首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Positive inotropic drugs may attenuate or exacerbate the deleterious effects of ischemia and reperfusion (IR) injury on excitation-contraction coupling in hearts. We 1) quantified the phase-space relationship between simultaneously measured myoplasmic Ca2+ concentration ([Ca2+]) and isovolumetric left ventricular pressure (LVP) using indexes of loop area, orientation, and position; and 2) quantified cooperativity by linearly modeling the phase-space relationship between [Ca2+] and rate of LVP development in intact hearts during administration of positive inotropic drugs before and after global IR injury. Unpaced, isolated guinea pig hearts were perfused at a constant pressure with Krebs-Ringer solution (37 degrees C, 1.25 mM CaCl2). [Ca2+] was measured ratiometrically by indo 1 fluorescence by using a fiber-optic probe placed at the left ventricular free wall. LVP was measured by using a saline-filled latex balloon and transducer. Drugs were infused for 2 min, 30 min before, and for 2 min, 30 min after 30-min global ischemia. IR injury worsened Ca2+-contraction coupling, as seen from decreased orientation and repositioning of the loop rightward and downward and reduced cooperativity of contraction and relaxation with or without drugs. Dobutamine (4 microM) worsened, whereas dopamine (8 microM) improved Ca2+-contraction coupling before and after IR injury. Dobutamine and dopamine improved cooperativity of contraction and relaxation after IR injury, whereas only dopamine increased cooperativity of relaxation before IR injury. Digoxin (1 microM) improved Ca2+-contraction coupling and cooperativity of contraction after but not before ischemia. Levosimendan (1 microM) did not alter Ca2+-contraction coupling or cooperativity, despite producing concomitant increases in contractility, relaxation, and Ca2+ flux before and after ischemia. Dynamic indexes based on LVP-[Ca2+] diagrams (area, shape, position) can be used to identify and measure alterations in Ca2+-contraction coupling during administration of positive inotropic drugs in isolated hearts before and after IR injury.  相似文献   

3.
Negative inotropic agents may differentially modulate indexes of cytosolic [Ca(2+)]-left ventricular (LV) pressure (LVP) relationships when given before and after ischemia. We measured and calculated [Ca(2+)], LVP, velocity ratios [[(d[Ca(2+)]/dt(max))/(dLVP/dt(max)); VR(max)] and [(d[Ca(2+)]/dt(min))/(dLVP/dt(min)); VR(min)]], and area ratio (AR; area [Ca(2+)]/area LVP per beat) before and after global ischemia in guinea pig isolated hearts. Ca(2+) transients were recorded by indo 1-AM fluorescence via a fiberoptic probe placed at the LV free wall. [Ca(2+)]-LVP loops were acquired by plotting LVP as a function of [Ca(2+)] at multiple time points during the cardiac cycle. Hearts were perfused with bimakalim, 2,3-butanedione monoxime (BDM), nifedipine, or lidocaine before and after 30 min of ischemia. Before ischemia, each drug depressed LVP, but only nifedipine decreased both LVP and [Ca(2+)] with a downward and leftward shift of the [Ca(2+)]-LVP loop. After ischemia, each drug depressed LVP and [Ca(2+)] with a downward and leftward shift of the [Ca(2+)]-LVP loop. Each drug except BDM decreased d[Ca(2+)]/dt(max); nifedipine decreased d[Ca(2+)]/dt(min), whereas lidocaine increased it, and bimakalim and BDM had no effect on d[Ca(2+)]/dt(min). Each drug except bimakalim increased VR(max) and VR(min) before ischemia; after ischemia, only BDM and nifedipine increased VR(max) and VR(min). Before and after ischemia, BDM and nifedipine increased AR, whereas lidocaine and bimakalim had no effect. At 30 min of reperfusion, control hearts exhibited marked Ca(2+) overload and depressed LVP. In each drug-pretreated group Ca(2+) overload was reduced on reperfusion, but only the group pretreated with nifedipine exhibited both higher LVP and lower [Ca(2+)]. These results show that negative inotropic drugs are less capable of reducing [Ca(2+)] after ischemia so that there is a relatively larger Ca(2+) expenditure for contraction/relaxation after ischemia than before ischemia. Moreover, the differential effects of pretreatment with negative inotropic drugs on [Ca(2+)]-LVP relationships after ischemia suggest that these drugs, especially nifedipine, can elicit cardiac preconditioning.  相似文献   

