首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of the gap junction proteins characterized to date, Cx26 is unique in that it is usually expressed in conjunction with other members of the family, typically Cx32 (liver [Nicholson et al., Nature 329:732–734, 1987], pancreas, kidney, and stomach [J.-T. Zhang, B.J. Nicholson, J. Cell Biol. 109:3391–3410, 1989]), or Cx43 (leptomeninges [D.C. Spray et al., Brain Res. 568:1–14, 1991] and pineal gland [J.C. Sáez et al., Brain Res. 568:265–275,1991]). We have used specific antisera both to investigate the distribution of Cx32 and Cx26 in isolated liver gap junctions, and empirically establish the topological model of Cx26 suggested by its sequence and analogy to other connexins. Antipeptide antisera were prepared to four of the five hydrophilic domains which flank the four putative transmembrane spanning regions of Cx26. Antibodies to N-terminal residues 1–17 (αCx26-N), to residues 101–119 in the putative cytoplasmic loop (αCx26-CL), and to C-terminal residues 210–226 (αCx26-C) were all specific for Cx26. An antibody to residues 166–185 between hydrophobic domains 3 and 4 of Cx32 had affinity for both Cx26 and Cx32 (αCx32/26-E2). The antigenic sites Cx26-N, -CL and -C were each demonstrated to be cytoplasmically disposed, although the latter was conformationally hidden prior to partial proteolysis. The antigenic site for αCx32/26-E2 was only accessible after exposure of the extracellular face by separation of the junctional membranes in 8 m urea, pH 12.3. This treatment also served to reveal the region between residues 45 and 66 to Asp-N protease. The topology thus demonstrated for Cx26 is consistent with that deduced for other connexins (i.e., Cx32 and Cx43). Comparison of immunogold decorated gap junctions reacted with antibodies specific to Cx26 (αCx26-N and -CL), or to Cx32 [αCx32-CL], indicates that these connexins do not aggregate in subdomains within a junction, at least within the resolution provided by the labeling density (one antibody per 15–22 connexons). Although the presence of both connexins within a single channel could not be distinguished, possible interactions between channels is discussed.  相似文献   

2.
Gap junction channels mediate communication between adjacent cells. Using atomic force microscopy (AFM), we have imaged conformational changes of the cytoplasmic and extracellular surfaces of native connexin 26 gap junction plaques. The cytoplasmic domains of the gap junction surface, imaged at submolecular resolution, form a hexameric pore protruding from the membrane bilayer. Exhibiting an intrinsic flexibility, these cytoplasmic domains, comprising the C-terminal connexin end, reversibly collapse by increasing the forces applied to the AFM stylus. The extracellular connexon surface was imaged after dissection of the gap junction with the AFM stylus. Upon injection of Ca(2+) into the buffer solution, the extracellular channel entrance reduced its diameter from 1.5 to 0.6 nm, a conformational change that is fully reversible and specific among the divalent cations tested. Ca(2+) had a profound effect on the cytoplasmic surface also, inducing the formation of microdomains. Consequently, the plaque height increased by 0.6 nm to 18 nm. This suggests that calcium ions induce conformational changes affecting the structure of both the hemichannels and the intact channels forming cell-cell contacts.  相似文献   

3.
The importance of connexins (Cxs) in the cochlear functions has been indicated by the finding that mutations in connexin genes cause a large proportion of sensorineural deafness cases. However, functional roles of connexins in the cochlea are still unclear. In this study, we compared the relative expression levels of 16 different subtypes of mouse connexins in the cochlea. cDNA macroarray hybridizations identified four most prominently expressed connexins (listed in descending order): Cxs 26, 29, 30, and 43. Two of these connexins (Cx26 and Cx30), both belonging to the beta-group, were investigated for their molecular assemblies in the cochlea. Co-immunostaining showed expressions of Cxs 26 and 30 in the same gap junction plaques and their co-assembly was confirmed by co-immunoprecipitation of proteins extracted from the cochlear tissues. The heterologous molecular assembly of connexins is expected to produce gap junctions with biophysical characteristics appropriate for maintaining ionic homeostasis in the cochlea.  相似文献   

