首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Mast cells (MCs) are considered sentinels in the skin and mucosa. Their ability to release antimicrobial peptides, such as cathelicidin, protects against bacterial infections when the epithelial barrier is breached. We recently described that MCs defend against bacterial and viral infections through the release of cathelicidin during degranulation. In this study, we hypothesize that cathelicidin expression is induced in MCs by the activation of TLR2 from bacterial products (lipoteichoic acid) produced by commensal bacteria at the epithelial surface. Our research shows that signaling through TLR2 increases the production and expression of cathelicidin in mast cells, thereby enhancing their capacity to fight vaccinia virus. MCs deficient in cathelicidin were less efficient in killing vaccinia virus after lipoteichoic acid stimulation than wild-type cells. Moreover, the activation of TLR2 increases the MC recruitment at the skin barrier interface. Taken together, our findings reveal that the expression and control of antimicrobial peptides and TLR signaling on MCs are key in fighting viral infection. Our findings also provide new insights into the pathogenesis of skin infections and suggest potential roles for MCs and TLR2 ligands in antiviral therapy.  相似文献   

2.
Mast cells (MC) express cathelicidin antimicrobial peptides that act as broad-spectrum antibiotics and influence the immune defense of multiple epithelial surfaces. We hypothesized that MC help protect against skin infection through the expression of cathelicidin. The susceptibility of MC-deficient mice (Kit Wsh(-/-)) to invasive group A streptococcus (GAS) was compared with control mice. Following s.c. injection of GAS, MC-deficient mice had 30% larger skin lesions, 80% more lesional bacteria, and 30% more spleens positive for bacteria. In contrast to results obtained when GAS was injected into skin, no significant differences were noted between MC-deficient mice and control mice after GAS was applied topically, indicating that MC activity is most important after barrier penetration. To determine whether these differences were due to MC expression of cathelicidin, MC-deficient mice were reconstituted with MC derived from either wild-type or cathelicidin-deficient (Camp(-/-)) mice and challenged with GAS. Forty-eight hours after bacterial injection, mice that did not receive MC had an average lesion size of 200 mm(2), mice reconstituted with wild-type MC showed lesions comparable to control mice (25 mm(2)), while mice reconstituted with Camp(-/-) MC showed an average lesion size of 120 mm(2). Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) analysis of cathelicidin peptide purified from mast cells defined this as a unique 28-aa peptide. Combined, these results show that MC confer defense against Gram-positive bacterial infection in the skin, a function mediated in part by the expression of a unique cathelicidin peptide.  相似文献   

3.
Bullous pemphigoid (BP) is an autoimmune skin-blistering disease characterized by the presence of autoantibodies against the hemidesmosomal proteins BP230 and BP180. In the IgG passive transfer mouse model of BP, subepidermal blistering is triggered by anti-BP180 antibodies and depends on the complement system, mast cell (MC) degranulation, and neutrophil infiltration. In this study, we have identified the signaling events that connect the activation of the complement system and MC degranulation. We found that mice deficient in MCs or the C5a receptor (C5aR) injected with pathogenic anti-BP180 IgG failed to develop subepidermal blisters and exhibited a drastic reduction in p38 MAPK phosphorylation compared with WT mice. Local reconstitution with MCs from WT but not C5aR-deficient mice restored high levels of p38 MAPK phosphorylation and subepidermal blistering in MC-deficient mice. Local injection of recombinant C5a induced phosphorylation of p38 MAPK in WT but not MC-deficient mice. Cultured mouse MCs treated with recombinant C5a exhibited a significant increase in p38 MAPK phosphorylation and MC degranulation. Taken together, these data demonstrate that C5a interacts with C5aR on MCs and that this C5a-C5aR interaction triggers activation of the p38 MAPK pathway, subsequent MC degranulation, and ultimately BP blistering.  相似文献   

