首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron, despite being an essential micronutrient, becomes toxic if present at high levels. As a result, plants possess carefully regulated mechanisms to acquire iron from the soil. The ferric reductase defective3 (frd3) mutant of Arabidopsis (Arabidopsis thaliana) is chlorotic and exhibits constitutive expression of its iron uptake responses. Consequently, frd3 mutants overaccumulate iron; yet, paradoxically, the frd3 phenotypes are due to a reduction in the amount of iron present inside frd3 leaf cells. The FRD3 protein belongs to the multidrug and toxin efflux family, members of which are known to export low-M(r) organic molecules. We therefore hypothesized that FRD3 loads an iron chelator necessary for the correct distribution of iron throughout the plant into the xylem. One such potential chelator is citrate. Xylem exudate from frd3 plants contains significantly less citrate and iron than the exudate from wild-type plants. Additionally, supplementation of growth media with citrate rescues the frd3 phenotypes. The ectopic expression of FRD3-GFP results in enhanced tolerance to aluminum in Arabidopsis roots, a hallmark of organic acid exudation. Consistent with this result, approximately 3 times more citrate was detected in root exudate from plants ectopically expressing FRD3-GFP. Finally, heterologous studies in Xenopus laevis oocytes reveal that FRD3 mediates the transport of citrate. These results all strongly support the hypothesis that FRD3 effluxes citrate into the root vasculature, a process important for the translocation of iron to the leaves, as well as confirm previous reports suggesting that iron moves through the xylem as a ferric-citrate complex. Our results provide additional answers to long-standing questions about iron chelation in the vasculature and organic acid transport.  相似文献   

2.
Rogers EE  Guerinot ML 《The Plant cell》2002,14(8):1787-1799
We present the cloning and characterization of an Arabidopsis gene, FRD3, involved in iron homeostasis. Plants carrying any of the three alleles of frd3 constitutively express three strategy I iron deficiency responses and misexpress a number of iron deficiency-regulated genes. Mutant plants also accumulate approximately twofold excess iron, fourfold excess manganese, and twofold excess zinc in their shoots. frd3-3 was first identified as man1. The FRD3 gene is expressed at detectable levels in roots but not in shoots and is predicted to encode a membrane protein belonging to the multidrug and toxin efflux family. Other members of this family have been implicated in a variety of processes and are likely to transport small organic molecules. The phenotypes of frd3 mutant plants, which are consistent with a defect in either iron deficiency signaling or iron distribution, indicate that FRD3 is an important component of iron homeostasis in Arabidopsis.  相似文献   

3.
We present data supporting a general role for FERRIC REDICTASE DEFECTIVE3 (FRD3), an efflux transporter of the efficient iron chelator citrate, in maintaining iron homeostasis throughout plant development. In addition to its well-known expression in root, we show that FRD3 is strongly expressed in Arabidopsis thaliana seed and flower. Consistently, frd3 loss-of-function mutants are defective in early germination and are almost completely sterile, both defects being rescued by iron and/or citrate supply. The frd3 fertility defect is caused by pollen abortion and is associated with the male gametophytic expression of FRD3. Iron imaging shows the presence of important deposits of iron on the surface of aborted pollen grains. This points to a role for FRD3 and citrate in proper iron nutrition of embryo and pollen. Based on the findings that iron acquisition in embryo, leaf, and pollen depends on FRD3, we propose that FRD3 mediated-citrate release in the apoplastic space represents an important process by which efficient iron nutrition is achieved between adjacent tissues lacking symplastic connections. These results reveal a physiological role for citrate in the apoplastic transport of iron throughout development, and provide a general model for multicellular organisms in the cell-to-cell transport of iron involving extracellular circulation.  相似文献   

