首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The text book view of cell surface receptors depicts them at the top of a vertical chain of command that starts with ligand binding and proceeds in a lineal fashion towards the cell nucleus. Although pedagogically useful, this view is incomplete and recent findings suggest that the extracellular domain of cell surface receptors can be a transmitter as much as a receiver in intercellular communication. GFRα1 is a GPI-anchored receptor for GDNF (glial cell line-derived neurotrophic factor), a neuronal growth factor with widespread functions in the developing and adult nervous system. GFRα1 partners with transmembrane proteins, such as the receptor tyrosine kinase RET or the cell adhesion molecule NCAM, for intracellular transmission of the GDNF signal. In addition to this canonical role, GFRα1 can also engage in horizontal interactions and thereby modify the function of other cell surface components. GFRα1 can also function as a ligand-induced adhesion cell molecule, mediating homophilic cell-cell interactions in response to GDNF. Finally, GFRα1 can also be released from the cell surface and act at a distance as a soluble factor together with its ligand. This plethora of unconventional mechanisms is likely to be a feature common to several other receptors and considerably expands our view of cell surface receptor function.  相似文献   

2.
3.
4.
5.
Ameloblastoma is an odontogenic tumor located in the bone jaw with clinical characteristics of extensive bone resorption. It is a locally invasive tumor with a high recurrence rate despite adequate surgical removal. In bone disease, tumors and other cells including osteoblasts, osteoclasts, and osteocytes in the bone microenvironment contribute to the pathogenesis of tumor growth. However, the effect of osteoblasts on ameloblastoma cells is not well-understood, and there has been limited research on interactions between them.This study investigated interactions between ameloblastoma cells and osteoblasts using a human ameloblastoma cell line (AM-3 ameloblastoma cells) and a murine pre-osteoblast cell line (MC3T3-E1 cells). We treated each cell type with the conditioned medium by the other cell type. We analyzed the effect on cytokine production by MC3T3-E1 cells and the production of MMPs by AM-3 cells. Treatment with AM-3-conditioned medium induced inflammatory cytokine production of IL-6, MCP-1, and RANTES from MC3T3-E1 cells. The use of an IL-1 receptor antagonist suppressed the production of these inflammatory cytokines by MC3T3-E1 cells stimulated with AM-3-conditioned medium. The MC3T3-E1-conditioned medium triggered the expression of MMP-2 from AM-3 cells. Furthermore, we have shown that the proliferation and migration activity of AM-3 cells were accelerated by MC3T3-E1 conditioned media.In conclusion, these intercellular signalings between ameloblastoma cells and osteoblasts may play multiple roles in the pathogenesis of ameloblastoma.  相似文献   

6.
7.
Glial cell line-derived neurotrophic factor (GDNF) is a growth factor promoting the survival of several neuronal populations in the central, peripheral and autonomous nervous system. Outside the nervous system, GDNF functions as a morphogen in kidney development and regulates spermatogonial differentiation. GDNF exerts its roles by binding to glial cell line-derived neurotrophic factor receptor (GFR) a1, which forms a heterotetramic complex with rearranged during transfection (RET) proto-oncogene product, a tyrosine kinase receptor. In this study we report the presence of GDNF-, RET- and GFRa1-like immunoreactivity in the pancreas of juvenile trout. GDNF immunoreactivity was observed in the islet cells, while GFRa1- and RET- immunoreactivity was observed in the exocrine portion. These findings suggest a paracrine role of GDNF towards exocrine cells showing GDNF receptors GFRa1 and RET. The relationship could reflect physiological interactions, as previously indicated in mammalian pancreas, and/or a trophic role by endocrine cells on exocrine parenchyma, which shows a conspicuous increase during animal growth.  相似文献   