4.
To elucidate whether the two different gap junction proteins connexin43 (Cx43) and connexin26 (Cx26) are expressed and localized in a similar manner in the adult rat cochlea, we performed three-dimensional confocal microscopy using cryosections and surface preparations. In the cochlear lateral wall, Cx43-positive spots were localized mainly in the stria vascularis and only a few spots were present in the spiral ligament, whereas Cx26-positive spots were detected in both the stria vascularis and the spiral ligament. In the spiral limbus, Cx43 was widely distributed, whereas Cx26 was more concentrated on the side facing the scala vestibuli and in the basal portion. In the organ of Corti, Cx43-positive spots were present between the supporting cells but they were fewer and much smaller than those of Cx26. These data demonstrated distinct differences between Cx43 and Cx26 in expression and localization in the cochlea. In addition, the area of overlap of zonula occludens-1 (ZO-1) immunolabeling with Cx43-positive spots was small, whereas it was fairly large with Cx26-positive spots in the cochlear lateral wall, suggesting that the differences are not associated with the structural difference between carboxyl terminals, i.e., those of Cx43 possess sequences for binding to ZO-1, whereas those of Cx26 lack these binding sequences.  相似文献   

5.
Different combinations and relative quantities of three connexins-connexin43, connexin40 and connexin45-are expressed in different subsets of cardiomyocyte. In the healthy heart, gap junctions assembled from these different connexin combinations form the cell-to-cell pathways for the precisely orchestrated patterns of current flow that govern the normal heart rhythm. Remodelling of gap junction organization and connexin expression is a conspicuous feature of human heart disease in which there is an arrhythmic tendency. This remodelling may take the form of structural remodelling, involving disturbances in the distribution of gap junctions (i.e., disruption of the normal ordered pathways for cell-to-cell conduction), and remodelling of connexin expression, involving alteration in the amount or type of connexin(s) present. Most notable among quantitative alterations in connexin expression is a reduction in ventricular connexin43 levels in human congestive heart failure. By correlating data from studies in experimental animal models, gap junction and connexin remodelling emerges as a factor to be considered in understanding the pro-arrhythmic substrate characteristic of many forms of heart disease. However, our knowledge of the functional correlates of the specific patterns of multiple connexin expression found in different regions of the heart in health and disease remains rudimentary, and the development of new experimental cell models heralds advances in this area over the next few years.  相似文献   

6.
Developmental expression patterns of connexin26 and -30 in the rat cochlea   总被引:12,自引:0,他引:12  
Connexin proteins form transmembranous gap junction channels that connect adjacent cells. Connexin26 and connexin30 have been previously shown to be strongly expressed in the inner ear of adult rats and to be mainly colocalized. Because intercellular connections by gap junction proteins are crucial for maturation of different tissues, we investigated the developmental expression of connexin26 and connexin30 in pre- and postnatal rats using immunocytochemistry. In the rat otocyst, staining for connexin26 as well as for connexin30 appeared at the 17th day of gestation. However, at this stage, expression of connexin30 was low and restricted to the neurosensory epithelium. Beginning from the 3rd postnatal day connexin26 and -30 were expressed with highest immunoreaction in the spiral limbus, the neurosensory epithelium, and between the stria vascularis and the spiral ligament. Beginning from postnatal day 12 the staining pattern resembled that of adult animals, with additional strong staining between all fibrocytes of the spiral ligament. Double labeling experiments demonstrated strongest colocalization of both connexins between the stria vascularis and the spiral ligament. These results demonstrate that development of the cochlear gap junction system precedes the functional maturation of the rat inner ear, which takes place between the 2nd and 3rd postnatal week. In the cochlea of a 22-week-old human embryo, connexin26 and connexin30 could be detected in the lateral wall, suggesting that both connexins also play a crucial role in function of the human inner ear.  相似文献   

7.
Cx50 (connexin50), a member of the α-family of gap junction proteins expressed in the lens of the eye, has been shown to be essential for normal lens development. In the present study, we identified a CaMBD [CaM (calmodulin)-binding domain] (residues 141-166) in the intracellular loop of Cx50. Elevations in intracellular Ca2+ concentration effected a 95% decline in gj (junctional conductance) of Cx50 in N2a cells that is likely to be mediated by CaM, because inclusion of the CaM inhibitor calmidazolium prevented this Ca2+-dependent decrease in gj. The direct involvement of the Cx50 CaMBD in this Ca2+/CaM-dependent regulation was demonstrated further by the inclusion of a synthetic peptide encompassing the CaMBD in both whole-cell patch pipettes, which effectively prevented the intracellular Ca2+-dependent decline in gj. Biophysical studies using NMR and fluorescence spectroscopy reveal further that the peptide stoichiometrically binds to Ca2+/CaM with an affinity of ~5 nM. The binding of the peptide expanded the Ca2+-sensing range of CaM by increasing the Ca2+ affinity of the C-lobe of CaM, while decreasing the Ca2+ affinity of the N-lobe of CaM. Overall, these results demonstrate that the binding of Ca2+/CaM to the intracellular loop of Cx50 is critical for mediating the Ca2+-dependent inhibition of Cx50 gap junctions in the lens of the eye.  相似文献   

