首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Terrestrial mud volcanism represents the prominent surface geological feature, where fluids and hydrocarbons are discharged along deeply rooted structures in tectonically active regimes. Terrestrial mud volcanoes (MVs) directly emit the major gas phase, methane, into the atmosphere, making them important sources of greenhouse gases over geological time. Quantification of methane emission would require detailed insights into the capacity and efficiency of microbial metabolisms either consuming or producing methane in the subsurface, and establishment of the linkage between these methane-related metabolisms and other microbial or abiotic processes. Here we conducted geochemical, microbiological and genetic analyses of sediments, gases, and pore and surface fluids to characterize fluid processes, community assemblages, functions and activities in a methane-emitting MV of southwestern Taiwan. Multiple lines of evidence suggest that aerobic/anaerobic methane oxidation, sulfate reduction and methanogenesis are active and compartmentalized into discrete, stratified niches, resembling those in marine settings. Surface evaporation and oxidation of sulfide minerals are required to account for the enhanced levels of sulfate that fuels subsurface sulfate reduction and anaerobic methanotrophy. Methane flux generated by in situ methanogenesis appears to alter the isotopic compositions and abundances of thermogenic methane migrating from deep sources, and to exceed the capacity of microbial consumption. This metabolic stratification is sustained by chemical disequilibria induced by the mixing between upward, anoxic, methane-rich fluids and downward, oxic, sulfate-rich fluids.  相似文献   

2.
Thermokarst lagoons represent the transition state from a freshwater lacustrine to a marine environment, and receive little attention regarding their role for greenhouse gas production and release in Arctic permafrost landscapes. We studied the fate of methane (CH4) in sediments of a thermokarst lagoon in comparison to two thermokarst lakes on the Bykovsky Peninsula in northeastern Siberia through the analysis of sediment CH4 concentrations and isotopic signature, methane-cycling microbial taxa, sediment geochemistry, lipid biomarkers, and network analysis. We assessed how differences in geochemistry between thermokarst lakes and thermokarst lagoons, caused by the infiltration of sulfate-rich marine water, altered the microbial methane-cycling community. Anaerobic sulfate-reducing ANME-2a/2b methanotrophs dominated the sulfate-rich sediments of the lagoon despite its known seasonal alternation between brackish and freshwater inflow and low sulfate concentrations compared to the usual marine ANME habitat. Non-competitive methylotrophic methanogens dominated the methanogenic community of the lakes and the lagoon, independent of differences in porewater chemistry and depth. This potentially contributed to the high CH4 concentrations observed in all sulfate-poor sediments. CH4 concentrations in the freshwater-influenced sediments averaged 1.34 ± 0.98 μmol g−1, with highly depleted δ13C-CH4 values ranging from −89‰ to −70‰. In contrast, the sulfate-affected upper 300 cm of the lagoon exhibited low average CH4 concentrations of 0.011 ± 0.005 μmol g−1 with comparatively enriched δ13C-CH4 values of −54‰ to −37‰ pointing to substantial methane oxidation. Our study shows that lagoon formation specifically supports methane oxidizers and methane oxidation through changes in pore water chemistry, especially sulfate, while methanogens are similar to lake conditions.  相似文献   