4.
Ca(+) loading during reperfusion after myocardial ischemia is linked to reduced cardiac function. Like ischemic preconditioning (IPC), a volatile anesthetic given briefly before ischemia can reduce reperfusion injury. We determined whether IPC and sevoflurane preconditioning (SPC) before ischemia equivalently improve mechanical and metabolic function, reduce cytosolic Ca(2+) loading, and improve myocardial Ca(2+) responsiveness. Four groups of guinea pig isolated hearts were perfused: no ischemia, no treatment before 30-min global ischemia and 60-min reperfusion (control), IPC (two 2-min occlusions) before ischemia, and SPC (3.5 vol%, two 2-min exposures) before ischemia. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured at the left ventricular (LV) free wall with the fluorescent probe indo 1. Ca(2+) responsiveness was assessed by changing extracellular [Ca(2+)]. In control hearts, initial reperfusion increased diastolic [Ca(2+)] and diastolic LV pressure (LVP), and the maximal and minimal derivatives of LVP (dLVP/dt(max) and dLVP/dt(min), respectively), O(2) consumption, and cardiac efficiency (CE). Throughout reperfusion, IPC and SPC similarly reduced ischemic contracture, ventricular fibrillation, and enzyme release, attenuated rises in systolic and diastolic [Ca(2+)], improved contractile and relaxation indexes, O(2) consumption, and CE, and reduced infarct size. Diastolic [Ca(2+)] at 50% dLVP/dt(min) was right shifted by 32-53 +/- 8 nM after 30-min reperfusion for all groups. Phasic [Ca(2+)] at 50% dLVP/dt(max) was not altered in control but was left shifted by -235 +/- 40 nM [Ca(2+)] after IPC and by -135 +/- 20 nM [Ca(2+)] after SPC. Both SPC and IPC similarly reduce Ca(2+) loading, while augmenting contractile responsiveness to Ca(2+), improving postischemia cardiac function and attenuating permanent damage.  相似文献   

5.
ATP-sensitive K+ channel opening in inner mitochondrial membranes protects hearts from ischemia-reperfusion (I/R) injury. Opening of the Big conductance Ca2+-sensitive K+ channel (BK(Ca)) is now also known to elicit cardiac preconditioning. We investigated the role of the pharmacological opening of the BK(Ca) channel on inducing mitochondrial preconditioning during I/R and the role of O2-derived free radicals in modulating protection by putative mitochondrial (m)BK(Ca) channel opening. Left ventricular (LV) pressure (LVP) was measured with a balloon and transducer in guinea pig hearts isolated and perfused at constant pressure. NADH, reactive oxygen species (ROS), principally superoxide (O2(-*)), and m[Ca2+] were measured spectrophotofluorometrically at the LV free wall using autofluorescence and fluorescent dyes dihydroethidium and indo 1, respectively. BK(Ca) channel opener 1-(2'-hydroxy-5'-trifluoromethylphenyl)-5-trifluoromethyl-2(3H)benzimid-axolone (NS; NS-1619) was given for 15 min, ending 25 min before 30 min of global I/R. Either Mn(III)tetrakis(4-benzoic acid)porphyrin (TB; MnTBAP), a synthetic dismutator of O2(-*), or an antagonist of the BK(Ca) channel paxilline (PX) was given alone or for 5 min before, during, and 5 min after NS. NS pretreatment resulted in a 2.5-fold increase in developed LVP and a 2.5-fold decrease in infarct size. This was accompanied by less O2(-*) generation, decreased m[Ca2+], and more normalized NADH during early ischemia and throughout reperfusion. Both TB and PX antagonized each preconditioning effect. This indicates that 1) NS induces a mitochondrial-preconditioned state, evident during early ischemia, presumably on mBK(Ca) channels; 2) NS effects are blocked by BK(Ca) antagonist PX; and 3) NS-induced preconditioning is dependent on the production of ROS. Thus NS may induce mitochondrial ROS release to initiate preconditioning.  相似文献   