8.
Gap junctions are intercellular channels organized in plaque that directly link adjacent cells. Connexins (Cx), the constitutive proteins of gap junctions are associated with several partner proteins (cytoskeletal, anchoring) which could participate in plaque formation and degradation. Coimmunoprecipitation and indirect immunofluorescence analyses showed that ZO-1, a tight junction-associated protein, was linked to Cx43 in the testis. By using gamma-hexachlorocyclohexane (HCH), known to induce gap junction endocytosis, we demonstrated that endocytosis increased Cx43/ZO-1 association within the cytoplasm of treated Sertoli cells. In control cells, the two proteins were present, as expected, at the plasma membrane level, but poorly colocalized. The increased intracytoplasmic Cx43/ZO-1 complex was associated with a shift towards increased levels of Cx43 P1 and P2 isoforms. The HCH induced Cx43 hyperphosphorylation was abolished by the ERK inhibitor PD98059 suggesting that this effect could be mediated through activation of the ERK pathway. These data strongly support a novel role for ZO-1 in the turnover of Cx43 during gap junction plaque endocytosis.  相似文献   

9.
Connexin proteins form transmembranous gap junction channels that connect adjacent cells. Connexin26 and connexin30 have been previously shown to be strongly expressed in the inner ear of adult rats and to be mainly colocalized. Because intercellular connections by gap junction proteins are crucial for maturation of different tissues, we investigated the developmental expression of connexin26 and connexin30 in pre‐ and postnatal rats using immunocytochemistry. In the rat otocyst, staining for connexin26 as well as for connexin30 appeared at the 17th day of gestation. However, at this stage, expression of connexin30 was low and restricted to the neurosensory epithelium. Beginning from the 3rd postnatal day connexin26 and ‐30 were expressed with highest immunoreaction in the spiral limbus, the neurosensory epithelium, and between the stria vascularis and the spiral ligament. Beginning from postnatal day 12 the staining pattern resembled that of adult animals, with additional strong staining between all fibrocytes of the spiral ligament. Double labeling experiments demonstrated strongest colocalization of both connexins between the stria vascularis and the spiral ligament. These results demonstrate that development of the cochlear gap junction system precedes the functional maturation of the rat inner ear, which takes place between the 2nd and 3rd postnatal week. In the cochlea of a 22‐week‐old human embryo, connexin26 and connexin30 could be detected in the lateral wall, suggesting that both connexins also play a crucial role in function of the human inner ear. Dev. Genet. 25:306–311, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

10.
Connexin43 knockout mice die neonatally from conotruncal heart malformation and outflow obstruction. Previous studies have indicated the involvement of neural crest perturbations in these cardiac anomalies. We provide evidence for the involvement of another extracardiac cell population, the proepicardial cells. These cells give rise to the vascular smooth muscle cells of the coronary arteries and cardiac fibroblasts in the heart. We have observed the abnormal presence of fibroblast and vascular smooth muscle cells in the infundibular pouches of the connexin43 knockout mouse heart. In addition, the connexin43 knockout mice exhibit a variety of coronary artery patterning defects previously described for neural crest-ablated chick embryos, such as anomalous origin of the coronary arteries, absent left or right coronary artery, and accessory coronary arteries. However, we show that proepicardial cells also express connexin43 gap junctions abundantly. The proepicardial cells are functionally well coupled, and this coupling is significantly reduced with the loss of connexin43 function. Further analysis revealed an elevation in the speed of cell locomotion and cell proliferation rate in the connexin43-deficient proepicardial cells. A parallel analysis of proepicardial cells in transgenic mice with dominant negative inhibition of connexin43 targeted only to neural crest cells showed none of these coupling, proliferation or migration changes. These mice exhibit outflow obstruction, but no infundibular pouches. Together these findings indicate an important role for connexin43 in coronary artery patterning, a role that probably involves the proepicardial and cardiac neural crest cells. We discuss the potential involvement of connexin43 in human cardiovascular anomalies involving the coronary arteries.  相似文献   