8.
Two of the glial-cell-line-derived neurotrophic factor (GDNF) family ligands (GFLs), namely GDNF and neurturin (NRTN), are essential neurotropic factors for enteric nerve cells. Signal transduction is mediated by a receptor complex composed of GDNF family receptor alpha 1 (GFRα1) for GDNF or GFRα2 for NRTN, together with the tyrosine kinase receptor RET (rearranged during transfection). As both factors and their receptors are crucial for enteric neuron survival, we assess the site-specific gene expression of these GFLs and their corresponding receptors in human adult colon. Full-thickness colonic specimens were obtained after partial colectomy for non-obstructing colorectal carcinoma. Samples were processed for immunohistochemistry and co-localization studies. Site-specific gene expression was determined by real-time quantitative polymerase chain reaction in enteric ganglia and in circular and longitudinal muscle harvested by microdissection. Protein expression of the receptors was mainly localized in the myenteric and submucosal plexus. Dual-label immunohistochemistry with PGP 9.5 as a pan-neuronal marker detected immunoreactivity of the receptors in neuronal somata and ganglionic neuropil. RET immunoreactivity co-localized with neuronal GFRα1 and GFRα2 signals. The dominant source of receptor mRNA expression was in myenteric ganglia, whereas both GFLs showed higher expression in smooth muscle layers. The distribution and expression pattern of GDNF and NRTN and their corresponding receptors in the human adult enteric nervous system indicate a role of both GFLs not only in development but also in the maintenance of neurons in adulthood. The data also provide a basis for the assessment of disturbed signaling components of the GDNF and NRTN system in enteric neuropathies underlying disorders of gastrointestinal motility.  相似文献   

9.
Growth factors and matrix proteins regulate the proliferation and differentiation of osteoblasts. The insulin-like growth factor (IGF) system comprises IGF-I, IGF-II, and six high-affinity IGF-binding proteins (IGFBPs). IGFs stimulate cell growth in many types of tissue; IGF-binding proteins regulate cellular actions and can affect cell growth. IGF-I is involved in differentiation, proliferation, and matrix formation in osteoblasts; IGFBP-5 is associated with the extracellular matrix (ECM) and can potentiate the actions of IGF-I. We investigated the effect of ECM proteins on the responses of MC3T3-E1 osteoblast cells to IGF-I and IGFBP-5. In addition, because extracellular signal-regulated kinases 1 and 2 (Erk 1/2) affect cell growth, we evaluated the effects of IGFBP-5 on Erk 1/2 phosphorylation in MC3T3-E1 cells. IGF-I caused an increase in IGFBP-5 expression in cultured MC3T3-E1 cells, and IGF-I plus IGFBP-5 significantly increased cell growth. Likewise, the addition of IGF-I and IGFBP-5 to cultured MC3T3-E1 cells increased the synthesis of the ECM proteins osteopontin (OPN) and thrombospondin-1 (TSP-1), which can bind to alphaVbeta3 integrin receptors on the cell surface. By contrast, the addition of an antibody against ECM proteins inhibited the effects of OPN and TSP-1 on IGFBP-5 expression. The stimulatory effect of IGFBP-5 was mediated via Erk 1/2 activation. These data suggest that IGFBP-5 regulates Erk 1/2 phosphorylation in cultured MC3T3-E1 cells via ECM proteins that may ultimately stimulate the growth of osteoblasts. We determined whether occupation of the alphaVbeta3 integrin receptor affects IGF-I receptor (IGF-IR)-mediated signaling and function in MC3T3-E1 osteoblast cells. Occupation of the alphaVbeta3 integrin receptor with ECM proteins induced IGF-I-stimulated IGF-IR phosphorylation. Conversely, in the presence of the alphaVbeta3-specific disintegrin echistatin, IGF-I-stimulated IGF-IR activation was inhibited. IGF-I-stimulated IGF-IR phosphorylation was accompanied by IRS-1 phosphorylation and MAPK activation. However, these effects were attenuated by echistatin. Thus, occupancy of the alphaVbeta3 disintegrin receptor modulates IGF-I-induced IGF-IR activation and IGF-IR-mediated function in MC 3T3-E1 osteoblasts.  相似文献   

10.
11.
In order to determine whether growth hormone (GH) exerts a direct effect on osteoblasts, in vitro and in vivo immunocytological studies were carried out on newborn rat calvaria and a clonal osteoblast-like cell line (MC3T3-E1) isolated from newborn mouse calvaria. After exposure to human growth hormone (hGH) or 1,25 dihydroxyvitamin D3 (1,25(OH)2D3), a significant increase in alkaline phosphatase activity was observed in MC3T3-E1 cells. Simultaneous exposure of MC3T3-E1 cells to hGH and 10 nM 1,25(OH)2D3 showed a synergistic effect of the two hormones on this activity. The optimal dose of hGH was 0.1 nM. An immunocytological procedure was performed on ultrathin frozen sections from 7-day-old rat calvaria and MC3T3-E1 cells cultured with hGH. GH-like immunoreactivity was observed in both cases. In calvaria, endogenous GH-like immunoreactivity was localized at the same ultrastructural level (plasma membrane, cytoplasmic and nuclear matrices) as exogenous GH-like immunoreactivity in MC3T3-E1 cells. Following the initial step of binding to the plasma membrane, GH may be internalized in the cytoplasmic matrix and nucleus. In situ hybridization revealed the presence of mRNA coding for GH receptor in calvaria cells. The density of these receptors seemed to be lower in osteoblasts than in hepatocytes. In MC3T3-E1 cells, hGH induced a dose-dependent secretion of insulin-like growth factor 1. In conclusion, these results indicate that GH may act directly on osteoblasts.  相似文献   