6.
Dong JW  Zhu HF  Zhou ZN 《生理学报》2003,55(3):245-250
本文旨在研究Na+/H+交换以及Na+/Ca2 +交换对模拟缺血 /复灌引起的大鼠心肌细胞内游离钙水平变化的调节作用。分别利用模拟缺血液和正常台氏液对大鼠心肌细胞进行缺血 /复灌处理 ,在缺血期间分别应用Na+/H+交换抑制剂阿米洛利 (amiloride)、Na+/Ca2 +交换抑制剂NiCl2 以及无钙液 ,观察它们对细胞内游离Ca2 +浓度变化的影响。利用Zeiss LSM 5 10激光共聚焦显微镜检测、采集细胞内游离Ca2 +的指示剂Fluo 3 AM的荧光信号 ,计算出相对于正常(缺血前 )的相对荧光强度 ,以表示胞内游离Ca2 +浓度的变化。结果显示 ,模拟缺血引起大鼠心肌细胞内游离Ca2 +持续上升 ,缺血前的相对荧光强度值为 10 0 % ,模拟缺血 5min后为 140 3± 13 0 % (P <0 0 5 ) ,复灌 15min后为 142 8±15 5 % (P <0 0 5 )。经 10 0 μmol/Lamiloride、5mmol/LNiCl2 和无钙液分别预处理 ,模拟缺血 5min后的相对荧光强度分别为 10 1 4± 16 3 % (P <0 0 5 )、110 4± 11 1% (P <0 0 5 )和 10 7 1± 10 8(P <0 0 5 ) ;复灌 15min后则分别为 97 8±14 3 % (P <0 0 5 )、10 6 2± 14 5 % (P <0 0 5 )和 10 6 6± 15 7(P <0 0 5 )。另外 ,与对照组细胞相比 ,再灌注期间NiCl2和无钙液处理的细胞钙振荡的产生幅度明显减弱 ,amilorid  相似文献   

7.
We investigated the mechanism of positive inotropism of electric currents applied during the absolute refractory period. Ten Langendorff-perfused ferret hearts were instrumented to measure isovolumic left ventricular pressure (LVP) and the aequorin luminescence. Biphasic square-wave electric currents (+/-20 mA, total duration 30 ms) were delivered between pairs of electrodes. Six hearts were perfused at different extracellular Ca(2+) concentrations ([Ca(2+)](o); 1, 2, 4, and 8 mM). These signals increased LVP from 50.0 +/- 9.4 to 70.1 +/- 14.7, from 67.5 +/- 11.0 to 79.0 +/- 15.6, from 79.3 +/- 21.0 to 87.1 +/- 22.8, and from 84.6 +/- 24.0 to 91.8 +/- 28.5 mmHg at the respective [Ca(2+)](o) (P < 0.05). Peak free intracellular [Ca(2+)] ([Ca(2+)](i)) increased from 0.52 +/- 0.13 to 1.37 +/- 0.23, from 0.76 +/- 0.23 to 1.73 +/- 0.14, from 1.10 +/- 0.24 to 2.05 +/- 0.33, and from 1.41 +/- 0.36 to 2.24 +/- 0.36 microM/ml, respectively (P < 0.001). With the use of 1 mg/l propranolol with 1 mM [Ca(2+)](o), LVP and [Ca(2+)](i) were increased significantly from 48.7 +/- 8.18 to 56.3 +/- 6.11 mmHg and from 0.61 +/- 0.11 to 1.17 +/- 0.20 microM, respectively (P < 0.05). In conclusion, positive inotropism of such electrical currents was due to increased peak [Ca(2+)](i) and Ca(2+) responsiveness of the myofilaments did not change significantly.  相似文献   

