首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The Hu RNA-binding protein family consists of four members: HuR/A, HuB, HuC and HuD. HuR expression is widespread. The other three neuron-specific Hu proteins play an important role in neuronal differentiation through modulating multiple processes of RNA metabolism. In the splicing events examined previously, Hu proteins promote skipping of the alternative exons. Here, we report the first example where Hu proteins promote inclusion of an alternative exon, exon 6 of the HuD pre-mRNA. Sequence alignment analysis indicates the presence of several conserved AU-rich sequences both upstream and downstream to this alternatively spliced exon. We generated a human HuD exon 6 mini-gene reporter construct that includes these conserved sequences. Hu protein over-expression led to significantly increased exon 6 inclusion from this reporter and endogenous HuD. Studies using truncated and mutant HuD exon 6 reporters demonstrate that two AU-rich sequences located downstream of exon 6 are important. RNAi knockdown of Hu proteins decreased exon 6 inclusion. An in vitro splicing assay indicates that Hu proteins promote HuD exon 6 inclusion directly at the level of splicing. Our studies demonstrate that Hu proteins can function as splicing enhancers and expand the functional role of Hu proteins as splicing regulators.  相似文献   

2.
Recent advances in genome-wide analysis of alternative splicing indicate that extensive alternative RNA processing is associated with many proteins that play important roles in the nervous system. Although differential splicing and polyadenylation make significant contributions to the complexity of the nervous system, our understanding of the regulatory mechanisms underlying the neuron-specific pathways is very limited. Mammalian neuron-specific embryonic lethal abnormal visual-like Hu proteins (HuB, HuC, and HuD) are a family of RNA-binding proteins implicated in neuronal differentiation and maintenance. It has been established that Hu proteins increase expression of proteins associated with neuronal function by up-regulating mRNA stability and/or translation in the cytoplasm. We report here a novel function of these proteins as RNA processing regulators in the nucleus. We further elucidate the underlying mechanism of this regulation. We show that in neuron-like cells, Hu proteins block the activity of TIA-1/TIAR, two previously identified, ubiquitously expressed proteins that promote the nonneuronal pathway of calcitonin/calcitonin gene-related peptide (CGRP) pre-mRNA processing. These studies define not only the first neuron-specific regulator of the calcitonin/CGRP system but also the first nuclear function of Hu proteins.  相似文献   

3.
4.
The ubiquitous RNA-binding protein HuR (ELAVL1) promotes telomerase activity by associating with the telomerase noncoding RNA TERC. However, the role of the neural-specific members HuB, HuC, and HuD (ELAVL2–4) in telomerase activity is unknown. Here, we report that HuB and HuD, but not HuC, repress telomerase activity in human neuroblastoma cells. By associating with AU-rich sequences in TERC, HuB and HuD repressed the assembly of the TERT–TERC core complex. Furthermore, HuB and HuD competed with HuR for binding to TERC and antagonized the function of HuR that was previously shown to enhance telomerase activity to promote cell growth. Our findings reveal a novel mechanism controlling telomerase activity in human neuroblastoma cells that involves a competition between HuR and the related, neural-specific proteins HuB and HuD.  相似文献   

5.
Emerging studies support that RNA-binding proteins(RBPs)play critical roles in human biology and pathogenesis.RBPs are essential players in RNA processing and metabolism,including pre-mRNA splicing,polyadenylation,transport,surveillance,mRNA localization,mRNA stability control,translational control and editing of various types of RNAs.Aberrant expression of and mutations in RBP genes affect various steps of RNA processing,altering target gene function.RBPs have been associated with various diseases,including neurological diseases.Here,we mainly focus on selected RNA-binding proteins including Nova-1/Nova-2,HuR/HuB/HuC/HuD,TDP-43,Fus,Rbfox1/Rbfox2,QKI and FMRP,discussing their function and roles in human diseases.  相似文献   

