首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid microdomains can selectively include or exclude proteins and may be important in a variety of functions such as protein sorting, cell signaling, and synaptic transmission. The present study demonstrates that two different voltage-gated calcium channels, which both interact with soluble N-ethyl-maleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins but have distinct subcellular distributions and roles in synaptic transmission, are differently distributed in lipid microdomains; presynaptic P/Q (Cav2.1) but not Lc (Cav1.2) calcium channel subtypes are mainly accumulated in detergent-insoluble complexes. The immunoisolation of multiprotein complexes from detergent-insoluble or detergent-soluble fractions shows that the alpha1A subunits of Cav2.1 colocalize and interact with SNARE complexes in lipid microdomains. The altered organization of these microdomains caused by saponin and methyl-beta-cyclodextrin treatment largely impairs the buoyancy and distribution of Cav2.1 channels and SNAREs in flotation gradients. On the other hand, cholesterol reloading partially reverses the drug effects. Methyl-beta-cyclodextrin treatment alters the colocalization of Cav2.1 with the proteins of the exocytic machinery and also impairs calcium influx in nerve terminals. These results show that lipid microdomains in presynaptic terminals are important in organizing membrane sites specialized for synaptic vesicle exocytosis. The cholesterol-enriched microdomains contribute to optimizing the compartmentalization of exocytic machinery and the calcium influx that triggers synaptic vesicle exocytosis.  相似文献   

2.
Tag team action at the synapse   总被引:1,自引:0,他引:1  
Carr CM  Munson M 《EMBO reports》2007,8(9):834-838
Communication between neurons relies on chemical synapses and the release of neurotransmitters into the synaptic cleft. Neurotransmitter release is an exquisitely regulated membrane fusion event that requires the linking of an electrical nerve stimulus to Ca(2+) influx, which leads to the fusion of neurotransmitter-filled vesicles with the cell membrane. The timing of neurotransmitter release is controlled through the regulation of the soluble N-ethylmaleimide sensitive factor attachment receptor (SNARE) proteins-the core of the membrane fusion machinery. Assembly of the fusion-competent SNARE complex is regulated by several neuronal proteins, including complexin and the Ca(2+)-sensor synaptotagmin. Both complexin and synaptotagmin bind directly to SNAREs, but their mechanism of action has so far remained unclear. Recent studies revealed that synaptotagmin-Ca(2+) and complexin collaborate to regulate membrane fusion. These compelling new results provide a molecular mechanistic insight into the functions of both proteins: complexin 'clamps' the SNARE complex in a pre-fusion intermediate, which is then released by the action of Ca(2+)-bound synaptotagmin to trigger rapid fusion.  相似文献   

3.
Lipid rafts and the regulation of exocytosis   总被引:13,自引:0,他引:13  
Exocytosis is the process whereby intracellular fluid-filled vesicles fuse with the plasma membrane, incorporating vesicle proteins and lipids into the plasma membrane and releasing vesicle contents into the extracellular milieu. Exocytosis can occur constitutively or can be tightly regulated, for example, neurotransmitter release from nerve endings. The last two decades have witnessed the identification of a vast array of proteins and protein complexes essential for exocytosis. SNARE proteins fill the spotlight as probable mediators of membrane fusion, whereas proteins such as munc18/nsec1, NSF and SNAPs function as essential SNARE regulators. A central question that remains unanswered is how exocytic proteins and protein complexes are spatially regulated. Recent studies suggest that lipid rafts, cholesterol and sphingolipid-rich microdomains, enriched in the plasma membrane, play an essential role in regulated exocytosis pathways. The association of SNAREs with lipid rafts acts to concentrate these proteins at defined sites of the plasma membrane. Furthermore, cholesterol depletion inhibits regulated exocytosis, suggesting that lipid raft domains play a key role in the regulation of exocytosis. This review examines the role of lipid rafts in regulated exocytosis, from a passive role as spatial coordinator of exocytic proteins to a direct role in the membrane fusion reaction.  相似文献   