8.
Protein kinase C (PKC) plays a role in cardioprotection through reduction of intracellular Ca(2+) concentration [Ca(2+)](i) during ischemic preconditioning (IPC). Cardioprotection against ischemic post-conditioning (PC) could be associated with reduced [Ca(2+)](i) through PKC. The calcium-sensing receptor (CaR), G protein-coupled receptor, causes accumulation of inositol phosphate (IP) to increase the release of intracellular Ca(2+). However, this phenomenon can be negatively regulated by PKC through phosphorylation of Thr-888 of the CaR. This study tested the hypothesis that the prevention of cardiomyocyte damage by PC is associated with [Ca(2+)](i) reduction through an interaction of PKC with the CaR. Isolated rat hearts were subjected to 40min of ischemia followed by 90min of reperfusion. The hearts were post-conditioned after the 40min of ischemia by three cycles of 30s of reperfusion and 30s of re-ischemia applied before the 90min of reperfusion. Immunolocalization of PKCepsilon in the cell membrane was observed with IPC and PC, and in hearts exposed to GdCl(3) during PC. CaR was expressed in cardiac cell membrane and interacted with PKC in IPC, PC, and exposure to GdCl(3) during PC groups. On laser confocal microscopy, intracellular Ca(2+) was significantly decreased with IPC, PC, and exposure to GdCl(3) during PC compared with the I/R and PKC inhibitor groups, and cell structure was better preserved and promoted the recovery of cardiac function after reperfusion in the same groups. These results suggested that PKC is involved in cardioprotection against PC through negative feedback of a CaR-mediated reduction in [Ca(2+)](i).  相似文献   

9.
Ding HL  Zhu HF  Dong JW  Zhu WZ  Zhou ZN 《Life sciences》2004,75(21):2587-2603
The aim of this study was to investigate whether and how protein kinase C (PKC) was involved in the protection afforded by intermittent hypoxia (IH) and the subcellular distribution of different PKC isozymes in rat left ventricle. Post-ischemic recovery of left ventricular developed pressure and +/-dP/dtmax in IH hearts were higher than those of normoxic hearts. Chelerythrine (CHE, 5 microM), a PKC antagonist, significantly inhibited the protective effects of IH, but had no influence on normoxic hearts. CHE significantly reduced the effect of IH on the time to maximal contracture (Tmc), but had no significant effect on the amplitude of maximal contracture (Amc) in IH group. In isolated normoxic cardiomyocytes, [Ca(2+)](i), measured as arbitrary units of fluorescence ratio (340 nm/380 nm) of fura-2, gradually increased during 20 min simulated ischemia and kept at high level during 30 min reperfusion. However, [Ca(2+)](i) kept at normal level during simulated ischemia and reperfusion in isolated IH cardiomyocytes. In normoxic myocytes, [Na(+)](i), indicated as actual concentration undergone calibration, gradually increased during 20 min simulated ischemia and quickly declined to almost the same level as that of pre-ischemia during 30 min simulated reperfusion. However, in IH myocytes, [Na(+)](i) increased to a level lower than the corresponding of normoxic myocytes during simulated ischemia and gradually reduced to the similar level as that of normoxic myocytes after simulated reperfusion. 5 microM CHE greatly increased the levels of [Ca(2+)](i) and [Na(+)](i) during ischemia and reperfusion in normoxic and IH myocytes. In addition, we demonstrated that IH up-regulated the baseline protein expression of particulate fraction of PKC-alpha, epsilon, delta isozymes. There is no significant difference of protein expression of PKC-alpha, epsilon, delta isozymes in cytosolic fraction between IH and normoxic group. The above results suggested that PKC contributed to the cardioprotection afforded by IH against ischemia/reperfusion (I/R) injury; the basal up-regulation of the particulate fraction of PKC-alpha, epsilon, delta isozymes in IH rat hearts and the contribution of PKC to the elimination of calcium and sodium overload might underlie the mechanisms of cardioprotection by IH.  相似文献   

10.
11.
Ho R  Fan D  Somlyo AV  Somlyo AP 《Cell calcium》2003,33(4):247-256
We quantitated subcellular elemental concentrations in stimulated and resting guinea pig myocardium to determine whether species-specific properties of guinea pigs or the subcellular localization of mitochondria accounted for reports of higher mitochondrial Ca in guinea pigs than in other species. Small papillary muscles or trabeculae isolated from guinea pig ventricles were stimulated to raise cytosolic [Ca(2+)](i) by two methods: (1). tetanizing by rapid pacing preparations in which Ca(2+) uptake by the sarcoplasmic reticulum was inhibited with cyclopiazonic acid or (2). freeze trapping paced muscles near-peak systole. Electron probe X-ray microanalysis showed no significant difference between the (low, approximately 0.4 mmol/kg dry weight) mitochondrial Ca content of stimulated guinea pig hearts, compared to mitochondria of other species, such as rat and hamsters, and the Ca contents of peripheral and central mitochondria were also not significantly different.  相似文献   

