首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CD38 is a multifunctional enzyme which is ubiquitously distributed in mammalian tissues. It is involved in the conversion of NAD(P)+ into cyclic ADP-ribose, NAADP+ and ADP-ribose and the role of these metabolites in multiple Ca2+ signaling pathways makes CD38 a novel potential pharmacological target. The dire paucity of CD38 inhibitors, however, renders the search for new molecular tools highly desirable. We report that human CD38 is inhibited at low micromolar concentrations by flavonoids such as luteolinidin, kuromanin and luteolin (IC50 <10 μM). Docking studies provide some clues on the mode of interaction of these molecules with the active site of CD38.  相似文献   

2.
3.
The contractility of airway smooth muscle cells is dependent on dynamic changes in the concentration of intracellular calcium. Signaling molecules such as inositol 1,4,5-trisphosphate and cyclic ADP-ribose play pivotal roles in the control of intracellular calcium concentration. Alterations in the processes involved in the regulation of intracellular calcium concentration contribute to the pathogenesis of airway diseases such as asthma. Recent studies have identified cyclic ADP-ribose as a calcium-mobilizing second messenger in airway smooth muscle cells, and modulation of the pathway involved in its metabolism results in altered calcium homeostasis and may contribute to airway hyperresponsiveness. In this review, we describe the basic mechanisms underlying the dynamics of calcium regulation and the role of CD38/cADPR, a novel pathway, in the context of airway smooth muscle function and its contribution to airway diseases such as asthma.  相似文献   

4.
The CD38-cyclic ADP-ribose signaling system in insulin secretion   总被引:2,自引:0,他引:2  
Glucose induces an increase in the intracellular Ca2+ concentration in pancreatic -cells to secrete insulin. CD38 occurs in -cells and has both ADP-ribosyl cyclase, which catalyzes the formation of cyclic ADP-ribose (cADPR) from NAD+, and cADPR hydrolase, which converts cADPR to ADP-ribose. ATP, produced by glucose metabolism, competes with cADPR for the binding site, Lys-129, of CD38, resulting in the inhibition of the hydrolysis of cADPR and thereby causing cADPR accumulation in -cells. Cyclic ADP-ribose then binds to FK506-binding protein 12.6 in the ryanodine receptor Ca2+ channel (RyR), dissociating the binding protein from RyR to induce the release of Ca2+ from the endoplasmic reticulum. Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) phosphorylates RyR to sensitize and activate the Ca2+ channel. Ca2+, released from the RyR, further activates CaM kinase II and amplifies the process. Thus, cADPR acts as a second messenger for Ca2+ mobilization to secrete insulin. The novel mechanism of insulin secretion described above is different from the conventional hypothesis in which Ca2+ influx from extracellular sources plays a role in insulin secretion by glucose.  相似文献   

5.
Sauve AA  Schramm VL 《Biochemistry》2002,41(26):8455-8463
The soluble domain of human CD38 catalyzes the conversion of NAD(+) to cyclic ADP-ribose and to ADP-ribose via a common covalent intermediate [Sauve, A. A., Deng, H. T., Angelletti, R. H., and Schramm, V. L. (2000) J. Am. Chem. Soc. 122, 7855-7859]. Here we establish that mechanism-based inhibitors can be produced by chemical stabilization of this intermediate. The compounds nicotinamide 2'-deoxyriboside (1), 5-methylnicotinamide 2'-deoxyriboside (2), and pyridyl 2'-deoxyriboside (3) were synthesized and evaluated as inhibitors for human CD38. The nicotinamide derivatives 1 and 2 were inhibitors of the enzyme as determined by competitive behavior in CD38-catalyzed conversion of nicotinamide guanine dinucleotide (NGD(+)) to cyclic GDP-ribose. The K(i) values for competitive inhibition were 1.2 and 4.0 microM for 1 and 2, respectively. Slow-onset characteristics of reaction progress curves indicated a second higher affinity state of these two inhibitors. Inhibitor off-rates were slow with rate constants k(off) of 1.5 x 10(-5) s(-1) for 1 and 2.5 x 10(-5) s(-1) for 2. Apparent dissociation constants K(i(total)) for 1 and 2 were calculated to be 4.5 and 12.5 nM, respectively. The similar values for k(off) are consistent with the hydrolysis of common enzymatic intermediates formed by the reaction of 1 and 2 with the enzyme. Both form covalently attached deoxyribose groups to the catalytic site nucleophile. Chemical evidence for this intermediate is the ability of nicotinamide to rescue enzyme activity after inactivation by either 1 or 2. A covalent intermediate is also indicated by the ability of CD38 to catalyze base exchange, as observed by conversion of 2 to 1 in the presence of nicotinamide. The deoxynucleosides 1 and 2 demonstrate that the chemical determinants for mechanism-based inhibition of CD38 can be satisfied by nucleosides that lack the 5'-phosphate, the adenylate group, and the 2'-hydroxyl moiety. In addition, these compounds reveal the mechanism of CD38 catalysis to proceed by the formation of a covalent intermediate during normal catalytic turnover with faster substrates. The covalent 2'-deoxynucleoside inactivators of CD38 are powerful inhibitors by acting as good substrates for formation of the covalent intermediate but are poor leaving groups from the intermediate complex because hydrolytic assistance of the 2'-hydroxyl group is lacking. The removal of the adenylate nucleophile required for the cyclization reaction provides slow hydrolysis as the only exit from the covalent complex.  相似文献   