6.
Growing evidence indicates that both seizure (glutamate) and cocaine (dopamine) treatment modulate synaptic plasticity within the mesolimbic region of the CNS. Activation of glutamatergic neurons depends on the localized translation of neuronal mRNA products involved in modulating synaptic plasticity. In this study, we demonstrate the dendritic localization of HuR and HuD RNA‐binding proteins (RBPs) and their association with neuronal mRNAs following these two paradigms of seizure and cocaine treatment. Both the ubiquitously expressed HuR and neuronal HuD RBPs were detected in different regions as well as within dendrites of the brain and in dissociated neurons. Quantitative analysis revealed an increase in HuR, HuD and p‐glycogen synthase kinase 3β (GSK3β) protein levels as well as neuronal mRNAs encoding Homer, CaMKIIα, vascular early response gene, GAP‐43, neuritin, and neuroligin protein products following either seizure or cocaine treatment. Inhibition of the Akt/GSK3β signaling pathway by acute or chronic LiCl treatment revealed changes in HuR, HuD, pGSK3β, p‐Akt, and β‐catenin protein levels. In addition, a genetically engineered hyperdopaminergic mouse model (dopamine transporter knockout) revealed decreased expression of HuR protein levels, but no significant change was observed in HuD or fragile‐X mental retardation protein RBPs. Finally, our data suggest that HuR and HuD RBPs potentially interact directly with neuronal mRNAs important for differentiation and synaptic plasticity.  相似文献   

7.
Cellular stress leads to a change in distribution of RNA-binding proteins. HuR, a member of the ELAV/Hu family of RNA-binding proteins, is nuclear in distribution and following heat shock is found in large cytoplasmic stress granules where translation is inhibited. HuD, another ELAV/Hu RNA-binding protein, stabilizes the GAP-43 mRNA in response to nerve growth factor (NGF) stimulation in PC12 cells. We were interested in determining the nuclear distribution of HuD and if neurotrophic stimulation induced changes in the distribution of HuD. In PC12 cells, we found, as expected, that HuR translocates from the nucleus to the cytoplasm in response to heat shock. In response to heat shock, HuD forms large cytoplasmic stress granules, consistent with a role for HuD in the cessation of translation. In unstimulated cells, HuD is distributed in small granules in the cytoplasm and is consistently present at low levels in the nucleus. Stimulation of PC12 cells with NGF induces neuronal differentiation including outgrowth of neurites and increased levels of GAP-43 protein, whereas HuD remains localized in small cytoplasm granules and is still present in the nucleus. These results suggest that, following neurotrophic stimulation, the lack of changes in HuD distribution are due to continued steady state of HuD nuclear shuttling in PC12 cells, or that HuD is not normally shuttled from the nucleus in response to NGF.  相似文献   

8.
9.
The HuR gene encodes a specific RNA binding protein that is a member of the human Elav-like gene family. This family of proteins, which includes HuD, HuC and Hel-N1, is involved in cellular differentiation. Alterations of HuD and Hel-N1 structure are associated with small cell lung tumors and medulloblastomas. To investigate a possible linkage of the HuR gene to malignancy, the locus of the gene was mapped on human metaphase chromosomes. Analysis of the fluorescence signals on banded chromosomes showed that the HuR gene is localized to human chromosome 19p13.2. Received: 6 June 1996 / Revised: 8 August 1996  相似文献   

10.
11.
A recent genome-wide bioinformatic analysis indicated that 54% of human genes undergo alternative polyadenylation. Although it is clear that differential selection of poly(A) sites can alter gene expression, resulting in significant biological consequences, the mechanisms that regulate polyadenylation are poorly understood. Here we report that the neuron-specific members of a family of RNA-binding proteins, Hu proteins, known to regulate mRNA stability and translation in the cytoplasm, play an important role in polyadenylation regulation. Hu proteins are homologs of the Drosophila embryonic lethal abnormal visual protein and contain three RNA recognition motifs. Using an in vitro polyadenylation assay with HeLa cell nuclear extract and recombinant Hu proteins, we have shown that Hu proteins selectively block both cleavage and poly(A) addition at sites containing U-rich sequences. Hu proteins have no effect on poly(A) sites that do not contain U-rich sequences or sites in which the U-rich sequences are mutated. All three RNA recognition motifs of Hu proteins are required for this activity. Overexpression of HuR in HeLa cells also blocks polyadenylation at a poly(A) signal that contains U-rich sequences. Hu proteins block the interaction between the polyadenylation cleavage stimulation factor 64-kDa subunit and RNA most likely through direct interaction with poly(A) cleavage stimulation factor 64-kDa subunit and cleavage and polyadenylation specificity factor 160-kDa subunit. These studies identify a novel group of mammalian polyadenylation regulators. Furthermore, they define a previously unknown nuclear function of Hu proteins.  相似文献   