12.
Regulation of cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) in airway smooth muscle (ASM) is a key aspect of airway contractility and can be modulated by inflammation. Mitochondria have tremendous potential for buffering [Ca(2+)](cyt), helping prevent Ca(2+) overload, and modulating other intracellular events. Here, compartmentalization of mitochondria to different cellular regions may subserve different roles. In the present study, we examined the role of Ca(2+) buffering by mitochondria and mitochondrial Ca(2+) transport mechanisms in the regulation of [Ca(2+)](cyt) in enzymatically dissociated human ASM cells upon exposure to the proinflammatory cytokines TNF-α and IL-13. Cells were loaded simultaneously with fluo-3 AM and rhod-2 AM, and [Ca(2+)](cyt) and mitochondrial Ca(2+) concentration ([Ca(2+)](mito)) were measured, respectively, using real-time two-color fluorescence microscopy in both the perinuclear and distal, perimembranous regions of cells. Histamine induced a rapid increase in both [Ca(2+)](cyt) and [Ca(2+)](mito), with a significant delay in the mitochondrial response. Inhibition of the mitochondrial Na(+)/Ca(2+) exchanger (1 μM CGP-37157) increased [Ca(2+)](mito) responses in perinuclear mitochondria but not distal mitochondria. Inhibition of the mitochondrial uniporter (1 μM Ru360) decreased [Ca(2+)](mito) responses in perinuclear and distal mitochondria. CGP-37157 and Ru360 significantly enhanced histamine-induced [Ca(2+)](cyt). TNF-α and IL-13 both increased [Ca(2+)](cyt), which was associated with decreased [Ca(2+)](mito) in the case of TNF-α but not IL-13. The effects of TNF-α on both [Ca(2+)](cyt) and [Ca(2+)](mito) were affected by CGP-37157 but not by Ru360. Overall, these data demonstrate that in human ASM cells, mitochondria buffer [Ca(2+)](cyt) after agonist stimulation and its enhancement by inflammation. The differential regulation of [Ca(2+)](mito) in different parts of ASM cells may serve to locally regulate Ca(2+) fluxes from intracellular sources versus the plasma membrane as well as respond to differential energy demands at these sites. We propose that such differential mitochondrial regulation, and its disruption, may play a role in airway hyperreactivity in diseases such as asthma, where [Ca(2+)](cyt) is increased.  相似文献   

13.
Mitochondrial calcium plays a crucial role in mitochondrial metabolism, cell calcium handling, and cell death. However, some mechanisms concerning mitochondrial calcium regulation are still unknown, especially how mitochondrial calcium couples with cytosolic calcium. In this work, we constructed a novel mitochondrial calcium fluorescent indicator (mito-GCaMP2) by genetic manipulation. Mito-GCaMP2 was imported into mitochondria with high efficiency and the fluorescent signals co-localized with that of tetramethyl rhodamine methyl ester, a mitochondrial membrane potential indicator. The mitochondrial inhibitors specifically decreased the signals of mito-GCaMP2. The apparent K(d) of mito-GCaMP2 was 195.0 nmol/L at pH 8.0 in adult rat cardiomyocytes. Furthermore, we observed that mito-GCaMP2 preferred the alkaline pH surrounding of mitochondria. In HeLa cells, we found that mitochondrial calcium ([Ca(2+)](mito)) responded to the changes of cytosolic calcium ([Ca(2+)](cyto)) induced by histamine or thapasigargin. Moreover, external Ca(2+) (100 μmol/L) directly induced an increase of [Ca(2+)](mito) in permeabilized HeLa cells. However, in rat cardiomyocytes [Ca(2+)](mito) did not respond to cytosolic calcium transients stimulated by electric pacing or caffeine. In permeabilized cardiomyocytes, 600 nmol/L free Ca(2+) repeatedly increased the fluorescent signals of mito-GCaMP2, which excluded the possibility that mito-GCaMP2 lost its function in cardiomyocytes mitochondria. These results showed that the response of mitochondrial calcium is diverse in different cell lineages and suggested that mitochondria in cardiomyocytes may have a special defense mechanism to control calcium flux.  相似文献   