4.
Research for three decades and major recent advances have provided crucial insights into how neurotransmitters are released by Ca2+‐triggered synaptic vesicle exocytosis, leading to reconstitution of basic steps that underlie Ca2+‐dependent membrane fusion and yielding a model that assigns defined functions for central components of the release machinery. The soluble N‐ethyl maleimide sensitive factor attachment protein receptors (SNAREs) syntaxin‐1, SNAP‐25, and synaptobrevin‐2 form a tight SNARE complex that brings the vesicle and plasma membranes together and is key for membrane fusion. N‐ethyl maleimide sensitive factor (NSF) and soluble NSF attachment proteins (SNAPs) disassemble the SNARE complex to recycle the SNAREs for another round of fusion. Munc18‐1 and Munc13‐1 orchestrate SNARE complex formation in an NSF‐SNAP‐resistant manner by a mechanism whereby Munc18‐1 binds to synaptobrevin and to a self‐inhibited “closed” conformation of syntaxin‐1, thus forming a template to assemble the SNARE complex, and Munc13‐1 facilitates assembly by bridging the vesicle and plasma membranes and catalyzing opening of syntaxin‐1. Synaptotagmin‐1 functions as the major Ca2+ sensor that triggers release by binding to membrane phospholipids and to the SNAREs, in a tight interplay with complexins that accelerates membrane fusion. Many of these proteins act as both inhibitors and activators of exocytosis, which is critical for the exquisite regulation of neurotransmitter release. It is still unclear how the actions of these various proteins and multiple other components that control release are integrated and, in particular, how they induce membrane fusion, but it can be expected that these fundamental questions can be answered in the near future, building on the extensive knowledge already available.  相似文献   

5.
Membrane fusion for exocytosis is mediated by SNAREs, forming trans-ternary complexes to bridge vesicle and target membranes. There is an array of accessory proteins that directly interact with and regulate SNARE proteins. PRIP (phospholipase C-related but catalytically inactive protein) is likely one of these proteins; PRIP, consisting of multiple functional modules including pleckstrin homology and C2 domains, inhibited exocytosis, probably via the binding to membrane phosphoinositides through the pleckstrin homology domain. However, the roles of the C2 domain have not yet been investigated. In this study, we found that the C2 domain of PRIP directly interacts with syntaxin 1 and SNAP-25 but not with VAMP2. The C2 domain promoted PRIP to co-localize with syntaxin 1 and SNAP-25 in PC12 cells. The binding profile of the C2 domain to SNAP-25 was comparable with that of synaptotagmin I, and PRIP inhibited synaptotagmin I in binding to SNAP-25 and syntaxin 1. It was also shown that the C2 domain was required for PRIP to suppress SDS-resistant ternary SNARE complex formation and inhibit high K+-induced noradrenalin release from PC12 cells. These results suggest that PRIP inhibits regulated exocytosis through the interaction of its C2 domain with syntaxin 1 and SNAP-25, potentially competing with other SNARE-binding, C2 domain-containing accessory proteins such as synaptotagmin I and by directly inhibiting trans-SNARE complex formation.  相似文献   

6.
7.
Neurotransmitter is released from nerve terminals by Ca2+-dependent exocytosis through many steps. SNARE proteins are key components at the priming and fusion steps, and the priming step is modulated by cAMP-dependent protein kinase (PKA), which causes synaptic plasticity. We show that the SNARE regulatory protein tomosyn is directly phosphorylated by PKA, which reduces its interaction with syntaxin-1 (a component of SNAREs) and enhances the formation of the SNARE complex. Electrophysiological studies using cultured superior cervical ganglion (SCG) neurons revealed that this enhanced formation of the SNARE complex by the PKA-catalyzed phosphorylation of tomosyn increased the fusion-competent readily releasable pool of synaptic vesicles and, thereby, enhanced neurotransmitter release. This mechanism was indeed involved in the facilitation of neurotransmitter release that was induced by a potent biological mediator, the pituitary adenylate cyclase-activating polypeptide, in SCG neurons. We describe the roles and modes of action of PKA and tomosyn in Ca2+-dependent neurotransmitter release.  相似文献   

8.
Synaphin/complexin is a cytosolic protein that preferentially binds to syntaxin within the SNARE complex. We find that synaphin promotes SNAREs to form precomplexes that oligomerize into higher order structures. A peptide from the central, syntaxin binding domain of synaphin competitively inhibits these two proteins from interacting and prevents SNARE complexes from oligomerizing. Injection of this peptide into squid giant presynaptic terminals inhibited neurotransmitter release at a late prefusion step of synaptic vesicle exocytosis. We propose that oligomerization of SNARE complexes into a higher order structure creates a SNARE scaffold for efficient, regulated fusion of synaptic vesicles.  相似文献   

