首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence is accumulating that lipids play important roles in permeabilization of the mitochondria outer membrane (MOM) at the early stage of apoptosis. Lamellar phosphatidylcholine (PC) and nonlamellar phosphatidylethanolamine (PE) lipids are the major membrane components of the MOM. Cardiolipin (CL), the characteristic lipid from the mitochondrial inner membrane, is another nonlamellar lipid recently shown to play a role in MOM permeabilization. We investigate the effect of these three key lipids on the gating properties of the voltage-dependent anion channel (VDAC), the major channel in MOM. We find that PE induces voltage asymmetry in VDAC current-voltage characteristics by promoting channel closure at cis negative applied potentials. Significant asymmetry is also induced by CL. The observed differences in VDAC behavior in PC and PE membranes cannot be explained by differences in the insertion orientation of VDAC in these membranes. Rather, it is clear that the two nonlamellar lipids affect VDAC gating. Using gramicidin A channels as a tool to probe bilayer mechanics, we show that VDAC channels are much more sensitive to the presence of CL than could be expected from the experiments with gramicidin channels. We suggest that this is due to the preferential insertion of VDAC into CL-rich domains. We propose that the specific lipid composition of the mitochondria outer membrane and/or of contact sites might influence MOM permeability by regulating VDAC gating.  相似文献   

2.
MOM22 is a component of the protein import complex of the mitochondrial outer membrane of Neurospora crassa. Using the newly developed procedure of 'sheltered disruption', we created a heterokaryotic strain harboring two nuclei, one with a null allele of the mom-22 gene and the other with a wild-type allele. Homokaryons bearing the mom-22 disruption could not be isolated, suggesting that mom-22 is an essential gene. The mutant nucleus can be forced to predominate in the heterokaryon through the use of specific nutritional and inhibitor resistance markers. Cultivation of the heterokaryon under conditions favoring the mutant nucleus resulted in selective depletion of MOM22. MOM22-depleted cells did not grow and contained mitochondria with an altered morphology and protein composition. Protein import into isolated, MOM22-depleted mitochondria was abolished for most precursor proteins destined for all subcompartments. In contrast, precursors of MOM19, MOM22 and MOM72 became inserted normally into the outer membrane, defining a novel MOM22-independent import pathway which remained intact in mutant mitochondria. Furthermore, the specific binding of the ADP/ATP carrier to the outer membrane was unaffected, but subsequent transport across the outer membrane did not occur. Our data show that MOM22 is an essential component of Neurospora cells specifically required for the biogenesis of mitochondria.  相似文献   

3.
The mitochondrial outer membrane (MOM) harbors several multispan proteins that execute various functions. Despite their importance, the mechanisms by which these proteins are recognized and inserted into the outer membrane remain largely unclear. In this paper, we address this issue using yeast mitochondria and the multispan protein Ugo1. Using a specific insertion assay and analysis by native gel electrophoresis, we show that the import receptor Tom70, but not its partner Tom20, is involved in the initial recognition of the Ugo1 precursor. Surprisingly, the import pore formed by the translocase of the outer membrane complex appears not to be required for the insertion process. Conversely, the multifunctional outer membrane protein mitochondrial import 1 (Mim1) plays a central role in mediating the insertion of Ugo1. Collectively, these results suggest that Ugo1 is inserted into the MOM by a novel pathway in which Tom70 and Mim1 contribute to the efficiency and selectivity of the process.  相似文献   

4.
Mitochondrial functions and architecture rely on a defined lipid composition of their outer and inner membranes, which are characterized by a high content of non-bilayer phospholipids such as cardiolipin (CL) and phosphatidylethanolamine (PE). Mitochondrial membrane lipids are synthesized in the endoplasmic reticulum (ER) or within mitochondria from ER-derived precursor lipids, are asymmetrically distributed within mitochondria and can relocate in response to cellular stress. Maintenance of lipid homeostasis thus requires multiple lipid transport processes to be orchestrated within mitochondria. Recent findings identified members of the Ups/PRELI family as specific lipid transfer proteins in mitochondria that shuttle phospholipids between mitochondrial membranes. They cooperate with membrane organizing proteins that preserve the spatial organization of mitochondrial membranes and the formation of membrane contact sites, unravelling an intimate crosstalk of membrane lipid transport and homeostasis with the structural organization of mitochondria.This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.  相似文献   