14.
We modeled changes in contractile element kinetics derived from the cyclic relationship between myoplasmic [Ca(2+)], measured by indo 1 fluorescence, and left ventricular pressure (LVP). We estimated model rate constants of the Ca(2+) affinity for troponin C (TnC) on actin (A) filament (TnCA) and actin and myosin (M) cross-bridge (A x M) cycling in intact guinea pig hearts during baseline 37 degrees C perfusion and evaluated changes at 1) 20 min 17 degrees C pressure, 2) 30-min reperfusion (RP) after 30-min 37 degrees C global ischemia during 37 degrees C RP, and 3) 30-min RP after 240-min 17 degrees C global ischemia during 37 degrees C RP. At 17 degrees C perfusion versus 37 degrees C perfusion, the model predicted: A x M binding was less sensitive; A x M dissociation was slower; Ca(2+) was less likely to bind to TnCA with A x M present; and Ca(2+) and TnCA binding was less sensitive in the absence of A x M. Model results were consistent with a cold-induced fall in heart rate from 260 beats/min (37 degrees C) to 33 beats/min (17 degrees C), increased diastolic LVP, and increased phasic Ca(2+). On RP after 37 degrees C ischemia vs. 37 degrees C perfusion, the model predicted the following: A x M binding was less sensitive; A x M dissociation was slower; and Ca(2+) was less likely to bind to TnCA in the absence of A. M. Model results were consistent with reduced myofilament responsiveness to [Ca(2+)] and diastolic contracture on 37 degrees C RP. In contrast, after cold ischemia versus 37 degrees C perfusion, A x M association and dissociation rates, and Ca(2+) and TnCA association rates, returned to preischemic values, whereas the dissociation rate of Ca(2+) from A x M was ninefold faster. This cardiac muscle kinetic model predicted a better-restored relationship between Ca(2+) and cross-bridge function on RP after an eightfold longer period of 17 degrees C than 37 degrees C ischemia.  相似文献   

15.
Mitochondrial Ca(2+) uptake is thought to provide an important signal to increase energy production to meet demand but, in excess, can also trigger cell death. The mechanisms defining the relationship between total Ca(2+) uptake, changes in mitochondrial matrix free Ca(2+), and the activation of the mitochondrial permeability transition pore (PTP) are not well understood. We quantitatively measure changes in [Ca(2+)](out) and [Ca(2+)](mito) during Ca(2+) uptake in isolated cardiac mitochondria and identify two components of Ca(2+) influx. [Ca(2+)](mito) recordings revealed that the first, MCU(mode1), required at least 1 μM Ru360 to be completely inhibited, and responded to small Ca(2+) additions in the range of 0.1 to 2 μM with rapid and large changes in [Ca(2+)](mito). The second component, MCU(mode2), was blocked by 100 nM Ru360 and was responsible for the bulk of total Ca(2+) uptake for large Ca(2+) additions in the range of 2 to 10 μM; however, it had little effect on steady-state [Ca(2+)](mito). MCU(mode1) mediates changes in [Ca(2+)](mito) of 10s of μM, even in the presence of 100 nM Ru360, indicating that there is a finite degree of Ca(2+) buffering in the matrix associated with this pathway. In contrast, the much higher Ca(2+) loads evoked by MCU(mode2) activate a secondary dynamic Ca(2+) buffering system consistent with calcium-phosphate complex formation. Increasing P(i) potentiated [Ca(2+)](mito) increases via MCU(mode1) but suppressed [Ca(2+)](mito) changes via MCU(mode2). The results suggest that the role of MCU(mode1) might be to modulate oxidative phosphorylation in response to intracellular Ca(2+) signaling, whereas MCU(mode2) and the dynamic high-capacity Ca(2+) buffering system constitute a Ca(2+) sink function. Interestingly, the trigger for PTP activation is unlikely to be [Ca(2+)](mito) itself but rather a downstream byproduct of total mitochondrial Ca(2+) loading.  相似文献   