12.
13.
14.
We have utilized immunochemical techniques to investigate the developmental expression of the Hu proteins, a neuron-specific family of RNA binding proteins in vertebrates. Previous work suggests that these proteins may play an important role in neuronal development and maintenance. For the present study, we developed a monoclonal antibody (MAb 16A11) that binds specifically to an epitope present in gene products of all known Hu genes, including HuD, HuC, and Hel-N1. Using brief pulses (1–2 h) of the DNA precursor analog bromodeoxyruridine (BrdU) in conjunction with MAb 16A11, we observed Hu+/BrU+ cells in nascent sensory and sympathetic ganglia in vivo, and in populations of cultured neural crest cells. In addition, a few Hu+ cells were ambiguously BrdU+ in the neural tube. We conclude that Hu+ cells first appear in avian neurogenic populations immediately before neuronal birthdays in the peripheral nervous system, and at the time of withdrawal from the mitotic cycle in the central nervous system. Consistent with these conclusions, we have also observed neural crest-derived cells that are both Hu+ and in metaphase of the cell cycle. We suggest that Hu proteins function early in neurogenic differentiation. 1994 John Wiley & Sons, Inc.  相似文献   

15.
The RNA binding protein HuD plays essential roles in neuronal development and plasticity. We have previously shown that HuD stimulates translation. Key for this enhancer function is the linker region and the poly(A) binding domain of HuD that are also critical for its function in neurite outgrowth. Here, we further explored the underlying molecular interactions and found that HuD but not the ubiquitously expressed HuR interacts directly with active Akt1. We identify that the linker region of HuD is required for this interaction. We also show by using chimeric mutants of HuD and HuR, which contain the reciprocal linker between RNA-binding domain 2 (RBD2) and RBD3, respectively, and by overexpressing a dominant negative mutant of Akt1 that the HuD-Akt1 interaction is functionally important, as it is required for the induction of neurite outgrowth in PC12 cells. These results suggest the model whereby RNA-bound HuD functions as an adapter to recruit Akt1 to trigger neurite outgrowth. These data might also help to explain how HuD enhances translation of mRNAs that encode proteins involved in neuronal development.  相似文献   

16.
17.
18.
19.
20.
Tau mRNA is axonally localized mRNA that is found in developing neurons and targeted by an axonal localization signal (ALS) that is located in the 3'UTR of the message. The tau mRNA is trafficked in an RNA-protein complex (RNP) from the neuronal cell body to the distal parts of the axon, reaching as far as the growth cone. This movement is microtubule-dependent and is observed as granules that contain tau mRNA and additional proteins. A major protein contained in the granule is HuD, an Elav protein family member, which has an identified mRNA binding site on the tau 3'UTR and stabilizes the tau message and several axonally targeted mRNAs. Using GST-HuD fusion protein as bait, we have identified four proteins contained within the tau RNP, in differentiated P19 neuronal cells. In this work, we studied two of the identified proteins, i.e. IGF-II mRNA binding protein 1 (IMP-1), the orthologue of chick beta-actin binding protein-ZBP1, and RAS-GAP SH3 domain binding protein (G3BP). We show that IMP-1 associates with HuD and G3BP-1 proteins in an RNA-dependent manner and binds directly to tau mRNA. We also show an RNA-dependent association between G3BP-1 and HuD proteins. These associations are investigated in relation to the neuronal differentiation of P19 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号