4.
Cathelicidins and other antimicrobial peptides are deployed at epithelial surfaces to defend against infection. These molecules have broad-spectrum killing activity against microbes and can have effects on specific mammalian cell types, potentially stimulating additional immune defense through direct chemotactic activity or induction of cytokine release. In humans, the cathelicidin hCAP18/LL-37 is processed to LL-37 in neutrophils, but on skin it can be further proteolytically processed to shorter forms. The influence of these cathelicidin peptides on keratinocyte function is not known. In the current study, DNA microarray analysis and confirmatory protein analysis showed that LL-37 affects the expression of several chemokines and cytokines by keratinocytes. Analysis of a synthetic peptide library derived from LL-37 showed that antimicrobial activity against bacterial, fungal, and viral skin pathogens resides within specific domains of the parent peptide, but antimicrobial activity does not directly correlate with the ability to stimulate IL-8 production in keratinocytes. IL-8 release was induced by d- and l-amino acid forms of cathelicidin and correlated with membrane permeability, suggesting that highly structure-specific binding to a cell surface receptor is not likely. However, this effect was inhibited by either pertussis toxin or AG1478, an epidermal growth factor receptor tyrosine kinase inhibitor, suggesting that cathelicidin may indirectly stimulate multiple signaling pathways associated with cell surface receptors. Taken together, these observations suggest that proteolytic processing may alter the balance between cathelicidin antimicrobial and host immunostimulatory functions.  相似文献   

5.
The extensive world-wide morbidity and mortality caused by influenza A viruses highlights the need for new insights into the host immune response and novel treatment approaches. Cationic Host Defense Peptides (CHDP, also known as antimicrobial peptides), which include cathelicidins and defensins, are key components of the innate immune system that are upregulated during infection and inflammation. Cathelicidins have immunomodulatory and anti-viral effects, but their impact on influenza virus infection has not been previously assessed. We therefore evaluated the effect of cathelicidin peptides on disease caused by influenza A virus in mice. The human cathelicidin, LL-37, and the murine cathelicidin, mCRAMP, demonstrated significant anti-viral activity in vivo, reducing disease severity and viral replication in infected mice to a similar extent as the well-characterized influenza virus-specific antiviral drug zanamivir. In vitro and in vivo experiments suggested that the peptides may act directly on the influenza virion rather than via receptor-based mechanisms. Influenza virus-infected mice treated with LL-37 had lower concentrations of pro-inflammatory cytokines in the lung than did infected animals that had not been treated with cathelicidin peptides. These data suggest that treatment of influenza-infected individuals with cathelicidin-derived therapeutics, or modulation of endogenous cathelicidin production may provide significant protection against disease.  相似文献   

6.
Cathelicidins (caths) are peptides that are expressed at high levels in neutrophils and some epithelia and can act as natural antibiotics by directly killing a wide range of microorganisms. We hypothesized that caths are expressed in mast cells (MCs), because these cells have been previously associated with inherent antimicrobial activity. Cultured murine MCs contained abundant amounts of cathelin-related antimicrobial peptide (AMP), the murine cath, and this expression was inducible by LPS or lipoteichoic acid. Human skin MCs also expressed cath as detected by immunohistochemical analysis for the human cath LL-37. The functional significance of this expression was shown by comparing MCs cultured from normal mice to MCs from littermates deficient in the cathelin-related AMP gene (Cnlp(-)). MCs derived from Cnlp(-/-) animals had a 50% reduction in their ability to kill group A STREPTOCOCCUS: These MCs expressed equivalent amounts of mRNA for murine beta-defensin-4, a beta-defensin AMP. Thus, different antimicrobials can be identified in MCs, and the presence of cath is necessary for efficient bacterial killing. These observations suggest that the presence of cath is vital to the ability of mammalian MCs to participate in antimicrobial defense.  相似文献   