5.
Cytotoxic bile acids, such as deoxycholic acid (DCA), are responsible for hepatocyte cell death during intrahepatic cholestasis. The mechanisms responsible for this effect are unclear, and recent studies conflict, pointing to either a modulation of plasma membrane structure or mitochondrial-mediated toxicity through perturbation of mitochondrial outer membrane (MOM) properties. We conducted a comprehensive comparative study of the impact of cytotoxic and cytoprotective bile acids on the membrane structure of different cellular compartments. We show that DCA increases the plasma membrane fluidity of hepatocytes to a minor extent, and that this effect is not correlated with the incidence of apoptosis. Additionally, plasma membrane fluidity recovers to normal values over time suggesting the presence of cellular compensatory mechanisms for this perturbation. Colocalization experiments in living cells confirmed the presence of bile acids within mitochondrial membranes. Experiments with active isolated mitochondria revealed that physiologically active concentrations of DCA change MOM order in a concentration- and time-dependent manner, and that these changes preceded the mitochondrial permeability transition. Importantly, these effects are not observed on liposomes mimicking MOM lipid composition, suggesting that DCA apoptotic activity depends on features of mitochondrial membranes that are absent in protein-free mimetic liposomes, such as the double-membrane structure, lipid asymmetry, or mitochondrial protein environment. In contrast, the mechanism of action of cytoprotective bile acids is likely not associated with changes in cellular membrane structure.  相似文献   

6.
Most mitochondrial proteins are synthesized in the cytosol as preproteins with a cleavable presequence and are delivered to the import receptors on the mitochondria by cytoplasmic import factors. The proteins are then imported to the intramitochondrial compartments by the import systems of the outer and inner membranes, TOM and TIM. Mitochondrial outer membrane proteins are synthesized without a cleavable presequence and most of them contain hydrophobic transmembrane domains, which, in conjunction with the flanking segments, function as the mitochondria import signals. Some of the proteins are inserted into the outer membrane by the TOM machinery; the import signal probably arrests further translocation and is released from the translocation channel to the lipid bilayer. The other proteins are inserted into the membrane by a novel pathway independent of the TOM machinery. This article reviews recent developments in the biogenesis of mitochondrial outer membrane proteins.  相似文献   

7.
《The Journal of cell biology》1993,121(6):1233-1243
Nuclear-encoded proteins destined for mitochondria must cross the outer or both outer and inner membranes to reach their final sub- mitochondrial locations. While the inner membrane can translocate preproteins by itself, it is not known whether the outer membrane also contains an endogenous protein translocation activity which can function independently of the inner membrane. To selectively study the protein transport into and across the outer membrane of Neurospora crassa mitochondria, outer membrane vesicles were isolated which were sealed, in a right-side-out orientation, and virtually free of inner membranes. The vesicles were functional in the insertion and assembly of various outer membrane proteins such as porin, MOM19, and MOM22. Like with intact mitochondria, import into isolated outer membranes was dependent on protease-sensitive surface receptors and led to correct folding and membrane integration. The vesicles were also capable of importing a peripheral component of the inner membrane, cytochrome c heme lyase (CCHL), in a receptor-dependent fashion. Thus, the protein translocation machinery of the outer mitochondrial membrane can function as an independent entity which recognizes, inserts, and translocates mitochondrial preproteins of the outer membrane and the intermembrane space. In contrast, proteins which have to be translocated into or across the inner membrane were only specifically bound to the vesicles, but not imported. This suggests that transport of such proteins involves the participation of components of the intermembrane space and/or the inner membrane, and that in these cases the outer membrane translocation machinery has to act in concert with that of the inner membrane.  相似文献   

8.
It is assumed that the survival factors Bcl-2 and Bcl-x(L) are mainly functional on mitochondria and therefore must contain mitochondrial targeting sequences. Here we show, however, that only Bcl-x(L) is specifically targeted to the mitochondrial outer membrane (MOM) whereas Bcl-2 distributes on several intracellular membranes. Mitochondrial targeting of Bcl-x(L) requires the COOH-terminal transmembrane (TM) domain flanked at both ends by at least two basic amino acids. This sequence is a bona fide targeting signal for the MOM as it confers specific mitochondrial localization to soluble EGFP. The signal is present in numerous proteins known to be directed to the MOM. Bcl-2 lacks the signal and therefore localizes to several intracellular membranes. The COOH-terminal region of Bcl-2 can be converted into a targeting signal for the MOM by increasing the basicity surrounding its TM. These data define a new targeting sequence for the MOM and propose that Bcl-2 acts on several intracellular membranes whereas Bcl-x(L) specifically functions on the MOM.  相似文献   