3.
陆地生态系统甲烷产生和氧化过程的微生物机理   总被引:8,自引:0,他引:8  
张坚超  徐镱钦  陆雅海 《生态学报》2015,35(20):6592-6603
陆地生态系统存在许多常年性或季节性缺氧环境,如:湿地、水稻土、湖泊沉积物、动物瘤胃、垃圾填埋场和厌氧生物反应器等。每年有大量有机物质进入这些环境,在缺氧条件下发生厌氧分解。甲烷是有机质厌氧分解的最终产物。产生的甲烷气体可通过缺氧-有氧界面释放到大气,产生温室效应,是重要的温室气体。产甲烷过程是缺氧环境中有机质分解的核心环节,而甲烷氧化是缺氧-有氧界面的重要微生物过程。甲烷的产生和氧化过程共同调控大气甲烷浓度,是全球碳循环不可分割的组成部分。对陆地生态系统甲烷产生和氧化过程的微生物机理研究进展进行了概要回顾和综述。主要内容包括:新型产甲烷古菌即第六和第七目产甲烷古菌和嗜冷嗜酸产甲烷古菌的发现;短链脂肪酸中间产物互营氧化过程与直接种间电子传递机制;新型甲烷氧化菌包括厌氧甲烷氧化菌和疣微菌属好氧甲烷氧化菌的发现;甲烷氧化菌生理生态与环境适应的新机制。这些研究进展显著拓展了人们对陆地生态系统甲烷产生和氧化机理的认识和理解。随着新一代土壤微生物研究技术的发展与应用,甲烷产生和氧化微生物研究领域将面临更多机遇和挑战,对未来发展趋势做了展望。  相似文献   

4.
Antonie van Leeuwenhoek - The diversity of anaerobic microorganisms in terrestrial mud volcanoes is largely unexplored. Here we report the isolation of a novel sulfate-reducing alkaliphilic...  相似文献   

5.
In San Biagio of Belpasso, approximately 20 km south of Mt. Etna, in the area of contact between volcanic and sedimentary formations, a number of small (3- 60 cm in diameter) active mud eruptions discharge CO2-rich gases, mud and NaCl brines. They can be described as mini-volcanoes owing to their typical conic shapes and continuously bubbling peak craters. Samples were collected from the active peak craters at a depth of 20 cm and DNA was immediately extracted and amplified with universal 16S rRNA gene-specific primers, followed by cloning procedure. A total of 140 bacterial clones obtained were screened and clustered by restriction fragment length polymorphism (RFLP) analysis. The pool of 16S rRNA sequences representing each RFLP cluster was subjected to phylogenetic analysis. All of the 33 sequences analysed were affiliated with the kingdom of Eubacteria; 28 sequences (77% of all clones) affiliated with the Proteobacteria, two sequences (19% of all clones) were affiliated with Actinobacteria and three sequences (4% of all clones) were affiliated with the Flexibacter-Cytophaga-Bacteroides division. The data obtained suggest that the microorganisms phylogenetically affiliated to autotrophic methane oxidizers and heterotrophic hydrocarbon degraders belonging to the gamma-subclass of Proteobacteria are major constituents of the microbial communities of the saline volcanic muds. Overall, the composition of the microbial community of the San Biagio mud volcano resembles the compositions of marine microbial communities, which might indicate that wind-blown seawater vapour acted as an inoculum for microbial community described in present work.  相似文献   

6.
The gas hydrate-bearing structure—mud volcano Kedr-1 (Lake Baikal, southern basin)—is located near the coal-bearing sediments of the Tankhoy formation of Oligocene–Miocene age and can be an ideal source of gas-saturated fluid. A significant amount of siderite minerals (FeCO3) were collected from sediments at depths ranging from 0.5 to 327 cm below the lake floor (cmblf). An important feature of these carbonate minerals is the extremely strong enrichment in the heavy 13C isotope, reaching values of +33.3‰ VPDB. The δ13C of the siderite minerals, as well as their morphology and elemental composition, and the δ13CDIC of the co-existing pore water, differed across layers of the core, which implies at least two generations of siderite formation. Here, we leverage mineralogical and geochemical data with 16S rRNA data from the microbial communities in sediments surrounding layers containing siderite minerals. Statistical data reveal the formation of three clusters of microbial communities based on taxonomical composition, key taxa among bacteria and archaea, and environmental parameters. Diversity and richness estimators decrease with sediment depth, with several similar prevailing clades located at the bottom of the core. Most of the taxa in the deep sediments could be associated with putative metabolisms involving organotrophic fermentation (Bathyarchaeia, Caldatribacteriota, and Chloroflexota). Various groups of methanogens (Methanoregulaceae, Methanosaetaceae, and Methanomassiliicoccales) and methanotrophic (Methanoperedenaceae) archaea are present in the sediment at variable relative abundances throughout the sampled depth. Based on the physicochemical characteristics of the sediment, carbon isotope analysis of carbonate minerals and DIC, and phylogenetic analysis of individual taxa and their metabolic potential, we present several models for subsurface siderite precipitation in Lake Baikal sediments.  相似文献   