4.
5.
Increased-branching mutants of garden pea (Pisum sativum; ramosus [rms]) and Arabidopsis (Arabidopsis thaliana; more axillary branches) were used to investigate control of cytokinin export from roots in relation to shoot branching. In particular, we tested the hypothesis that regulation of xylem sap cytokinin is dependent on a long-distance feedback signal moving from shoot to root. With the exception of rms2, branching mutants from both species had greatly reduced amounts of the major cytokinins zeatin riboside, zeatin, and isopentenyl adenosine in xylem sap compared with wild-type plants. Reciprocally grafted mutant and wild-type Arabidopsis plants gave similar results to those observed previously in pea, with xylem sap cytokinin down-regulated in all graft combinations possessing branched shoots, regardless of root genotype. This long-distance feedback mechanism thus appears to be conserved between pea and Arabidopsis. Experiments with grafted pea plants bearing two shoots of the same or different genotype revealed that regulation of root cytokinin export is probably mediated by an inhibitory signal. Moreover, the signaling mechanism appears independent of the number of growing axillary shoots because a suppressed axillary meristem mutation that prevents axillary meristem development at most nodes did not abolish long-distance regulation of root cytokinin export in rms4 plants. Based on double mutant and grafting experiments, we conclude that RMS2 is essential for long-distance feedback regulation of cytokinin export from roots. Finally, the startling disconnection between cytokinin content of xylem sap and shoot tissues of various rms mutants indicates that shoots possess powerful homeostatic mechanisms for regulation of cytokinin levels.  相似文献   

6.
All plants, except for the grasses, must reduce Fe(III) to Fe(II) in order to acquire iron. In Arabidopsis, the enzyme responsible for this reductase activity in the roots is encoded by FRO2. Two Arabidopsis mutants, frd4-1 and frd4-2, were isolated in a screen for plants that do not induce Fe(III) chelate reductase activity in their roots in response to iron deficiency. frd4 mutant plants are chlorotic and grow more slowly than wild-type Col-0 plants. Additionally, frd4 chloroplasts are smaller in size and possess dramatically fewer thylakoid membranes and grana stacks when compared with wild-type chloroplasts. frd4 mutant plants express both FRO2 and IRT1 mRNA normally in their roots under iron deficiency, arguing against any defects in systemic iron-deficiency signaling. Further, transgenic frd4 plants accumulate FRO2-dHA fusion protein under iron-deficient conditions, suggesting that the frd4 mutation acts post-translationally in reducing Fe(III) chelate reductase activity. FRO2-dHA appears to localize to the plasma membrane of root epidermal cells in both Col-0 and frd4-1 transgenic plants when grown under iron-deficient conditions. Map-based cloning revealed that the frd4 mutations reside in cpFtsY, which encodes a component of one of the pathways responsible for the insertion of proteins into the thylakoid membranes of the chloroplast. The presence of cpFtsY mRNA and protein in the roots of wild-type plants suggests additional roles for this protein, in addition to its known function in targeting proteins to the thylakoid membrane in chloroplasts.  相似文献   

7.
8.
The salt tolerance locus SOS1 from Arabidopsis has been shown to encode a putative plasma membrane Na(+)/H(+) antiporter. In this study, we examined the tissue-specific pattern of gene expression as well as the Na(+) transport activity and subcellular localization of SOS1. When expressed in a yeast mutant deficient in endogenous Na(+) transporters, SOS1 was able to reduce Na(+) accumulation and improve salt tolerance of the mutant cells. Confocal imaging of a SOS1-green fluorescent protein fusion protein in transgenic Arabidopsis plants indicated that SOS1 is localized in the plasma membrane. Analysis of SOS1 promoter-beta-glucuronidase transgenic Arabidopsis plants revealed preferential expression of SOS1 in epidermal cells at the root tip and in parenchyma cells at the xylem/symplast boundary of roots, stems, and leaves. Under mild salt stress (25 mM NaCl), sos1 mutant shoot accumulated less Na(+) than did the wild-type shoot. However, under severe salt stress (100 mM NaCl), sos1 mutant plants accumulated more Na(+) than did the wild type. There also was greater Na(+) content in the xylem sap of sos1 mutant plants exposed to 100 mM NaCl. These results suggest that SOS1 is critical for controlling long-distance Na(+) transport from root to shoot. We present a model in which SOS1 functions in retrieving Na(+) from the xylem stream under severe salt stress, whereas under mild salt stress it may function in loading Na(+) into the xylem.  相似文献   