9.
Tail-anchored (TA) proteins have a single C-terminal transmembrane domain, making their biogenesis dependent on posttranslational translocation. Despite their importance, no dedicated insertion machinery has been uncovered for mitochondrial outer membrane (MOM) TA proteins. To decipher the molecular mechanisms guiding MOM TA protein insertion, we performed two independent systematic microscopic screens in which we visualized the localization of model MOM TA proteins on the background of mutants in all yeast genes. We could find no mutant in which insertion was completely blocked. However, both screens demonstrated that MOM TA proteins were partially localized to the endoplasmic reticulum (ER) in ∆spf1 cells. Spf1, an ER ATPase with unknown function, is the first protein shown to affect MOM TA protein insertion. We found that ER membranes in ∆spf1 cells become similar in their ergosterol content to mitochondrial membranes. Indeed, when we visualized MOM TA protein distribution in yeast strains with reduced ergosterol content, they phenocopied the loss of Spf1. We therefore suggest that the inherent differences in membrane composition between organelle membranes are sufficient to determine membrane integration specificity in a eukaryotic cell.  相似文献   

10.
Setoguchi K  Otera H  Mihara K 《The EMBO journal》2006,25(24):5635-5647
C-tail-anchored (C-TA) proteins are anchored to specific organelle membranes by a single transmembrane segment (TMS) at the C-terminus, extruding the N-terminal functional domains into the cytoplasm in which the TMS and following basic segment function as the membrane-targeting signals. Here, we analyzed the import route of mitochondrial outer membrane (MOM) C-TA proteins, Bak, Bcl-XL, and Omp25, using digitonin-permeabilized HeLa cells, which provide specific and efficient import under competitive conditions. These experiments revealed that (i) C-TA proteins were imported to the MOM through a common pathway independent of the components of the preprotein translocase of the outer membrane, (ii) the C-TA protein-targeting signal functioned autonomously in the absence of cytoplasmic factors that specifically recognize the targeting signals and deliver the preproteins to the MOM, (iii) the function of a cytoplasmic chaperone was required if the cytoplasmic domains of the C-TA proteins assumed an import-incompetent conformation, and intriguingly, (iv) the MOM-targeting signal of Bak, in the context of the Bak molecule, required activation by the interaction of its cytoplasmic domain with VDAC2 before MOM targeting.  相似文献   

11.
The novel genetic method of "sheltered RIP" (repeat induced point mutation) was used to generate a Neurospora crassa mutant in which MOM19, a component of the protein import machinery of the mitochondrial outer membrane, can be depleted. Deficiency in MOM19 resulted in a severe growth defect, but the cells remained viable. The number of mitochondrial profiles was not grossly changed, but mutant mitochondria were highly deficient in cristae membranes, cytochromes, and protein synthesis activity. Protein import into isolated mutant mitochondria was decreased by factors of 6 to 30 for most proteins from all suborganellar compartments. Proteins like the ADP/ATP carrier, MOM19, and cytochrome c, whose import into wild-type mitochondria occurs independently of MOM19 became imported normally showing that the reduced import activities are solely caused by a lack of MOM19. Depletion of MOM19 reveals a close functional relationship between MOM19 and MOM22, since loss of MOM19 led to decreased levels of MOM22 and reduced protein import through MOM22. Furthermore, MOM72 does not function as a general backup receptor for MOM19 suggesting that these two proteins have distinct precursor specificities. These findings demonstrate that the import receptor MOM19 fulfills an important role in the biogenesis of mitochondria and that it is essential for the formation of mitochondria competent in respiration and phosphorylation.  相似文献   

12.
The specific targeting of precursor proteins synthesized in the cytosol to various cell organelles is a central aspect of intracellular protein traffic. Several hundred different proteins are imported from the cytosol into the mitochondria. Recent studies have identified the mitochondrial outer membrane proteins MOM19, MOM72, MOM38 (approximately ISP42) and p32 which have a role in initial steps of protein import. The first three components are present in a multi-subunit complex that catalyses recognition and membrane insertion of precursor proteins.  相似文献   