11.
We investigated the phenotypic features of cardiomyocytes, including the gap junctions, in the myocardial sleeve of thoracic veins. Single cardiomyocytes, isolated from the canine pulmonary veins (PV) and superior vena cava (SVC) using digestive enzymes, were examined by immunoconfocal microscopy using antisera against connexin43 (Cx43), Cx40, and other cell markers. The results showed that isolated cardiomyocytes displayed rod shapes of various sizes, ranging from <50 microm to >200 microm in length, and all the cells expressed alpha-actinin and vinculin. Gap junctions made of various amounts of Cx43 and Cx40 were found at the cell borders. These two connexins were extensively co-localized. Comparison between the thoracic veins showed that cells of the SVC contained more Cx43 gap junctions (total Cx43 gap junctions area per cell surface area, 4.0 +/- 0.2% vs 1.5 +/- 0.2%; p<0.01). In addition, for single-nucleus cells, those from the PV were longer (103.7 +/- 3.6 vs 85.0 +/- 3.1 microm; p<0.01) but narrower (14.4 +/- 0.5 vs 16.9 +/- 0.9 microm; p<0.01). In conclusion, canine thoracic veins contain cardiomyocytes with differences in shape and gap junctions, suggesting that the electrical conduction properties may be different between the thoracic veins.  相似文献   

12.
Emerging role of gap junctions in epilepsy   总被引:3,自引:0,他引:3  
This review highlights the contribution of gap junctions to the pathophysiology of epilepsy. The tissue expression and spatiotemporal regulation of connexins is discussed, and the phenotypes of specific connexin knockouts are considered. Electrophysiologic studies have implicated gap junctions in the generation of very fast oscillations preceding seizures. Gap junction inhibitors have shown powerful anticonvulsant effects, to date primarily in in vitro studies. Specific inhibition of gap junctions in vivo along with more detailed human tissue studies are needed to understand more fully the role of gap junctions in epileptogenesis.  相似文献   

13.
The gap junction channel is formed by proper docking of two hemichannels. Depending on the connexin(s) in the hemichannels, homotypic and heterotypic gap junction channels can be formed. Previous studies suggest that the extracellular loop 2 (E2) is an important molecular domain for heterotypic compatibility. Based on the crystal structure of the Cx26 gap junction channel and homology models of heterotypic channels, we analyzed docking selectivity for several hemichannel pairs and found that the hydrogen bonds between E2 domains are conserved in a group of heterotypically compatible hemichannels, including Cx26 and Cx32 hemichannels. According to our model analysis, Cx32N175Y mutant destroys three hydrogen bonds in the E2-E2 interactions due to steric hindrance at the heterotypic docking interface, which makes it unlikely to dock with the Cx26 hemichannel properly. Our experimental data showed that Cx26-red fluorescent protein (RFP) and Cx32-GFP were able to traffic to cell-cell interfaces forming gap junction plaques and functional channels in transfected HeLa/N2A cells. However, Cx32N175Y-GFP exhibited mostly intracellular distribution and was occasionally observed in cell-cell junctions. Double patch clamp analysis demonstrated that Cx32N175Y did not form functional homotypic channels, and dye uptake assay indicated that Cx32N175Y could form hemichannels on the cell surface similar to wild-type Cx32. When Cx32N175Y-GFP- and Cx26-RFP-transfected cells were co-cultured, no colocalization was found at the cell-cell junctions between Cx32N175Y-GFP- and Cx26-RFP-expressing cells; also, no functional Cx32N175Y-GFP/Cx26-RFP heterotypic channels were identified. Both our modeling and experimental data suggest that Asn(175) of Cx32 is a critical residue for heterotypic docking and functional gap junction channel formation between the Cx32 and Cx26 hemichannels.  相似文献   