9.
10.
11.
Relatively little is known about how metals such as iron are effluxed from cells, a necessary step for transport from the root to the shoot. Ferroportin (FPN) is the sole iron efflux transporter identified to date in animals, and there are two closely related orthologs in Arabidopsis thaliana, IRON REGULATED1 (IREG1/FPN1) and IREG2/FPN2. FPN1 localizes to the plasma membrane and is expressed in the stele, suggesting a role in vascular loading; FPN2 localizes to the vacuole and is expressed in the two outermost layers of the root in response to iron deficiency, suggesting a role in buffering metal influx. Consistent with these roles, fpn2 has a diminished iron deficiency response, whereas fpn1 fpn2 has an elevated iron deficiency response. Ferroportins also play a role in cobalt homeostasis; a survey of Arabidopsis accessions for ionomic phenotypes showed that truncation of FPN2 results in elevated shoot cobalt levels and leads to increased sensitivity to the metal. Conversely, loss of FPN1 abolishes shoot cobalt accumulation, even in the cobalt accumulating mutant frd3. Consequently, in the fpn1 fpn2 double mutant, cobalt cannot move to the shoot via FPN1 and is not sequestered in the root vacuoles via FPN2; instead, cobalt likely accumulates in the root cytoplasm causing fpn1 fpn2 to be even more sensitive to cobalt than fpn2 mutants.  相似文献   

12.
The rms4 mutant of pea ( Pisum sativum L.) was used in grafting studies and cytokinin analyses of the root xylem sap to provide evidence that, at least for pea, the shoot can modify the import of cytokinins from the root. The rms4 mutation, which confers a phenotype with increased branching in the shoot, causes a very substantial decrease (down to 40-fold less) in the concentration of zeatin riboside (ZR) in the xylem sap of the roots. Results from grafts between wild-type (WT) and rms4 plants indicate that the concentration of cytokinins in the xylem sap of the roots is determined almost entirely by the genotype of the shoot. WT scions normalize the cytokinin concentration in the sap of rms4 mutant roots, whereas mutant scions cause WT roots to behave like those of self-grafted mutant plants. The mechanism whereby rms4 shoots of pea cause a down-regulation in the export of cytokinins from the roots is unknown at this time. However, our data provide evidence that the shoot transmits a signal to the roots and thereby controls processes involved in the regulation of cytokinin biosynthesis in the root.  相似文献   

13.
14.
Auxin transport promotes Arabidopsis lateral root initiation   总被引:22,自引:0,他引:22       下载免费PDF全文
Lateral root development in Arabidopsis provides a model for the study of hormonal signals that regulate postembryonic organogenesis in higher plants. Lateral roots originate from pairs of pericycle cells, in several cell files positioned opposite the xylem pole, that initiate a series of asymmetric, transverse divisions. The auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) arrests lateral root development by blocking the first transverse division(s). We investigated the basis of NPA action by using a cell-specific reporter to demonstrate that xylem pole pericycle cells retain their identity in the presence of the auxin transport inhibitor. However, NPA causes indoleacetic acid (IAA) to accumulate in the root apex while reducing levels in basal tissues critical for lateral root initiation. This pattern of IAA redistribution is consistent with NPA blocking basipetal IAA movement from the root tip. Characterization of lateral root development in the shoot meristemless1 mutant demonstrates that root basipetal and leaf acropetal auxin transport activities are required during the initiation and emergence phases, respectively, of lateral root development.  相似文献   

15.
Reduction of Fe(III) to Fe(II) by Fe(III) chelate reductase is thought to be an obligatory step in iron uptake as well as the primary factor in making iron available for absorption by all plants except grasses. Fe(III) chelate reductase has also been suggested to play a more general role in the regulation of cation absorption. In order to experimentally address the importance of Fe(III) chelate reductase activity in the mineral nutrition of plants, three Arabidopsis thaliana mutants (frd1-1, frd1-2 and frd1-3), that do not show induction of Fe(III) chelate reductase activity under iron-deficient growth conditions, have been isolated and characterized. These mutants are still capable of acidifying the rhizosphere under iron-deficiency and accumulate more Zn and Mn in their shoots relative to wild-type plants regardless of iron status. frd1 mutants do not translocate radiolabeled iron to the shoots when roots are presented with a tightly chelated form of Fe(III). These results: (1) confirm that iron must be reduced before it can be transported, (2) show that Fe(III) reduction can be uncoupled from proton release, the other major iron-deficiency response, and (3) demonstrate that Fe(III) chelate reductase activity per se is not necessarily responsible for accumulation of cations previously observed in pea and tomato mutants with constitutively high levels of Fe(III) chelate reductase activity.  相似文献   