7.
8.
Leukotriene B(4) (LTB(4)) is a lipid mediator of inflammation that was recently shown to exert antiviral activities. In this study, we demonstrate that the release of antimicrobial proteins by neutrophils contribute to an early host defense against influenza virus infection in vitro as well as in vivo. Daily i.v. treatments with LTB(4) lead to a significant decrease in lung viral loads at day 5 postinfection in mice infected with influenza A virus compared with the placebo-treated group. This reduction in viral load was not present in mice deficient in the high-affinity LTB(4) receptor. Viral clearance in lungs was associated with up-regulated presence of antimicrobial peptides such as beta-defensin-3, members of the mouse eosinophil-related RNase family, and the mouse cathelicidin-related antimicrobial peptide. Our results also indicate that neutrophils are important in the antiviral effect of LTB(4). Viral loads in neutrophil-depleted mice were not diminished by LTB(4) administration, and a substantial reduction in the presence of murine cathelicidin-related antimicrobial peptide and the murine eosinophil-related RNase family in lung tissue was observed. Moreover, in vitro treatment of human neutrophil cultures with LTB(4) led rapidly to the secretion of the human cathelicidin LL-37 and eosinophil-derived neurotoxin, known as antiviral peptides. Pretreatment of cell cultures with specific LTB(4) receptor antagonists clearly demonstrate the implication of the high-affinity LTB(4) receptor in the LTB(4)-mediated activity. Together, these results demonstrate the importance of neutrophils and the secretion of antimicrobial peptides during the early immune response mediated by LTB(4) against a viral pathogen.  相似文献   

9.
A second-degree epidermal scald burn in mice elicits an inflammatory response mediated by natural IgM directed to nonmuscle myosin with complement activation that results in ulceration and scarring. We find that such burn injury is associated with early mast cell (MC) degranulation and is absent in WBB6F1-Kit(W)/Kit(Wv) mice, which lack MCs in a context of other defects due to a mutation of the Kit receptor. To address further an MC role, we used transgenic strains with normal lineage development and a deficiency in a specific secretory granule component. Mouse strains lacking the MC-restricted chymase, mouse MC protease (mMCP)-4, or elastase, mMCP-5, show decreased injury after a second-degree scald burn, whereas mice lacking the MC-restricted tryptases, mMCP-6 and mMCP-7, or MC-specific carboxypeptidase A3 activity are not protected. Histologic sections showed some disruption of the epidermis at the scald site in the protected strains suggesting the possibility of topical reconstitution of full injury. Topical application of recombinant mMCP-5 or human neutrophil elastase to the scalded area increases epidermal injury with subsequent ulceration and scarring, both clinically and morphologically, in mMCP-5-deficient mice. Restoration of injury requires that topical administration of recombinant mMCP-5 occurs within the first hour postburn. Importantly, topical application of human MC chymase restores burn injury to scalded mMCP-4-deficient mice but not to mMCP-5-deficient mice revealing nonredundant actions for these two MC proteases in a model of innate inflammatory injury with remodeling.  相似文献   

10.
Mast cells (MCs) play crucial roles in innate immunity to parasitic and bacterial infections as well as in hypersensitivity, such as the induction and exacerbation of allergy and autoimmune diseases. The regulatory mechanisms for MC development and effector functions are of great interest for developing novel therapeutic strategies against such disorders. Here we report the establishment of novel, immortalized MC lines from bone marrow (BM) cells of a temperature-sensitive mutant of SV40 large T antigen-transgenic mice (termed SVMCs). BM cells from tsSV40LT mice were cultured in the presence of interleukin (IL)-3 for 3 weeks, and then subjected to limiting dilution and single-cell cloning, yielding 27 independent MC clones, three of which were subjected to further analysis. On culture with nerve growth factor, stem cell factor and IL-3, these SVMC clones showed morphologic and biochemical changes from mucosal MC-like to connective-tissue MC-like phenotypes. These SVMC lines exhibited a significantly enhanced proliferation rate, and a higher responsiveness to the high affinity Fc receptor for IgE-mediated intracellular calcium mobilization and degranulation than those of BM-derived cultured MCs. These cell lines should facilitate studies on the mechanisms for the development, differentiation and effector functions of MCs in health and diseases.  相似文献   