9.
赵翔  韩宝达  李立新 《遗传》2012,34(4):11-22
大多数细胞内都包含靶向不同细胞器的各种运输囊泡,其运输机制在进化上是高度保守的。Sec1/Munc-18(SM)蛋白在膜泡运输中起着重要的调控作用,它能够与SNARE(Soluble N-ethylmaleimide-sensitive factorattachment protein receptor)蛋白结合,共同在细胞内各个膜融合发生部位发挥重要作用。SM蛋白和SNARE复合体中的Syntaxin蛋白结合,调节SNARE复合体的装配,并与SNARE协同作用促进整个膜融合过程。文章对SM蛋白在结构和功能分析方面的最新研究进展进行了概述。  相似文献   

10.
A 20S complex composed of the cytosolic fusion proteins NSF and SNAP and the synaptosomal SNAP receptors (SNAREs) synaptobrevin, syntaxin and SNAP-25 is essential for synaptic vesicle exocytosis. Formation of this complex is thought to be regulated by synaptotagmin, the putative calcium sensor of neurotransmitter release. Here we have examined how different inhibitors of neurotransmitter release, e.g. clostridial neurotoxins and a synaptotagmin peptide, affect the properties of the 20S complex. Cleavage of synaptobrevin and SNAP-25 by the neurotoxic clostridial proteases tetanus toxin and botulinum toxin A had no effect on assembly and disassembly of the 20S complex; however, the stability of its SDS-resistant SNARE core was compromised. This SDS-resistant low energy conformation of the SNAREs constitutes the physiological target of NSF, as indicated by its ATP-dependent disassembly in the presence of SNAP and NSF. Synaptotagmin peptides caused inhibition of in vitro binding of this protein to the SNAREs, a result that is inconsistent with synaptotagmin's proposed role as a regulator of SNAP binding. Our data can be reconciled by the idea that NSF and SNAP generate synaptotagmin-containing intermediates in synaptic vesicle fusion, which catalyse neurotransmitter release.  相似文献   

11.
Zhao X  Han BD  Li LX 《遗传》2012,34(4):389-400
Most cells contain various transport vesicles that target to different destinations. The underlying molecular mechanisms are highly conserved in evolution. Sec1/Munc-18 (SM) proteins play an important role on regulating vesicle transport by interacting with soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) at each vesicle fusion sites. SM proteins interact with syntaxin, an important component in SNARE complex, to regulate the assembly of SNARE complex, and promote overall membrane fusion process together with SNARE complex. This review summaries new research progresses of structure and function of SM protein.  相似文献   

12.
SNARE protein complexes are key mediators of exocytosis by juxtaposing opposing membranes, leading to membrane fusion. SNAREs generally consist of one or two core domains that can form a four-helix bundle with other SNARE core domains. Some SNAREs, such as syntaxin target-SNAREs and longin vesicular-SNAREs, have independent, folded N-terminal domains that can interact with their respective SNARE core domains and thereby affect the kinetics of SNARE complex formation. This autoinhibition mechanism is believed to regulate the role of the longin VAMP7/TI-VAMP in neuronal morphogenesis. Here we use nuclear magnetic resonance spectroscopy to study the longin-SNARE core domain interaction for VAMP7. Using complete backbone resonance assignments, chemical shift perturbations analysis, and hydrogen/deuterium exchange experiments, we conclusively show that VAMP7 adopts a preferentially closed conformation in solution. Taken together, the closed conformation of longins is conserved, in contrast to the syntaxin family of SNAREs for which mixtures of open and closed states have been observed. This may indicate different regulatory mechanisms for SNARE complexes containing syntaxins and longins, respectively.  相似文献   

13.
Exocytosis in yeast requires the assembly of the secretory vesicle soluble N-ethylmaleimide-sensitive factor attachment protein receptor (v-SNARE) Sncp and the plasma membrane t-SNAREs Ssop and Sec9p into a SNARE complex. High-level expression of mutant Snc1 or Sso2 proteins that have a COOH-terminal geranylgeranylation signal instead of a transmembrane domain inhibits exocytosis at a stage after vesicle docking. The mutant SNARE proteins are membrane associated, correctly targeted, assemble into SNARE complexes, and do not interfere with the incorporation of wild-type SNARE proteins into complexes. Mutant SNARE complexes recruit GFP-Sec1p to sites of exocytosis and can be disassembled by the Sec18p ATPase. Heterotrimeric SNARE complexes assembled from both wild-type and mutant SNAREs are present in heterogeneous higher-order complexes containing Sec1p that sediment at greater than 20S. Based on a structural analogy between geranylgeranylated SNAREs and the GPI-HA mutant influenza virus fusion protein, we propose that the mutant SNAREs are fusion proteins unable to catalyze fusion of the distal leaflets of the secretory vesicle and plasma membrane. In support of this model, the inverted cone-shaped lipid lysophosphatidylcholine rescues secretion from SNARE mutant cells.  相似文献   