13.
Mitochondria, composed of two membranes, play a key role in energy production in eukaryotic cells. The main function of the inner membrane is oxidative phosphorylation, while the mitochondrial outer membrane (MOM) seems to control the energy flux and exchange of various charged metabolites between mitochondria and the cytosol. Metabolites cross MOM via the various isoforms of voltage-dependent anion channel (VDAC). In turn, VDACs interact with some enzymes, other proteins and molecules, including drugs. This work aimed to analyze various literature experimental data related to targeting mitochondrial VDACs and VDAC-kinase complexes on the basis of the hypothesis of generation of the outer membrane potential (OMP) and OMP-dependent reprogramming of cell energy metabolism. Our previous model of the VDAC-hexokinase-linked generation of OMP was further complemented in this study with an additional regulation of the MOM permeability by the OMP-dependent docking of cytosolic proteins like tubulin to VDACs. Computational analysis of the model suggests that OMP changes might be involved in the mechanisms of apoptosis promotion through the so-called transient hyperpolarization of mitochondria. The high concordance of the performed computational estimations with many published experimental data allows concluding that OMP generation under physiological conditions is highly probable and VDAC might function as an OMP-dependent gatekeeper of mitochondria, controlling cell life and death. The proposed model of OMP generation allows understanding in more detail the mechanisms of cancer death resistance and anticancer action of various drugs and treatments influencing VDAC voltage-gating properties, VDAC content, mitochondrial hexokinase activity and VDAC-kinase interactions in MOM.  相似文献   

14.
Mitochondrial outer membrane proteins are synthesized without a cleavable presequence but instead contain segments responsible for mitochondrial targeting and membrane integration within the molecule: the transmembrane segment (TMS) and N- or C-terminal flanking segment. We analyzed targeting and integration of Tom5, a C-tail anchor protein associated with the preprotein translocase of the outer membrane, to the yeast mitochondrial outer membrane in vivo using green fluorescent protein as the reporter and compared the signal with other signals for proteins dispersed in the membrane. The functional assembly of Tom5 into the TOM complex was assessed by blue native PAGE and complementation of temperature-sensitive deltatom5 cells. Correct targeting and assembly required (i). an appropriate length TMS rather than hydrophobicity, (ii). a proline residue located at correct position in the TMS and specific residues near the proline, and (iii). that, in contrast to proteins dispersed in the outer membrane, the positive C-terminal segment was dispensable. Based on these findings, we constructed green fluorescent protein fusions with a C-terminal TMS in which the deduced sequences (minimum: Ser-Pro-Met) were inserted at an appropriate position within artificial Leu-Ala repeats. They were targeted to mitochondria and complemented the temperature-sensitive growth phenotype of deltatom5 yeast cells. The membrane-targeting mechanism of Tom5 appears to be distinct from that for proteins that are dispersed in the outer membrane.  相似文献   

15.
Yeast Mas70p and NADH cytochrome b5 reductase are bitopic integral proteins of the mitochondrial outer membrane and are inserted into the lipid-bilayer in an Nin-Ccyto orientation via an NH2-terminal signal- anchor sequence. The signal anchor of both proteins is comprised of a short, positively charged domain followed by the predicted transmembrane segment. The positively charged domain is capable of functioning independently as a matrix-targeting signal in yeast mitochondria in vitro but does not support import into mammalian mitochondria (rat or human). Rather, this domain represents a cryptic signal that can direct import into mammalian mitochondria only if proximal components of the outer membrane import machinery are removed. This can be accomplished either by treating the surface of the intact mitochondria with trypsin or by generating mitoplasts. The import receptor Tom20p (Mas20p/MOM19) is responsible for excluding the cryptic matrix-targeting signal from mammalian mitochondria since replacement of yeast Tom20p with the human receptor confers this property to the yeast organelle while at the same time maintaining import of other proteins. In addition to contributing to positive recognition of precursor proteins, therefore, the results suggest that hTom20p may also have the ability to screen potential matrix-targeting sequences and exclude certain proteins that would otherwise be recognized and imported by distal components of the outer and inner membrane protein- translocation machinery. These findings also indicate, however, that cryptic signals, if they exist within otherwise native precursor proteins, may remain topogenically silent until the precursor successfully clears hTom20p, at which time the activity of the cryptic signal is manifested and can contribute to subsequent translocation and sorting of the polypeptide.  相似文献   

16.
The outer membrane of yeast mitochondria was studied with respect to its lipid composition, phospholipid topology and membrane fluidity. This membrane is characterized by a high phospholipid to protein ratio (1.20). Like other yeast cellular membranes the outer mitochondrial membrane contains predominantly phosphatidylcholine (44% of total phospholipids), phosphatidylethanolamine (34%) and phosphatidylinositol (14%). Cardiolipin, the characteristic phospholipid of the inner mitochondrial membrane (13% of total phospholipids) is present in the outer membrane only to a moderate extent (5%). The ergosterol to phospholipid ratio is higher in the inner (7.0 wt%) as compared to the outer membrane (2.1 wt.%). Attempts to study phospholipid asymmetry by selective degradation of phospholipids of the outer leaflet of the outer mitochondrial membrane failed, because isolated right-side-out vesicles of this membrane became leaky upon treatment with phospholipases. Selective removal of phospholipids of the outer leaflet with the aid of phospholipid transfer proteins and chemical modification with trinitrobenzenesulfonic acid on the other hand, gave satisfactory results. Phosphatidylcholine and phosphatidylinositol are more or less evenly distributed between the two sides of the outer mitochondrial membrane, whereas the majority of phosphatidylethanolamine is oriented towards the intermembrane space. The fluidity of mitochondrial membranes was determined by measuring fluorescence anisotropy using diphenylhexatriene (DPH) as a probe. The lower anisotropy of DPH in the outer as compared to the inner membrane, which is an indication for an increased lipid mobility in the outer membrane, was attributed to the higher phospholipid to protein and the lower ergosterol to phospholipid ratio. The data presented here show, that the outer mitochondrial membrane, in spite of its close contact to the inner membrane, is distinct not only with respect to its protein pattern, but also with respect to its lipid composition and physical membrane properties.  相似文献   