6.
Treatment of macrophages with pyridinyl imidazole inhibitors of p38 protein kinases can inhibit lipopolysaccharide-stimulated tumor necrosis factor alpha secretion. However, bone marrow-derived macrophages from tristetraprolin (TTP)-deficient mice were less sensitive than normal macrophages to this effect of p38 inhibitors, despite evidence for normal p38 activation in response to lipopolysaccharide. TTP is known to cause decreased stability of tumor necrosis factor alpha and granulocyte-macrophage colony-stimulating factor mRNAs after binding to an AU-rich element in their 3'-untranslated regions. A recombinant TTP fusion protein could be phosphorylated by a recombinant p38 kinase in cell-free assays and was phosphorylated to the same extent by immunoprecipitated p38 derived from normal and TTP-deficient cells stimulated with lipopolysaccharide; in both cases, the enzyme activity was inhibited by the p38 inhibitors. TTP phosphorylation also was increased in intact macrophages after lipopolysaccharide stimulation, an effect that was blocked by the p38 inhibitors. Finally, TTP in mammalian cell extracts bound less well to an AU-rich element RNA probe than did the same amount of TTP following dephosphorylation. These results suggest that TTP may be a component of the signaling cascade, initiated by inflammatory stimuli and mediated in part by activation of p38, that ultimately leads to enhanced secretion of tumor necrosis factor alpha.  相似文献   

7.
CD38 is a multifunctional protein possessing ADP-ribosyl cyclase activity responsible for both the synthesis and the degradation of several Ca(2+)-mobilizing second messengers. Although a variety of functions have been ascribed to CD38, such as immune responses, insulin secretion, and social behavior in adults, nothing is known of its role during embryonic development when Ca(2+) signals feature prominently. Here, we report the identification and functional expression of CD38 from Xenopus laevis, a key model organism for the study of vertebrate development. We show that CD38 expression and endogenous ADP-ribosyl cyclase activity are developmentally regulated during cellular differentiation. Chemical or molecular inhibition of CD38 abolished ADP-ribosyl cyclase activity and disrupted elongation of the anterior-posterior axis and differentiation of skeletal muscle, culminating in embryonic death. Our data uncover a previously unknown role for CD38 as an essential regulator of embryonic development.  相似文献   

8.
Leukocyte cell surface antigen CD38 is a single-transmembrane protein whose extracellular domain has catalytic activity for NAD(+) glycohydrolase (NADase). We previously reported that b-series gangliosides inhibit the NADase activity of the extracellular domain of CD38 expressed as a fusion protein [Hara-Yokoyama, M., Kukimoto, I., Nishina, H., Kontani, K., Hirabayashi, Y., Irie, F., Sugiya, H., Furuyama, S., and Katada, T. (1996) J. Biol. Chem. 271, 12951-12955]. In the present study, we examined the effect of exogenous gangliosides on the NADase activity of CD38 on the surface of retinoic acid-treated human leukemic HL60 cells and CD38-transfected THP-1 cells. After incubation of the cells with G(T1b), inhibition of NADase activity was observed. The time course of inhibition was slower than that of the incorporation of G(T1b) into the cells, suggesting that incorporation into the cell membranes is a prerequisite for inhibition. Inhibition occurred efficiently when G(T1b) and CD38 were present on the same cells (cis interaction) rather than on different cells (trans interaction). Although gangliosides may affect localization of cell surface proteins, indirect immunofluorescence intensity due to CD38 was not affected after G(T1b) treatment. Comparison of the effect of G(T1b) and G(D1a) indicates that the tandem sialic acid residues linked to the internal galactose residue of the gangliotetraose core are crucial to the inhibition. These results suggest a novel role of complex gangliosides for the first time as cell surface inhibitors of CD38 through specific and cis interaction between the oligosaccharide moiety and the extracellular domain.  相似文献   