14.
Gap junctions are thought to be necessary for proper tissue function. However, no clear hepatic phenotype has been described in patients lacking connexin 32 (Cx32), the principal gap junction in liver. To determine the physiological role of Cx32 in liver, we compared the response of wild type and Cx32-deficient mice to endotoxin, since this stress increases serum levels of hormones that bind to receptors that are asymmetrically distributed across the hepatic lobule. In hepatocyte couplets isolated from wild type mice, most hepatocytes could transfer microinjected dye to their neighbor even after treatment with endotoxin. Dye transfer was not observed in Cx32-deficient couplets. Treatment of hepatocyte couplets from wild type mice with vasopressin induced calcium (Ca(2+)) waves that crossed the couplets in a concentration-dependent fashion, but the delay in transmission was markedly prolonged at all concentrations in Cx32-deficient couplets. Expression of the vasopressin receptor and the inositol 1,4,5-trisphosphate receptor was not decreased by endotoxin or in Cx32-deficient couplets. Finally, endotoxin caused transient hypoglycemia and cholestasis in wild type animals, but hypoglycemia was slightly prolonged and cholestasis was much worse in Cx32-deficient mice treated with endotoxin. The hepatic response to endotoxin is markedly impaired in the absence of Cx32. Thus, an important role of gap junctions in the liver is to assure integrated and uniform tissue response in times of stress.  相似文献   

15.
Ovarian granulosa cells arecoupled via gap junctions containing connexin43 (Cx43 or -1connexin). In the absence of Cx43, granulosa cells stop growing in anearly preantral stage. However, the fact that granulosa cells of maturefollicles express multiple connexins complicated interpretation of thisfinding. The present experiments were designed to clarify the role ofCx43 vs. these other connexins in the earliest stages offolliculogenesis. Dye injection experiments revealed that granulosacells from Cx43 knockout follicles are not coupled, and this wasconfirmed by ionic current injections. Furthermore, electron microscopyrevealed that gap junctions are extremely rare in mutant granulosacells. In contrast, mutant granulosa cells were able to form gapjunctions with wild-type granulosa cells in a dye preloading assay. Itwas concluded that mutant granulosa cells contain a population of connexons, composed of an unidentified connexin, that do not normally contribute to gap junctions. Therefore, although Cx43 is not the onlygap junction protein present in granulosa cells of early preantralfollicles, it is the only one that makes a significant contribution tointercellular coupling.

  相似文献   

16.
Spermine inhibits rat connexin40 (Cx40) gap junctions. Glutamate residues at positions 9 and 13 and a basic amino acid (HKH) motif at positions 15-17 on the amino terminal domain are essential for this inhibitory activity. Questions remain as to whether spermine occludes the channel within the ion permeation pathway. To examine this question, cis or trans [KCl] was systematically lowered and the equilibrium dissociation constants (K(d)) and kinetics of unilateral spermine block on wild-type Cx40 gap junctions were determined. Asymmetric reductions in the trans [KCl] produced noticeable asymmetric shifts in the V(1/2) and G(min) values that progressively resembled G(j)-V(j) relationships observed in heterotypic connexin gap junction combinations. As cis or trans [KCl] was reduced by 25%, 50%, or 75% relative to the spermine-containing side, the transjunctional voltage (V(j))-dependent K(d) values increased or decreased, respectively. The spermine on-rates and off-rates, calculated from the junctional current decay and recovery time constants, were similarly affected. Hill coefficients for the spermine dose-response curves were approximately 0.58, indicative of negative cooperativity and possible multiple spermine inhibitory sites. The equivalent "electrical distance" (delta) ranged from 0.61 at 25% cis [KCl] to 1.4 at 25% trans [KCl], with a Hill coefficient of 1.0. Symmetrical reductions in [KCl] resulted in intermediate decreases in the spermine K(d)s, indicative of a minor electrostatic effect and a more significant effect of the transjunctional KCl electrodiffusion potential on the spermine association and dissociation rates. These data are consistent with a single spermine molecule being sufficient to occlude the Cx40 gap junction channel within the KCl permeation pathway.  相似文献   