11.
Mast cell (MC) deficiency in KitW-sh/W-sh mice and inhibition with disodium chromoglycate (DSCG) or ketotifen reduced obesity and diabetes in mice on a high-cholesterol (1.25%) Western diet. Yet, Kit-independent MC-deficient mice and mice treated with DSCG disproved MC function in obesity and diabetes when mice are fed a high-fat diet (HFD) that contains no cholesterol. This study reproduced the obesity and diabetes inhibitory activities of DSCG and ketotifen from mice on a Western diet. Yet, such inhibitory effects were diminished in mice on the HFD. DSCG and ketotifen MC inhibitory activities were recovered from mice on the HFD supplemented with the same amount of cholesterol (1.25%) as that in the Western diet. DSCG and ketotifen effectively blunted the high-cholesterol diet-induced elevations of blood histamine and adipose tissue MC degranulation. Pearson's correlation test demonstrated significant and positive correlations between plasma histamine and total cholesterol or low-density lipoprotein-cholesterol (LDL). In cultured bone marrow-derived MCs, plasma from mice following a Western diet or a cholesterol-supplemented HFD, but not those from HFD-fed mice, induced MC degranulation and the release of β-hexosaminidase, histamine, and serotonin. IgE, LDL, very low-density lipoprotein, and high-density lipoprotein also induced MC activation, which can be inhibited by DSCG and ketotifen depending on the doses and types of MC inhibitors and cholesterol, and also the MC granule molecules of interest. DSCG or ketotifen lost their activities in inhibiting LDL-induced activation of MCs from LDL receptor-deficient mice. These results indicate that dietary cholesterol critically influences the function of mouse MCs.  相似文献   

12.
13.
Tissues characterized by various degrees of immune privilege are thought to differ in repair processes. This circumstance may be due to mast cells (MCs) that occur in all tissues of the body, secrete a wide range of biologically active compounds, and play an important role in the regulation of repair processes. The present paper reports the results of investigations of morphometric parameters and functional activity of MCs in tissues characterized by various degrees of immune privilege such as the skin and testis. It was shown that MCs migrate into the skin in the early stages after damage, followed by a slow increase in the synthetic activity and degranulation index of MCs for 30 days. In the case of the testis, the MC degranulation index increases immediately after damage, with a pronounced migration of MCs being absent. The stabilization of MC membranes with ketotifen inhibits skin repair; namely, there is no increase in the thickness of the dermis and epidermis and the number of fibroblasts and collagen fibers, along with slowing down of the scar formation. Meanwhile, the MC inactivation contributes to the reparative regeneration of the testis. This circumstance is confirmed by a significant reduction of the number of nonfunctioning tubules and an increase in the number of normal spermatogonia, which are a proliferative pool for all subsequent stages of spermatogenesis. Thereby, the number and the functional state of MCs influences the repair processes in tissues characterized by various degrees of immune privilege.  相似文献   

14.
Acne rosacea is an inflammatory skin disease that affects 3% of the US population over 30 years of age and is characterized by erythema, papulopustules and telangiectasia. The etiology of this disorder is unknown, although symptoms are exacerbated by factors that trigger innate immune responses, such as the release of cathelicidin antimicrobial peptides. Here we show that individuals with rosacea express abnormally high levels of cathelicidin in their facial skin and that the proteolytically processed forms of cathelicidin peptides found in rosacea are different from those present in normal individuals. These cathelicidin peptides are a result of a post-translational processing abnormality associated with an increase in stratum corneum tryptic enzyme (SCTE) in the epidermis. In mice, injection of the cathelicidin peptides found in rosacea, addition of SCTE, and increasing protease activity by targeted deletion of the serine protease inhibitor gene Spink5 each increases inflammation in mouse skin. The role of cathelicidin in enabling SCTE-mediated inflammation is verified in mice with a targeted deletion of Camp, the gene encoding cathelicidin. These findings confirm the role of cathelicidin in skin inflammatory responses and suggest an explanation for the pathogenesis of rosacea by demonstrating that an exacerbated innate immune response can reproduce elements of this disease.  相似文献   