9.
Regulator of G-protein signaling (RGS) proteins potently suppress G-protein coupled receptor (GPCR) signal transduction by accelerating GTP hydrolysis on activated heterotrimeric G-protein α subunits. RGS4 is enriched in the CNS and is proposed as a therapeutic target for treatment of neuropathological states including epilepsy and Parkinson's disease. Therefore, identification of novel RGS4 inhibitors is of interest. An HEK293-FlpIn cell-line stably expressing M3-muscarinic receptor with doxycycline-regulated RGS4 expression was employed to identify compounds that inhibit RGS4-mediated suppression of M3-muscarinic receptor signaling. Over 300,000 compounds were screened for an ability to enhance Gαq-mediated calcium signaling in the presence of RGS4. Compounds that modulated the calcium response in a counter-screen in the absence of RGS4 were not pursued. Of the 1365 RGS4-dependent primary screen hits, thirteen compounds directly target the RGS-G-protein interaction in purified systems. All thirteen compounds lose activity against an RGS4 mutant lacking cysteines, indicating that covalent modification of free thiol groups on RGS4 is a common mechanism. Four compounds produce > 85% inhibition of RGS4-G-protein binding at 100 μM, yet are > 50% reversible within a ten-minute time frame. The four reversible compounds significantly alter the thermal melting temperature of RGS4, but not G-protein, indicating that inhibition is occurring through interaction with the RGS protein. The HEK cell-line employed for this study provides a powerful tool for efficiently identifying RGS-specific modulators within the context of a GPCR signaling pathway. As a result, several new reversible, cell-active RGS4 inhibitors have been identified for use in future biological studies.  相似文献   

10.
The p38 mitogen-activated protein kinase (p38) pathway is required for the production of proinflammatory cytokines (TNFalpha and IL-1) that mediate the chronic inflammatory phases of several autoimmune diseases. Potent p38 inhibitors, such as the slow tight-binding inhibitor BIRB 796, have recently been reported to block the production of TNFalpha and IL-1beta. Here we analyze downstream signaling complexes and molecular mechanisms, to provide new insight into the function of p38 signaling complexes and the development of novel inhibitors of the p38 pathway. Catalysis, signaling functions, and molecular interactions involving p38alpha and one of its downstream signaling partners, mitogen-activated protein kinase-activated protein kinase 2 (MK2), have been explored by steady-state kinetics, surface plasmon resonance, isothermal calorimetry, and stopped-flow fluorescence. Functional 1/1 signaling complexes (Kd = 1-100 nM) composed of activated and nonactivated forms of p38alpha and a splice variant of MK2 (MK2a) were characterized. Catalysis of MK2a phosphorylation and activation by p38alpha was observed to be efficient under conditions where substrate is saturating (kcat(app) = 0.05-0.3 s(-1)) and nonsaturating (kcat(app)/KM(app) = 1-3 x 10(6) M(-1) s(-1)). Specific interactions between the carboxy-terminal residues of MK2a (370-400) and p38alpha precipitate formation of a high-affinity complex (Kd = 20 nM); the p38alpha-dependent MK2a phosphorylation reaction was inhibited by the 30-amino acid docking domain peptide of MK2a (IC50 = 60 nM). The results indicate that the 30-amino acid docking domain peptide of MK2a is required for the formation of a tight, functional p38alpha.MK2a complex, and that perturbation of the tight-docking interaction between these signaling partners prevents the phosphorylation of MK2a. The thermodynamic and steady-state kinetic characterization of the p38alpha.MK2a signaling complex has led to a clear understanding of complex formation, catalysis, and function on the molecular level.  相似文献   