14.
α‐Synuclein is a synaptic modulatory protein implicated in the pathogenesis of Parkinson disease. The precise functions of this small cytosolic protein are still under investigation. α‐Synuclein has been proposed to regulate soluble N‐ethylmaleimide‐sensitive factor attachment protein receptor (SNARE) proteins involved in vesicle fusion. Interestingly, α‐synuclein fails to interact with SNARE proteins in conventional protein‐binding assays, thus suggesting an indirect mode of action. As the structural and functional properties of both α‐synuclein and the SNARE proteins can be modified by arachidonic acid, a common lipid regulator, we analysed this possible tripartite link in detail. Here, we show that the ability of arachidonic acid to stimulate SNARE complex formation and exocytosis can be controlled by α‐synuclein, both in vitro and in vivo. α‐Synuclein sequesters arachidonic acid and thereby blocks the activation of SNAREs. Our data provide mechanistic insights into the action of α‐synuclein in the modulation of neurotransmission.  相似文献   

15.
The release of hormones and neurotransmitters requires the fusion of cargo-containing vesicles with the plasma membrane. This process of exocytosis relies on three SNARE proteins, namely syntaxin and SNAP-25 on the target plasma membrane and synaptobrevin on the vesicular membrane. In this study we examined the molecular assembly pathway that leads to formation of the fusogenic SNARE complex. We now show that the plasma membrane syntaxin and SNAP-25 interact with high affinity and equimolar stoichiometry to form a stable dimer on the pathway to the ternary SNARE complex. In bovine chromaffin cells, syntaxin and SNAP-25 colocalize in defined clusters that average 700 nm in diameter and cover 10% of the plasma membrane. Removal of the C terminus of SNAP-25 by botulinum neurotoxin E, a known neuroparalytic agent, dissociates the target SNARE dimer in vitro and disrupts the SNARE clustering in vivo. Together, our data uncover formation of stable syntaxin/SNAP-25 dimers as a central principle of the SNARE assembly pathway underlying regulated exocytosis.  相似文献   

16.
Regulated exocytosis is a process in which a physiological trigger initiates the translocation, docking, and fusion of secretory granules with the plasma membrane. A class of proteins termed SNAREs (including SNAP-23, syntaxins, and VAMPs) are known regulators of secretory granule/plasma membrane fusion events. We have investigated the molecular mechanisms of regulated exocytosis in mast cells and find that SNAP-23 is phosphorylated when rat basophilic leukemia mast cells are triggered to degranulate. The kinetics of SNAP-23 phosphorylation mirror the kinetics of exocytosis. We have identified amino acid residues Ser(95) and Ser(120) as the major phosphorylation sites in SNAP-23 in rodent mast cells. Quantitative analysis revealed that approximately 10% of SNAP-23 was phosphorylated when mast cell degranulation was induced. These same residues were phosphorylated when mouse platelet degranulation was induced with thrombin, demonstrating that phosphorylation of SNAP-23 Ser(95) and Ser(120) is not restricted to mast cells. Although triggering exocytosis did not alter the absolute amount of SNAP-23 bound to SNAREs, after stimulation essentially all of the SNAP-23 bound to the plasma membrane SNARE syntaxin 4 and the vesicle SNARE VAMP-2 was phosphorylated. Regulated exocytosis studies revealed that overexpression of SNAP-23 phosphorylation mutants inhibited exocytosis from rat basophilic leukemia mast cells, demonstrating that phosphorylation of SNAP-23 on Ser(120) and Ser(95) modulates regulated exocytosis by mast cells.  相似文献   