17.
Mitochondrial outer membrane permeabilization (MOMP) is a critical step in apoptosis and is regulated by Bcl-2 family proteins. In vitro systems using cardiolipin-containing liposomes have demonstrated the key features of MOMP induced by Bax and cleaved Bid; however, the nature of the “pores” and how they are formed remain obscure. We found that mitochondrial outer membranes contained very little cardiolipin, far less than that required for liposome permeabilization, despite their responsiveness to Bcl-2 family proteins. Strikingly, the incorporation of isolated mitochondrial outer membrane (MOM) proteins into liposomes lacking cardiolipin conferred responsiveness to cleaved Bid and Bax. Cardiolipin dependence was observed only when permeabilization was induced with cleaved Bid but not with Bid or Bim BH3 peptide or oligomerized Bax. Therefore, we conclude that MOM proteins specifically assist cleaved Bid in Bax-mediated permeabilization. Cryoelectron microscopy of cardiolipin-liposomes revealed that cleaved Bid and Bax produced large round holes with diameters of 25–100 nm, suggestive of lipidic pores. In sum, we propose that activated Bax induces lipidic pore formation and that MOM proteins assist cleaved Bid in this process in the absence of cardiolipin.  相似文献   

18.
Mitochondria are dynamic organelles whose functional integrity requires a coordinated supply of proteins and phospholipids. Defined functions of specific phospholipids, like the mitochondrial signature lipid cardiolipin, are emerging in diverse processes, ranging from protein biogenesis and energy production to membrane fusion and apoptosis. The accumulation of phospholipids within mitochondria depends on interorganellar lipid transport between the endoplasmic reticulum (ER) and mitochondria as well as intramitochondrial lipid trafficking. The discovery of proteins that regulate mitochondrial membrane lipid composition and of a multiprotein complex tethering ER to mitochondrial membranes has unveiled novel mechanisms of mitochondrial membrane biogenesis.  相似文献   

19.
The precursors of the mitochondrial proteins ADP/ATP carrier (AAC) and F1-ATPase subunit beta (F1 beta) were accumulated at the stages of binding to receptor sites on the mitochondrial outer membrane, or in contact sites between outer and inner membranes. Specific antibodies raised against the mature proteins were added to the isolated mitochondria and efficiently bound to these translocation intermediates. Further movement of the precursors to consecutive steps along their import pathway was thereby inhibited. Controls showed that precursor proteins which were inserted into or translocated across the outer membrane were not recognized by the antibodies unless the mitochondrial membranes were disrupted. We conclude that the trapped translocation intermediates have antigenic sites exposed to the outside of the outer membrane.  相似文献   

20.
线粒体是一种由两层膜包被的细胞器,其功能和结构的稳定性取决于线粒体膜上精确的磷脂组成及分布。线粒体膜上的大部分脂类物质由内质网合成,既而转运到线粒体。而部分脂类利用内质网上产生的前体,在线粒体内膜上合成。由此可见,线粒体膜脂的生物合成需要线粒体与内质网以及线粒体外膜(outer mitochondrial membrane, OMM)与内膜(inner mitochondrial membrane, IMM)之间进行大量的脂质转运。目前认为,这种运输过程既可在拴系因子(tether factors)形成的膜结合部位(membrane contact sites, MCSs)内发生,也可借助脂质转运蛋白(lipid transfer proteins, LTPs)完成。近年来,研究者以酵母为对象,建立了多种线粒体磷脂转运(phospholipid trafficking)的模型,这使人们初步理解了线粒体磷脂转运的机制。本综述总结了酵母线粒体磷脂转运的最新发现,并对这些磷脂转运的模型进行了讨论,以期为今后深入了解线粒体脂类代谢提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号