7.
新疆泥火山产酶嗜盐放线菌的筛选及多样性   总被引:2,自引:0,他引:2  
[目的]了解新疆乌苏泥火山嗜盐放线菌及其产酶功能多样性.[方法]分别采用含有5%与10%NaCl的5种分离培养基,稀释平板涂布法对泥火山土壤样品进行分离;利用五种筛选培养基定性检测酶活性;在形态特征、耐盐性实验及16S rDNA基因测序的基础上进行系统发育学分析.[结果]获得嗜盐放线菌43株,极端嗜盐放线菌3株.4株嗜盐放线菌产脂肪酶,30株产半乳糖苷酶,27株产淀粉酶,6株产酯酶,4株产纤维素酶,1株同时产4种酶.系统发育学分析结果表明其中24株为拟诺卡氏菌属(Nocardiopsis),1株为链霉菌属(Streptomyces).产两种酶的菌株10006与Nocardiopsis exhalans(AY03600)相似性为96.64%(小于97%),可能是潜在的新种.[结论]本研究表明新疆乌苏泥火山中存在大量的产半乳糖苷酶及淀粉酶的嗜盐放线菌,所分离到的拟诺卡氏菌属产酶多样性比较高,并且潜藏着新的微生物资源.  相似文献   

8.
Extremophiles - Diversity of extremophilic microorganisms in mud volcanoes is largely unexplored. Here, we report the isolation of a novel alkaliphilic, mesophilic, fermentative bacterium (strain...  相似文献   

9.
A novel anaerobic bacterium (strain M08_MBT) was isolated from a terrestrial mud volcano (Taman Peninsula, Russia). Gram-stain-negative cells were straight and slender rods with gliding motility, occasionally forming long filaments. The isolate was mesophilic, slightly halo- and alkaliphilic chemoorganoheterotroph, growing on carbohydrates (starch, dextrin, pectin, glucose, fructose, mannose, maltose, trehalose, lactose, sucrose) and proteinaceous compounds (peptone, tryptone, gelatin, casein and albumin). Strain M08_MBT tolerated 3% oxygen in the gas phase while catalase negative. The dominant cellular fatty acids of strain M08_MBT were C15:0, C15:1 and C13:0 acids. 16S rRNA gene sequence analysis revealed that strain M08_MBT belongs to the order Bacteroidales and only distantly related to other cultivated members of this order (85.12–90.01% 16S rRNA gene similarity). The genome of strain M08_MBT had a size of 4.37 Mb with a DNA G + C content of 43.5 mol% (WGS). The genes involved in gliding motility, proteolysis, central carbon metabolism, and oxygen tolerance were listed in genome annotation. Based on the phenotypic and genotypic characteristics, strain M08_MBT represents a novel species of a novel genus within family Tenuifilaceae, with proposed name Perlabentimonas gracilis gen. nov., sp. nov. The type strain is M08_ MBT (=DSM 110720 T = VKM B-3471 T). This is the first representative of Bacteroidales isolated in pure culture from a mud volcano.  相似文献   