11.
Since the identification of the p38 mitogen-activated protein kinase (MAPK) as a key signal-transducing molecule in the expression of the proinflammatory cytokine tumor necrosis factor (TNF) more than 10 years ago, huge efforts have been made to develop inhibitors of p38 MAPK with the intent to modulate unwanted TNF activity in diseases such as autoimmune diseases or sepsis. However, despite some anti-inflammatory effects in animal models, no p38 MAPK inhibitor has yet demonstrated clinical efficacy in human autoimmune disorders. One possible reason for this paradox might relate to the fact that the p38 MAPK signaling cascade is involved in the functional regulation of several different cell types that all contribute to the complex pathogenesis of human autoimmune diseases. In particular, p38 MAPK has a multifaceted role in CD4 T cells that have been implicated in initiating and driving sustained inflammation in autoimmune diseases, such as rheumatoid arthritis or systemic vasculitis. Here we review recent advances in the understanding of the role of the p38 MAPK signaling cascade in CD4 T cells and the consequences that its inhibition provokes in T cell functions in vitro and in vivo. These new data suggest that p38 MAPK inhibitors may elicit several unwanted effects in human autoimmune diseases but may be useful for the treatment of allergic disorders.  相似文献   

12.
钙离子是细胞内功能最为广泛的第二信使之一,在为数众多的细胞内信号通路中发挥作用。对细胞内钙离子分布、调控及功能的研究是我们了解细胞生理的重要途径。本文基于我们实验室对视网膜的研究工作,介绍了视网膜水平细胞中钙离子信号的调控与生理功能。  相似文献   

13.
14.
CD4+CD25+ regulatory T cells (Treg) are important mediators of immune tolerance. A subset of Treg can be generated in the periphery by TGF-beta dependent conversion of conventional CD4+CD25- T cells into induced Treg (iTreg). In chronic viral infection or malignancy, such induced iTreg, which limit the depletion of aberrant or infected cells, may be of pathogenic relevance. To identify potential targets for therapeutic intervention, we investigated the TGF-beta signaling in Treg. In contrast to conventional CD4+ T cells, Treg exhibited marked activation of the p38 MAP kinase pathway. Inhibition of p38 MAP kinase activity prevented the TGF-beta-dependent conversion of CD4+CD25- T cells into Foxp3+ iTreg in vitro. Of note, the suppressive capacity of nTreg was not affected by inhibiting p38 MAP kinase. Our findings indicate that signaling via p38 MAP kinase seems to be important for the peripheral generation of iTreg; p38 MAP kinase could thus be a therapeutic target to enhance immunity to chronic viral infection or cancer.  相似文献   

15.
The synthesis and in vitro p38 alpha activity of a novel series of benzimidazolone inhibitors is described. The p38 alpha SAR is consistent with a mode of binding wherein the benzimidazolone carbonyl serves as the H-bond acceptor to Met109 of p38 alpha in a manner analogous to the pyridine nitrogen of prototypical pyridylimidazole p38 inhibitors. Potent p38 alpha activity comparable to that of several previously reported p38 inhibitors is observed for this novel chemotype.  相似文献   

16.
CD38, a nonlineage-restricted surface glycoprotein, is an ecto-enzyme (ADP ribosyl cyclase/cADPR hydrolase/EC 3.2.2.6) that regulates cytoplasmic Ca2+ and cell-cell interactions. The molecule also delivers trans-membrane signals, despite a structural ineptitude to the scope. To reconcile these issues in a unitarian model, we compared the effects of CD38 signaling in circulating and residential T lymphocytes, the latter represented by those colonizing the intestinal lamina propria. Results are as follows: 1) LP T cells express an enzymatically active form of CD38, characterized by a modified ratio between cyclase and hydrolase functions; 2) LP T cells do not mobilize Ca2+ upon CD38 ligation, as seen in PB T cells (this condition is due to a lack in activation of PLC- g, constantly observed in PB T lymphocytes); 3) The early steps of CD38 signaling involve activation of lck, syk, and LAT; 4) Late events include synthesis and release of IL-2, IL-4, IL-5, IL-10, IFN-g and GM-CSF; 5) The uniqueness of the CD38 pathway in LP T cells is not caused by impaired interactions with the CD31 ligand. The differences observed concern the signaling machinery that CD38 exploits for its own use and not the interplay with its ligand.  相似文献   