17.
Action of complexin on SNARE complex   总被引:6,自引:0,他引:6  
Calcium-dependent synaptic vesicle exocytosis requires three SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) proteins: synaptobrevin/vesicle-associated membrane protein in the vesicular membrane and syntaxin and SNAP-25 in the presynaptic membrane. The SNAREs form a thermodynamically stable complex that is believed to drive fusion of vesicular and presynaptic membranes. Complexin, also known as synaphin, is a neuronal cytosolic protein that acts as a positive regulator of synaptic vesicle exocytosis. Complexin binds selectively to the neuronal SNARE complex, but how this promotes exocytosis remains unknown. Here we used purified full-length and truncated SNARE proteins and a gel shift assay to show that the action of complexin on SNARE complex depends strictly on the transmembrane regions of syntaxin and synaptobrevin. By means of a preparative immunoaffinity procedure to achieve total extraction of SNARE complex from brain, we demonstrated that complexin is the only neuronal protein that tightly associates with it. Our data indicated that, in the presence of complexin, the neuronal SNARE proteins assemble directly into a complex in which the transmembrane regions interact. We propose that complexin facilitates neuronal exocytosis by promoting interaction between the complementary syntaxin and synaptobrevin transmembrane regions that reside in opposing membranes prior to fusion.  相似文献   

18.
Regulated exocytosis in many cells is controlled by the SNARE complex, whose core includes three proteins that promote membrane fusion. Complexins I and II are highly related cytosolic proteins that bind tightly to the assembled SNARE complex and regulate neuronal exocytosis. Like somatic cells, sperm undergo regulated exocytosis; however, sperm release a single large vesicle, the acrosome, whose release has different characteristics than neuronal exocytosis. Acrosomal release is triggered upon sperm adhesion to the mammalian egg extracellular matrix (zona pellucida) to allow penetration of the egg coat. Membrane fusion occurs at multiple points within the acrosome but how fusion is activated and the formation and progression of fusion points is synchronized is unclear. We show that complexins I and II are found in acrosome-intact mature sperm, bind to SNARE complex proteins, and are not detected in sperm after acrosomal exocytosis (acrosome reaction). Although complexin-I-deficient sperm acrosome-react in response to calcium ionophore, they do not acrosome-react in response to egg zona pellucida proteins and have reduced fertilizing ability, in vitro. Complexin II is present in the complexin-I-deficient sperm and its expression is increased in complexin-I-deficient testes. Therefore, complexin I functions in exocytosis in two related but morphologically distinct secretory processes. Sperm are unusual because they express both complexins I and II but have a unique and specific requirement for complexin I.  相似文献   

19.
Membrane docking and fusion in neurons is a highly regulated process requiring the participation of a large number of SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptors) and SNARE-interacting proteins. We found that mammalian Class C Vps protein complex associated specifically with nSec-1/Munc18-a, and syntaxin 1A both in vivo and in vitro. In contrast, VAMP2 and SNAP-25, other neuronal core complex proteins, did not interact. When co-transfected with the human growth hormone (hGH) reporter gene, mammalian Class C Vps proteins enhanced Ca2+-dependent exocytosis, which was abolished by the Ca2+-channel blocker nifedipine. In hippocampal primary cultures, the lentivirus-mediated overexpression of hVps18 increased asynchronous spontaneous synaptic release without changing mEPSCs. These results indicate that mammalian Class C Vps proteins are involved in the regulation of membrane docking and fusion through an interaction with neuronal specific SNARE molecules, nSec-1/Munc18-a and syntaxin 1A.  相似文献   

20.
This review focuses on the so-called SNARE (soluble N-ethyl maleimide sensitive factor attachment protein receptor) proteins that are involved in exocytosis at the pre-synpatic plasma membrane. SNAREs play a role in docking and fusion of synaptic vesicles to the active zone, as well as in the Ca2+-triggering step itself, most likely in combination with the Ca2+ sensor synaptotagmin. Different SNARE domains are involved in different processes, such as regulation, docking, and fusion. SNAREs exhibit multiple configurational, conformational, and oliogomeric states. These different states allow SNAREs to interact with their matching SNARE partners, auxiliary proteins, or with other SNARE domains, often in a mutually exclusive fashion. SNARE core domains undergo progressive disorder to order transitions upon interactions with other proteins, culminating with the fully folded post-fusion (cis) SNARE complex. Physiological concentrations of neuronal SNAREs can juxtapose membranes, and promote fusion in vitro under certain conditions. However, significantly more work will be required to reconstitute an in vitro system that faithfully mimics the Ca2+-triggered fusion of a synaptic vesicle at the active zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号