10.
Chemolithoautotrophic microorganisms can play a significant role in the biogeochemical cycling of elements in deep-subsurface-associated environments. A novel facultatively anaerobic lithoautotrophic bacteria (strains SB48T and SN1189) were isolated from terrestrial mud volcanoes (Krasnodar Krai, Russia). Cells of the strains were straight motile rods. Growth was observed at temperatures up to 35 °C (optimum at 30 °C), pH 6.0–8.5 (optimum at pH 7.5) and NaCl concentrations of 0.5–4.0% (w/v) (optimum at 1.5–2.0% (w/v)). The isolates grew chemolithoautotrophically with molecular hydrogen or thiosulfate as an electron donor, nitrate as an electron acceptor and CO2/HCO3 as a carbon source. They also grew with organic acids, ethanol, yeast extract and peptone. The isolates were capable of either anaerobic respiration with nitrate or nitrous oxide as the electron acceptors or aerobic respiration under microaerobic condition. The total size of the genome of strains SB48T and SN1189 was 4.71 and 5.13 Mbp, respectively. Based on phenotypic and phylogenetic characteristics, strains SB48T and SN1189 represent a novel species of the genus Sedimenticola, S. hydrogenitrophicus (the type strain is SB48T = KCTC 25568 T = VKM B-3680 T). The new isolates are the first representatives of the genus Sedimenticola isolated from a terrestrial ecosystem. Based on phylogenomic reconstruction we propose to include the genus Sedimenticola and the related genera into a new family Sedimenticolaceae fam. nov. within the order Chromatiales.  相似文献   

11.
Extremophiles - Raoul Island is a subaerial island volcano approximately 1000 km northeast of New Zealand. Its caldera contains a circumneutral closed-basin volcanic lake and several...  相似文献   

12.
13.
新疆泥火山细菌遗传多样性   总被引:7,自引:0,他引:7  
为了解新疆乌苏泥火山细菌多样性,从泥火山泥浆样品中直接提取总DNA,构建了含150个有效转化子的泥火山细菌16S rDNA基因文库,转化子经菌液PCR及HaeⅢ酶切后获得16个不同带型,克隆测序结果表明,其分属于16个不同的分类单元.一部分序列与已知细菌类群的16S rDNA序列相似性较高,归属变形菌门(Proteobacteria),厚壁菌门(Firmicutes),梭杆菌门(Fusobacteria),放线菌门(Actinobacteria);另外一部分序列与已知细菌类群的16S rDNA序列同源性较低,可能代表新的分类单位.研究结果显示,泥火山环境中微生物种群丰富,值得进一步研究.  相似文献   

14.
The role of polyphenols in terrestrial ecosystem nutrient cycling   总被引:3,自引:0,他引:3  
Interspecific variation in polyphenol production by plants has been interpreted in terms of defense against herbivores. Several recent lines of evidence suggest that polyphenols also influence the pools and fluxes of inorganic and organic soil nutrients. Such effects could have far-ranging consequences for nutrient competition among and between plants and microbes, and for ecosystem nutrient cycling and retention. The significance of polyphenols for nutrient cycling and plant productivity is still uncertain, but it could provide an alternative or complementary explanation for the variability in polyphenol production by plants.  相似文献   

15.
16.
Although recent anthropogenic effects on the global nitrogen (N) cycle have been significant, the consequences of increased anthropogenic N on terrestrial ecosystems are unclear. Studies of the impact of increased reactive N on forest ecosystems—impacts on hydrologic and gaseous loss pathways, retention capacity, and even net primary productivity—have been particularly limited by a lack of long-term baseline biogeochemical data. Stable nitrogen isotope analysis (ratio of 15N to 14N, termed δ15N) of wood chronologies offers the potential to address changes in ecosystem N cycling on millennial timescales and across broad geographic regions. Currently, nearly 50 studies have been published utilizing wood δ15N records; however, there are significant differences in study design and data interpretation. Here, we identify four categories of wood δ15N studies, summarize the common themes and primary findings of each category, identify gaps in the spatial and temporal scope of current wood δ15N chronologies, and synthesize methodological frameworks for future research by presenting eight suggestions for common methodological approaches and enhanced integration across studies. Wood δ15N records have the potential to provide valuable information for interpreting modern biogeochemical cycling. This review serves to advance the utility of this technique for long-term biogeochemical reconstructions.  相似文献   