16.
The Chromogranin A (CgA)-derived anti-hypertensive peptide catestatin (CST) antagonizes catecholamine secretion, and is a negative myocardial inotrope acting via a nitric oxide-dependent mechanism. It is not known whether CST contributes to ischemia/reperfusion injury or is a component of a cardioprotective response to limit injury. Here, we tested whether CST by virtue of its negative inotropic activity improves post-ischemic cardiac function and cardiomyocyte survival. Three groups of isolated perfused hearts from adult Wistar rats underwent 30-min ischemia and 120-min reperfusion (I/R, Group 1), or were post-conditioned by brief ischemic episodes (PostC, 5-cycles of 10-s I/R at the beginning of 120-min reperfusion, Group 2), or with exogenous CST (75 nM for 20 min, CST-Post, Group-3) at the onset of reperfusion. Perfusion pressure and left ventricular pressure (LVP) were monitored. Infarct size was evaluated with nitroblue-tetrazolium staining. The CST (5 nM) effects were also tested in simulated ischemia/reperfusion experiments on cardiomyocytes isolated from young-adult rats, evaluating cell survival with propidium iodide labeling. Infarct size was 61 ± 6% of risk area in hearts subjected to I/R only. PostC reduced infarct size to 34 ± 5%. Infarct size in CST-Post was 36 ± 3% of risk area (P < 0.05 respect to I/R). CST-Post reduced post-ischemic rise of diastolic LVP, an index of contracture, and significantly improved post-ischemic recovery of developed LVP. In isolated cardiomyocytes, CST increased the cell viability rate by about 65% after simulated ischemia/reperfusion. These results suggest a novel cardioprotective role for CST, which appears mainly due to a direct reduction of post-ischemic myocardial damages and dysfunction, rather than to an involvement of adrenergic terminals and/or endothelium.  相似文献   

17.
Determinations of intracellular [Ca(2+)](i) during ischemia using fluorescent indicators are hampered by overlapping cellular autofluorescence (AF), which largely depends on NADH. If Ca(2+) is to be determined under different kinds of ischemia, signal separation merits special attention. We used triple wavelength excitation fluorescence to separate autofluorescence from [Ca(2+)]-dependent fura-2 fluorescence. Excitation at 360 nm served as third, Ca(2+)-insensitive wavelength. Using an appropriate evaluation procedure, we separated Ca(2+)-dependent signals from autofluorescence which is semiquantitatively associated with NADH, an indicator of the cellular redox state. We compared changes of [Ca(2+)](i) in isolated hearts during ischemia following cardioplegic arrest with those after transient stop of nutritive perfusion. We observed [Ca(2+)] transients in spontaneously beating hearts, persisting during ischemic episodes, and an increase of mean [Ca(2+)](i). In contrast, cardioplegic arrest stopped periodical [Ca(2+)](i) transients and heart beats simultaneously. [Ca(2+)](i) remained at diastolic values, tended to decrease during the first minutes of cardioplegic arrest and then increased slowly. Autofluorescence increased under both conditions. During ischemia, this increase was faster than in cardioplegia experiments. It started after the last heart beat despite persisting perfusion. Our measurements demonstrate that rhythmical heart beat is essential for sufficient perfusion. Reduced [Ca(2+)](i) under cardioplegic arrest may influence metabolism.  相似文献   

18.
Zhang ZX  Qi XY  Xu YQ 《生理学报》2003,55(1):24-28
应用全细胞膜片钳及激光共聚焦技术 ,研究银杏苦内酯B(ginkgolideB ,GB)对豚鼠心室肌细胞L 型钙电流及胞内游离钙的作用 ,并探讨GB心肌保护作用的机制。实验结果显示 ,在指令电压为 0mV时 ,GB对生理状态下豚鼠心室肌细胞L 型钙电流无明显作用。在模拟缺血状态下 ,L 型钙峰值电流减小 3 7 71% ,但加入 1μmol/LGB后 ,可逆转缺血引起的L 型钙电流的降低 ,与缺血对照组比较 ,有显著性差异 (P <0 0 5 )。 1μmol/LGB能使由于模拟缺血而上移的L 型钙电流 电压曲线回复正常。在生理状态下 ,0 1、1、10mol/LGB分别使心肌细胞内游离钙降低 10 5 8%(n =12 )、17 2 7% (n =12 )、16 3 5 % (n =10 ) ,与对照组相比有非常显著性差异。模拟缺血液灌流 12min时 ,细胞内游离钙浓度增加 2 0 15 % ,在模拟缺血液中分别加入 1μmol/Lnifedipine或 5mmol/LNiCl2 ,结果显示 :模拟缺血液灌流 12min ,与正常对照组相比细胞内钙分别增加 18 18% (P >0 0 5 )与 11% (P <0 0 5 )。在模拟缺血液中加入1mol/LGB灌流 12min时细胞内钙仅增加 9 60 % (n =12 ,P <0 0 0 1) ,与缺血对照组相比有显著性差异 (P <0 0 5 )。结果表明 ,GB可逆转模拟缺血造成L 型钙电流的降低 ,同时可部分减轻由于缺血所造成的细胞内钙的超载  相似文献   