15.
The effector immune mechanisms underlying peanut-induced anaphylaxis remain to be fully elucidated. We investigated the relative contribution of Igs, mast cells (MCs), and FcepsilonRI in the elicitation of anaphylaxis in a murine model. Assessment of peanut hypersensitivity reactions was performed clinically and biologically. Our data show that wild-type (WT; C57BL/6 strain) mice consistently developed severe anaphylaxis (median clinical score: 3.5/5), an approximately 8 degrees C drop in core body temperature, and significantly increased plasma levels of histamine and leukotrienes. CD40 ligand- and B cell-deficient mice presented evidence of allergic sensitization as demonstrated by production of Th2-associated cytokines by splenocytes and a late-phase inflammatory response that were both indistinguishable to those detected in WT mice. However, CD40 ligand- and B cell-deficient mice did not exhibit any evidence of anaphylaxis. Our data also show that MC-deficient (Kit(W)/Kit(W-v)) mice did not suffer, unlike their littermate controls, anaphylactic reactions despite the fact that serum levels of peanut-specific Igs were similarly elevated. Finally, FcepsilonRI-deficient mice experienced anaphylactic responses although to a significantly lesser degree than those observed in WT mice. Thus, these data demonstrate that the presence of peanut-specific Abs along with functional MCs comprise a necessary and sufficient condition for the elicitation of peanut-induced anaphylaxis. That the absence of FcepsilonRI prevented the development of anaphylaxis only partially insinuates the contribution of an IgE-independent pathway, and suggests that strategies to impair MC degranulation may be necessary to improve the efficacy of anti-IgE therapy.  相似文献   

16.
Reduced alveolar Po(2) in rats produces a rapid systemic inflammation characterized by reactive O(2) species generation, mast cell (MC) degranulation, leukocyte-endothelial interactions, and increased vascular permeability. The inflammation is not initiated by the low systemic Po(2) but rather by the release of monocyte chemoattractant protein-1 (MCP-1) from alveolar macrophages (AMO) activated by alveolar hypoxia. Circulating AMO-borne MCP-1 induces MC degranulation, which activates the local renin-angiotensin system (RAS) and mediates the microvascular inflammation. This study was directed to determine the mechanism of RAS activation by MCP-1-induced MC degranulation. Experiments in isolated rat peritoneal MCs showed the following: 1) Western blots and immunocytochemistry demonstrated the presence of renin and angiotensin-converting enzyme (ACE) in MCs and their release upon degranulation; 2) MCP-1-induced degranulation of MCs incubated in plasma produced an increase in angiotensin II (ANG II) concentration; and 3) this increase was inhibited completely by the following agents: the MCP-1 receptor antagonist RS-102895, the specific rat renin inhibitor WFML, or the ACE inhibitor captopril administered separately. Captopril also inhibited ANG II generation by MCs incubated in culture medium plus ANG I. The results show that peritoneal MCs contain active renin, which activates the RAS upon degranulation, and that peritoneal MCs are a source of ACE and suggest that conversion of ANG I to ANG II is mediated predominantly by ACE. This study provides novel evidence of the presence of active renin in rat peritoneal MCs and helps explain the mechanism of activation of the RAS during alveolar hypoxia.  相似文献   

17.
Upon various stimulations, mast cells (MCs) release a wide variety of chemical mediators stored in their cytoplasmic granules, which then initiates subsequent allergic reactions. Lysophosphatidylserine (LysoPS), a kind of lysophospholipid, potentiates the histamine release from MCs triggered by antigen stimulation. We previously showed through structure-activity studies of LysoPS analogs that LysoPS with a methyl group at the carbon of the serine residue, i.e., lysophosphatidylthreonine (LysoPT), is extremely potent in stimulating the MC degranulation. In this study, as our continuing study to identify more potent LysoPS analogs, we developed LysoPS analogs with fatty acid surrogates. We found that the substitution of oleic acid to an aromatic fatty acid surrogate (C3-pH-p-O-C11) in 2-deoxy-1-LysoPS resulted in significant increase in the ability to induce MCs degranulation compared with 2-deoxy-1-LysoPS with oleic acid. Conversion of the serine residue into the threonine residue further increased the activity of MC degranulation both in vitro and in vivo. The resulting super agonist, 2-deoxy-LysoPT with C3-pH-p-O-C11, will be a useful tool to elucidate the mechanisms of stimulatory effect of LysoPS on MC degranulation.  相似文献   

