems, such as tobacco and Arabidopsis, to widely cultivated cereal crops, such as rice and wheat, for expression of an antibody molecule that has already shown efficacy in clinical applications. Thus, we have established that molecular pharming in cereals can be a viable production system for such high-value pharmaceutical macromolecules. Our findings provide a strong foundation for exploiting alternative uses of cereal crops both in industrialized and developing countries.  相似文献   

18.
Transglutaminases have a range of catalytic activities, most of which concern the post-translational modification of proteins. The most important of these activities is the cross-linking of proteins into large supramolecular networks. The widespread use of transglutaminases has increased the demand for an inexpensive, efficient and safe source of recombinant enzyme. We explored the use of plant-based systems for the production of this important industrial enzyme. Transgenic rice plants engineered with a rat prostate transglutaminase (rTGp), driven by the strong constitutive maize-1 ubiquitin promoter and its first intron, were shown to express the recombinant enzyme at the mRNA and protein levels. The Ca2+ dependence of the recombinant enzyme was confirmed by the biotin-labelled cadaverine-incorporation assay. In this communication we report the molecular and biochemical characterisation of transgenic plants expressing rTGp and this sets the stage for establishing a bioreactor system for the production of transglutaminases in plants.  相似文献   

19.
The molecular breeding of plants that have been genetically engineered for improved disease resistance and stress tolerance has been undertaken with the goal of improving food production. More recently, it has been realized that transgenic plants can serve as bioreactors for the production of proteins or compounds with industrial or clinical uses. Several different recombinant enzymes and antibodies have been produced in this manner. To maximize the potential of industrial plants as a production system for proteins, efficient expression systems utilizing promoters that optimize transgene expression, 5′-untranslated region elements for efficient translation, and appropriate post-translational modifications and localization must be developed. This review summarizes successful examples of the production of recombinant enzymes, antibodies, and vaccines using signal peptides that direct vesicular localization in transgenic plants. We further discuss the modulation of recombinant protein localization to the endoplasmic reticulum, vacuolar system, or extracellular compartments by varying the signal peptide.  相似文献   

20.
Agrobacterium tumefaciens-mediated transformation for edible mushrooms has been previously established. However, the enhancement of heterologous protein production and the expression of multi-target genes remains a challenge. In this study, heterologous protein expression in the enoki mushroom Flammulina velutipes was notably enhanced using 2A peptide-mediated cleavage to co-express multiple copies of single gene. The polycistronic expression vectors were constructed by connecting multi copies of the enhanced green fluorescent protein (egfp) gene using 2A peptides derived from porcine teschovirus-1. The P2A peptides properly self-cleaved as shown by the formation of the transformants with antibiotic resistant capacity and exciting green fluorescence levels after introducing the vectors into F. velutipes mycelia. The results of western blot analysis, epifluorescent microscopy and EGFP production showed that heterologous protein expression in F. velutipes using the polycistronic strategy increased proportionally as the gene copy number increased from one to three copies. In contrast, much lower EGFP levels were detected in the F. velutipes transformants harboring four copies of the egfp gene due to mRNA instability. The polycistronic strategy using 2A peptide-mediated cleavage developed in this study can not only be used to express single gene in multiple copies, but also to express multiple genes in a single reading frame. It is a promising strategy for the application of mushroom molecular pharming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号