17.
Antipeptide antibodies directed to residues 55 to 66 (NTQQPGCENVCY) of connexin43 (cx43) specifically recognize this protein on Western blots of intact and urea-split gap junctions isolated from rat heart. These antibodies detect a single protein of 43 kDa, corresponding to cx43, on Western blots of whole fractions of various vertebrate hearts. Immunogold labeling by electron microscopy shows that the epitopes recognized by these antibodies are not localized on the cytoplasmic surfaces of intact gap junctions but only at the edges of these junctions. In urea-split gap junctions the gold particles are seen in the junctional space, associated with the extracellular faces of junctional membranes. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analyses of rat heart gap junctions treated with trypsin show that they are constituted with either two polypeptides of Mr 12,000 and 14,000 or a single polypeptide of Mr 22,000 according to whether the analyses are performed under reducing or non-reducing conditions, respectively. The antibodies directed to residues 55 to 66 of cx43 cross-react with both the 12 and 22 kDa polypeptides. These results suggest that the two protected domains of 12 and 14 kDa which contain the first extracellular loop and a putative second extracellular loop, respectively, are linked by disulfide bonds. In adult rat heart sections analyzed by indirect immunofluorescence the intercalated discs are labeled with antibodies directed to a cytoplasmic carboxy-terminal domain of cx43 (El Aoumari et al., J. Membr. Biol. 115, 229-240 (1990)). The same intercalated discs are also labeled in adjacent sections incubated with the antibodies directed to residues 55 to 66. Two hypotheses might explain these results: either the antibodies have access to the extracellular domain of cx43 molecules localized at the edges of the gap junctions, or cx43 molecules are present in the non-junctional membranes of the intercalated discs.  相似文献   

18.
Tendon and other connective tissue cells are subjected to diverse mechanical loads during daily activities. Thus, fluid flow, strain, shear and combinations of these stimuli activate mechanotransduction pathways that modulate tissue maintenance, repair and pathology. Early mechanotransduction events include calcium (Ca2+) signaling and intercellular communication. These responses are mediated through multiple mechanisms involving stretch-activated channels, voltage-activated channels such as Ca(v)1, purinoceptors, adrenoceptors, ryanodine receptor-mediated Ca2+ release, gap junctions and connexin hemichannels. Calcium, diacylglycerol, inositol (1,4,5)-trisphosphate, nucleotides and nucleosides play intracellular and/or extracellular signaling roles in these pathways. In addition, responses to mechanical loads in tendon cells vary among species, tendon type, anatomic location, loading conditions and other factors. This review includes a synopsis of the immediate responses to mechanical loading in connective tissue cells, particularly tenocytes. These responses involve Ca2+ signaling, gap junctions and intercellular communication.  相似文献   

19.
To study the aggregation of cell-to-cell channels into gap junctions at individual cell-cell contacts, we transfected cells with an expression vector for a chimeric protein composed of the cell-to-cell channel protein connexin43 and a green fluorescent protein. The chimeric channel protein was visualized in the fluorescence microscope and was found to form gap junctions at the cell-cell contacts just like wild-type connexin43. Cells expressing the chimeric protein had functional cell-to-cell channels. Using timelapse videomicroscopy on live cells we observed individual gap junctions over long periods and recorded the time course of aggregation of the chimeric channel protein into gap junctions at newly formed cell-cell contacts. We found that individual small gap junctions were very dynamic, moving about or becoming assembled and disassembled in the course of minutes. Larger gap junctions were more stable than small punctate ones. In control condition, stable new gap junctions were not formed during observation times of 30 min or longer. But at elevated levels of cyclic adenosine monophosphate, the chimeric channel protein began aggregating at new junctions 5-10 minutes after cell-cell contact and continued to concentrate there for at least one hour. Also already established junctions grew in size. The fluorescent chimeric channel protein will be an excellent tool to investigate the regulation of trafficking of connexin from and to the membrane and the mechanism of connexin channel aggregation into gap junctions.  相似文献   

20.
Gαq-stimulation reduces intercellular coupling within 10 min via a decrease in the membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP2), but the mechanism is unknown. Here we show that uncoupling in rat cardiomyocytes after stimulation of α-adrenergic Gαq-coupled receptors with norepinephrine is prevented by proteasomal and lysosomal inhibitors, suggesting that internalization and possibly degradation of connexin43 (Cx43) is involved. Uncoupling was accompanied by increased Triton X-100 solubility of Cx43, which is considered a measure of the non-junctional pool of Cx43. However, inhibition of the proteasome and lysosome further increased solubility while preserving coupling, suggesting that communicating gap junctions can be part of the soluble fraction. Ubiquitination of Cx43 was also increased, and Cx43 co-immunoprecipitated with the ubiquitin ligase Nedd4. Conclusions: Norepinephrine increases ubiquitination of Cx43 in cardiomyocytes, possibly via Nedd4. We suggest that Cx43 is subsequently internalized, which is preceded by acquired solubility in Triton X-100, which does not lead to uncoupling per se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号