17.
陆地生态系统碳循环模型研究概述   总被引:14,自引:1,他引:14  
陆地碳循环研究是全球变化研究中的一个重要组成部分,而碳循环模型已成为目前研究陆地碳循环的必要手段.本文针对有关碳循环研究方面的进展,介绍了陆地碳循环模型的基本结构、碳循环过程中涉及的两个基本模型以及目前陆地生态系统碳循环模型的两大类型,并通过对现有主要陆地生态系统碳收支模式的分析,指出了未来陆地碳循环模型的研究方向可能是发展基于动态植被的生物物理模型.这种耦合模型也可能是地球系统模式的重要组成部分.  相似文献   

18.
In the River Saar, the distribution of methane-oxidizing bacteria and their metabolic activity were determined in vertical and longitudinal profiles. At the sediment surface about two orders of magnitude more methane oxidizers were detected than in the overlying water. In the river as well as in laboratory experiments, the rate of methane oxidation was closely related to the concentration of methane. Most of the methane produced by methanogenic bacteria in the the sediment escaped into the atmosphere. On the average only 1.2% of the produced methane was oxidized in the water phase.  相似文献   

19.
Microbial diversity and biogeochemical cycling in soda lakes   总被引:2,自引:0,他引:2  
Soda lakes contain high concentrations of sodium carbonates resulting in a stable elevated pH, which provide a unique habitat to a rich diversity of haloalkaliphilic bacteria and archaea. Both cultivation-dependent and -independent methods have aided the identification of key processes and genes in the microbially mediated carbon, nitrogen, and sulfur biogeochemical cycles in soda lakes. In order to survive in this extreme environment, haloalkaliphiles have developed various bioenergetic and structural adaptations to maintain pH homeostasis and intracellular osmotic pressure. The cultivation of a handful of strains has led to the isolation of a number of extremozymes, which allow the cell to perform enzymatic reactions at these extreme conditions. These enzymes potentially contribute to biotechnological applications. In addition, microbial species active in the sulfur cycle can be used for sulfur remediation purposes. Future research should combine both innovative culture methods and state-of-the-art ‘meta-omic’ techniques to gain a comprehensive understanding of the microbes that flourish in these extreme environments and the processes they mediate. Coupling the biogeochemical C, N, and S cycles and identifying where each process takes place on a spatial and temporal scale could unravel the interspecies relationships and thereby reveal more about the ecosystem dynamics of these enigmatic extreme environments.  相似文献   

20.
Nutrient cycling within three Pinus sylvestris stands was studied in eastern Finland. The aim of the study was to determine annual fluxes and distribution of N, P, K, Ca, Mg, Zn, Fe, B, and Al in the research stands. Special emphasis was put on determining the importance of different fluxes, especially the internal cycle within the trees in satisfying the tree nutrient requirements for biomass production. The following nutrient fluxes were included, input; free precipitation and throughfall, output; percolation through soil profile, biological cycle; nutrient uptake from soil, retranslocation within trees, return to soil in litterfall, release by litter decomposition. The distribution of nutrients was determined in above- and belowground tree compartments, in ground and field vegetation, and in soil.The nitrogen use efficiencies were 181, 211 and 191 g of tree aboveground dry matter produced per g of N supplied by uptake and retranslocation in the sapling, pole stage and mature stands, respectively. Field vegetation was more efficient in nitrogen use than trees. Stand belowground/aboveground and fine root/coarse root biomass ratios decreased with tree age. With only slightly higher fine root biomass, almost three times more nitrogen had to be taken-up from soil for biomass production in the mature stand than in the sapling stand.The annual input-output balances of most nutrients were positive; throughfall contained more nutrients than was lost in mineral soil leachate. The sulphate flux contributed to the leaching of cations, especially magnesium, from soil in the mature stand.Retranslocation supplied 17–42% of the annual N, P and K requirements for tree aboveground biomass production. Precipitation and throughfall were important in transferring K and Mg, and also N in the sapling stand. Litterfall was an important pathway for N, Ca, Mg and micro nutrients, especially in the oldest stands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号