18.
Filarial parasites have to trespass many barriers to successfully settle within their mammalian host, which is equipped with mechanical borders and complex weaponry of an evolved immune system. However, little is known about mechanisms of early local events in filarial infections. In this study, bone marrow-derived dendritic cells not only upregulated activation markers CD40 and CD80 upon in vitro stimulation with filarial extracts, but also secreted CCL17, a chemokine known to be produced upon microbial challenge. Mice deficient for CCL17 had an up to 4-fold higher worm burden compared with controls by day 10 of infection with the murine filaria Litomosoides sigmodontis. Also, numbers of mast cells (MCs) invading the skin and degranulation were significantly increased, which was associated with enhanced vascular permeability and larval establishment. This phenotype was reverted by inhibition of MC degranulation with disodium cromoglycate or by blockade of histamine. In addition, we showed that CCL17-mediated vascular permeability was dependent on the presence of Wolbachia endosymbionts and TLR2. Our findings reveal that CCL17 controls filarial larval entry by limiting MC-dependent vascular permeability.  相似文献   

19.
Cathelicidin-related antimicrobial peptide (mCRAMP), the sole murine cathelicidin, is encoded by the gene Cnlp. We show that mCRAMP expression in the intestinal tract is largely restricted to surface epithelial cells in the colon. Synthetic mCRAMP had antimicrobial activity against the murine enteric pathogen Citrobacter rodentium, which like the related clinically important human pathogens enteropathogenic Escherichia coli and enterohemorrhagic E. coli, adheres to the apical membrane of intestinal epithelial cells. Colon epithelial cell extracts from Cnlp+/+ mice had significantly greater antimicrobial activity against C. rodentium than those of mutant Cnlp-/- mice that lack mCRAMP. Cnlp-/- mice developed significantly greater colon surface and crypt epithelial cell colonization, surface epithelial cell damage, and systemic dissemination of infection than Cnlp+/+ mice after oral infection with C. rodentium. Moreover, Cnlp+/+ mice were protected from oral infections with C. rodentium inocula that infected the majority of Cnlp-/- mice. These results establish cathelicidin as an important component of innate antimicrobial defense in the colon.  相似文献   

20.
Mouse mast cell protease-4 (mMCP-4) has been linked to autoimmune and inflammatory diseases, although the exact mechanisms underlying its role in these pathological conditions remain unclear. Here, we have found that mMCP-4 is critical in a mouse model of the autoimmune skin blistering disease bullous pemphigoid (BP). Mice lacking mMCP-4 were resistant to experimental BP. Complement activation, mast cell (MC) degranulation, and the early phase of neutrophil (PMN) recruitment occurred comparably in mMCP-4(-/-) and WT mice. However, without mMCP-4, activation of matrix metalloproteinase (MMP)-9 was impaired in cultured mMCP-4(-/-) MCs and in the skin of pathogenic IgG-injected mMCP-4(-/-) mice. MMP-9 activation was not fully restored by local reconstitution with WT or mMCP-4(-/-) PMNs. Local reconstitution with mMCP-4(+/+) MCs, but not with mMCP-4(-/-) MCs, restored blistering, MMP-9 activation, and PMN recruitment in mMCP-4(-/-) mice. mMCP-4 also degraded the hemidesmosomal transmembrane protein BP180 both in the skin and in vitro. These results demonstrate that mMCP-4 plays two different roles in the pathogenesis of experimental BP, by both activating MMP-9 and by cleaving BP180, leading to injury of the hemidesmosomes and extracellular matrix of the basement membrane zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号