16.
* The usefulness of the zinc (Zn)-fluorophore, Zinpyr-1, to examine the localization of Zn in the roots of Arabidopsis has been investigated. * In wild-type roots Zinpyr-1 fluorescence was predominantly in the xylem. The fluorescence signal was abolished by the application of the Zn-chelator, N,N,N',N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), and was increased by increasing exogenous Zn in the medium, indicating that fluorescence reflected relative Zn concentrations. * In the hma2, hma4 double mutant, which is deficient in root to shoot Zn translocation, Zinpyr-1 fluorescence was low in the xylem and high in the adjacent pericycle cells in which HMA2 and HMA4 are specifically expressed in a wild type. Zinpyr-1 fluorescence was also increased in the endodermis. * These results show that Zinpyr-1 can be used to examine the effects of mutations in Zn transporters on the localization of Zn in Arabidopsis roots and should be a useful addition to the tools available for studying Zn homeostasis in plants.  相似文献   

17.
Sodium (Na+) is toxic to most plants, but the molecular mechanisms of plant Na+ uptake and distribution remain largely unknown. Here we analyze Arabidopsis lines disrupted in the Na+ transporter AtHKT1. AtHKT1 is expressed in the root stele and leaf vasculature. athkt1 null plants exhibit lower root Na+ levels and are more salt resistant than wild-type in short-term root growth assays. In shoot tissues, however, athkt1 disruption produces higher Na+ levels, and athkt1 and athkt1/sos3 shoots are Na+-hypersensitive in long-term growth assays. Thus wild-type AtHKT1 controls root/shoot Na+ distribution and counteracts salt stress in leaves by reducing leaf Na+ accumulation.  相似文献   

18.
Irrigation of paddy fields to arsenic (As) containing groundwater leads to As accumulation in rice grains and causes serious health risk to the people worldwide. To reduce As intake via consumption of contaminated rice grain, identification of the mechanisms for As accumulation and detoxification in rice is a prerequisite. Herein, we report involvement of a member of rice NRAMP (Natural Resistance‐Associated Macrophage Protein) transporter, OsNRAMP1, in As, in addition to cadmium (Cd), accumulation through expression in yeast and Arabidopsis. Expression of OsNRAMP1 in yeast mutant (fet3fet4) rescued iron (Fe) uptake and exhibited enhanced accumulation of As and Cd. Expression of OsNRAMP1 in Arabidopsis provided tolerance with enhanced As and Cd accumulation in root and shoot. Cellular localization revealed that OsNRAMP1 resides on plasma membrane of endodermis and pericycle cells and may assist in xylem loading for root to shoot mobilization. This is the first report demonstrating role of NRAMP in xylem mediated loading and enhanced accumulation of As and Cd in plants. We propose that genetic modification of OsNRAMP1 in rice might be helpful in developing rice with low As and Cd content in grain and minimize the risk of food chain contamination to these toxic metals.  相似文献   

19.
Root-synthesized cytokinins are transported to the shoot and regulate the growth, development, and stress responses of aerial tissues. Previous studies have demonstrated that Arabidopsis (Arabidopsis thaliana) ATP binding cassette (ABC) transporter G family member 14 (AtABCG14) participates in xylem loading of root-synthesized cytokinins. However, the mechanism by which these root-derived cytokinins are distributed in the shoot remains unclear. Here, we revealed that AtABCG14-mediated phloem unloading through the apoplastic pathway is required for the appropriate shoot distribution of root-synthesized cytokinins in Arabidopsis. Wild-type rootstocks grafted to atabcg14 scions successfully restored trans-zeatin xylem loading. However, only low levels of root-synthesized cytokinins and induced shoot signaling were rescued. Reciprocal grafting and tissue-specific genetic complementation demonstrated that AtABCG14 disruption in the shoot considerably increased the retention of root-synthesized cytokinins in the phloem and substantially impaired their distribution in the leaf apoplast. The translocation of root-synthesized cytokinins from the xylem to the phloem and the subsequent unloading from the phloem is required for the shoot distribution and long-distance shootward transport of root-synthesized cytokinins. This study revealed a mechanism by which the phloem regulates systemic signaling of xylem-mediated transport of root-synthesized cytokinins from the root to the shoot.

Phloem unloading via the apoplastic pathway is essential for shoot distribution and long-distance translocation of root-synthesized cytokinins from the root to the shoot through the xylem.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号