19.
We investigated changes in cytoplasmic Ca2+ concentration ([Ca2+]i) and in left ventricular contractility during sustained ischemia and reperfusion in isolated beating rat hearts. Hearts from male Sprague-Dawley rats were perfused retrogradely and were loaded with 4 M fura-2. Low-flow global ischemia was induced by reducing perfusion flow to 10% and by electric pacing. The hearts were exposed to ischemia for 10 min or 30 min and then reperfused. [Ca2+]i was measured by monitoring the ratio of 500 nm fluorescence excited at 340 and 380 nm while simultaneously measuring left ventricular pressure (LVP). To determine diastolic [Ca2+]i, background autofluorescence was subtracted. LVP rapidly decreased from 82.3 ± 8.2 to 17.1 ± 2.9 mmHg , whereas the amplitude of the Ca2+ transient did not change significantly during the first 1 min of ischemia. After 10 min of ischemia, the amplitude decreased to 60.8 ± 10.6% (p < 0.05) and diastolic [Ca2+]i increased by 26.3 ± 2.9% (p < 0.001) compared with the pre-ischemic value (n = 8). When the hearts were reperfused after 10 min of ischemia, the amplitude of the Ca2+ transient and LVP recovered to 79.0 ± 7.2% and 73.2 ± 7.5 mmHg, respectively. Whereas diastolic [Ca2+]i decreased to the pre-ischemic value. In the hearts exposed to 30 min of ischemia (n = 10), diastolic [Ca2+]i increased even further by 32.7 ± 5.3% at the end of ischemia and continued increasing during the 10 min of reperfusion by 42.6 ± 15.6%. Six of 10 hearts developed ventricular fibrillation (VF) and intracellular Ca2+ overload after reperfusion. Recovery of LVP after reperfusion was significantly smaller in the hearts exposed to 30 min of ischemia than in the hearts exposed to 10 min of ischemia (58.9 ± 11.7 vs. 97.2 ± 3.0% of pre-ischemic value, p < 0.05). Diastolic [Ca2+]i also increased under hypoxic conditions (N2 bubbling) in this model. These results suggest that increases in diastolic [Ca2+]i might play an important role in myocardial contractile dysfunction and viability in ischemia-reperfusion injury.  相似文献   

20.
The aim of this study was to investigate the tolerance of failing myocardium from postinfarction rats to simulated ischemia. Myocardial infarction (MI) was induced by ligation of the left coronary artery in male Wistar rats. Isometric force and free intracellular Ca(2+) concentration ([Ca(2+)](i)) were measured in isolated left ventricular papillary muscles from sham-operated and post-MI animals 6 wk after surgery. Ischemia was simulated by using fluorocarbon immersion with hypoxia. Results showed that mechanical performance was depressed during the period of hypoxia in physiological salt solution (44 +/- 7% of baseline in sham vs. 30 +/- 6% of baseline in MI, P < 0.05) or ischemia (16 +/- 2% of baseline in sham vs. 9 +/- 1% of baseline in MI, P < 0.01) accompanied by no corresponding decrease of peak [Ca(2+)](i) (hypoxia: 51 +/- 8% of baseline in sham vs. 46 +/- 7% of baseline in MI, P = NS; ischemia: 47 +/- 5% of baseline in sham, 39 +/- 7% of baseline in MI, P = NS). After reoxygenation, [Ca(2+)](i) rapidly returned to near preischemic basal levels, whereas developed tension in fluorocarbon remained significantly lower. This dissociation between peak [Ca(2+)](i) and isometric contractility was more pronounced in the failing myocardium from postinfarction rats. In conclusion, more severe impairment of [Ca(2+)](i) homeostasis in the failing myocardium from postinfarction rats increases susceptibility to ischemia-reperfusion injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号