17.
The pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) increases expression of CD38 (a membrane-associated bifunctional enzyme regulating cyclic ADP ribose), and enhances agonist-induced intracellular Ca2 + ([Ca2 +]i) responses in human airway smooth muscle (ASM). We previously demonstrated that caveolae and their constituent protein caveolin-1 are important for ASM [Ca2 +]i regulation, which is further enhanced by TNFα. Whether caveolae and CD38 are functionally linked in mediating TNFα effects is unknown. In this regard, whether the related cavin proteins (cavin-1 and -3) that maintain structure and function of caveolae play a role is also not known. In the present study, we hypothesized that TNFα effects on CD38 expression and function in human ASM involve caveolae. Caveolar fractions from isolated human ASM cells expressed CD38 and its expression was upregulated by exposure to 20 ng/ml TNFα (48 h). ASM cells expressed cavin-1 and cavin-3, which were also upregulated by TNFα. Knockdown of caveolin-1, cavin-1 or cavin-3 (using siRNA) all significantly reduced CD38 expression and ADP-ribosyl cyclase activity in the presence or absence of TNFα. Furthermore, caveolin-1, cavin-1 and cavin-3 siRNAs reduced [Ca2 +]i responses to histamine under control conditions, and blunted the enhanced [Ca2 +]i responses in TNFα-exposed cells. These data demonstrate that CD38 is expressed within caveolae and its function is linked to the caveolar regulatory proteins caveolin-1, cavin-1 and -3. The link between caveolae and CD38 is further enhanced during airway inflammation demonstrating the important role of caveolae in regulation of [Ca2 +]i and contractility in the airway.  相似文献   

18.
Bcl-2-protein family members are essential regulators of apoptosis. Anti-apoptotic Bcl-2 proteins ensure cell survival via different mechanisms, including via binding of pro-apoptotic Bcl-2-family members and the modulation of intracellular Ca2+-transport systems. Many cancer cells upregulate these proteins to overcome the consequences of ongoing oncogenic stress. Bcl-2 inhibition leading to cell death, therefore emerged as a novel cancer therapy. Different Bcl-2 inhibitors have already been developed including the hydrophobic cleft-targeting BH3 mimetics, which antagonize Bcl-2’s ability to scaffold and neutralize pro-apoptotic Bcl-2-family members. As such, the BH3 mimetics have progressed into clinical studies as precision medicines. Furthermore, new inhibitors that target Bcl-2’s BH4 domain have been developed as promising anti-cancer tools. Given Bcl-2’s role in Ca2+ signaling, these drugs and tools can impact Ca2+ signaling. In addition to this, some Bcl-2 inhibitors may have “off-target” effects that cause Ca2+-signaling dysregulation not only in cancer cells but also in healthy cells, resulting in adverse effects. In this review, we aim to provide an up-to-date overview of the involvement of intracellular Ca2+ signaling in the working mechanism and “off-target” effects of the different Bcl-2-antagonizing small molecules and peptides.  相似文献   

19.
20.
Altered intracellular Ca(2+) signaling has been observed in cells derived from Alzheimer's disease patients, and a possible link between gamma-secretase activity and the content of intracellular Ca(2+) stores has been suggested. To test this hypothesis we studied the effects of several gamma-secretase inhibitors on muscarinic receptor-mediated intracellular calcium release in the human salivary gland cell line HSG. Although several inhibitors in the peptide aldehyde class partially blocked carbachol-induced Ca(2+) transients, these effects did not appear to be due to gamma-secretase inhibition, and overall we found no evidence that inhibition of gamma-secretase activity had any significant effect on agonist-induced intracellular calcium release in HSG cells. In complementary experiments with presenilin-null cells we found that the reconstitution of gamma-secretase activity by transfection with wild-type presenilin 1 likewise had no significant effect on thapsigargin-induced Ca(2+) release. In a test of the specific hypothesis that the level of APP intracellular domain (AICD), the intracellular fragment of the beta-amyloid precursor protein (APP) resulting from gamma-secretase cleavage, can modulate the Ca(2+) content of the endoplasmic reticulum, we were unable to demonstrate any effect of APP small interfering RNA on the magnitude of carbachol-induced intracellular calcium release in HSG cells. Together our data cast considerable doubt on the hypothesis that there is a direct link between gamma-secretase activity and the content of intracellular Ca(2+) stores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号