12.
We combined retrograde tracing techniques with single-neuron RT-PCR to compare the expression of neurotrophic factor receptors in nodose vs. jugular vagal sensory neurons. The neurons were further categorized based on location of their terminals (tracheal or lungs) and based on expression of the ionotropic capsaicin receptor TRPV1. Consistent with functional studies, nearly all jugular neurons innervating the trachea and lungs expressed TRPV1. With respect to the neurotrophin receptors, the TRPV1-expressing jugular C-fiber neurons innervating both the trachea and lung compartments preferentially expressed tropomyosin-receptor kinase A (TrkA), with only a minority of neurons expressing TrkB or TrkC. The nodose neurons that express TRPV1 (presumed nodose C-fibers) innervate mainly intrapulmonary structures. These neurons preferentially expressed TrkB, with only a minority expressing TrkA or TrkC. The expression pattern in tracheal TRPV1-negative neurons, nodose tracheal presumed Aδ-fiber neurons as well as the intrapulmonary TRPV1-negative presumed Aβ-fiber neurons, was similar to that observed in the nodose C-fiber neurons. We also evaluated the expression of GFRα receptors and RET (receptors for the GDNF family ligands). Virtually all vagal sensory neurons innervating the respiratory tract expressed RET and GFRα1. The jugular neurons also categorically expressed GFRα3, as well as ~50% of the nodose neurons. GFRα2 was expressed in ~50% of the neurons irrespective of subtype. The results reveal that Trk receptor expression in vagal afferent neurons innervating the adult respiratory tract depends more on the location of the cell bodies (jugular vs. nodose ganglion) than either the location of the terminals or the functional phenotype of the nerve. The data also reveal that in addition to neurotrophins, the GDNF family ligands may be important neuromodulators of vagal afferent nerves innervating the adult respiratory tract.  相似文献   

13.
Pleiotrophin (Ptn) plays an important role in bone growth through regulating osteoblasts’ functions. The underlying signaling mechanisms are not fully understood. In the current study, we found that Ptn induced heparin-binding epidermal growth factor (HB-EGF) release to trans-activate EGF-receptor (EGFR) in both primary osteoblasts and osteoblast-like MC3T3-E1 cells. Meanwhile, Ptn activated Akt and Erk signalings in cultured osteoblasts. The EGFR inhibitor AG1478 as well as the monoclonal antibody against HB-EGF (anti-HB-EGF) significantly inhibited Ptn-induced EGFR activation and Akt and Erk phosphorylations in MC3T3-E1 cells and primary osteoblasts. Further, EGFR siRNA depletion or dominant negative mutation suppressed also Akt and Erk activation in MC3T3-E1 cells. Finally, we observed that Ptn increased alkaline phosphatase (ALP) activity and inhibited dexamethasone (Dex)-induced cell death in both MC3T3-E1 cells and primary osteoblasts, such effects were alleviated by AG1478 or anti-HB-EGF. Together, these results suggest that Ptn-induced Akt/Erk activation and some of its pleiotropic functions are mediated by EGFR trans-activation in cultured osteoblasts.  相似文献   

14.
Upon termination of bone matrix synthesis, osteoblasts either undergo apoptosis or differentiate into osteocytes or bone lining cells. In this study, we investigated the role of matrix metalloproteinases (MMPs) and growth factors in the differentiation of osteoblasts into osteocytes and in osteoblast apoptosis. The mouse osteoblast cell line MC3T3-E1 and primary mouse calvarial osteoblasts were either grown on two-dimensional (2-D) collagen-coated surfaces, where they morphologically resemble flattened, cuboidal bone lining cells, or embedded in three-dimensional (3-D) collagen gels, where they resemble dendritic osteocytes constituting a network of cells. When MC3T3-E1 osteoblasts were grown in a 3-D matrix in the presence of an MMP inhibitor (GM6001), the cell number was dose-dependently reduced by approximately 50%, whereas no effect was observed on a 2-D substratum. In contrast, the murine mature osteocyte cell line, MLO-Y4, was unaffected by GM6001 under all culture conditions. According to TUNEL assay, the osteoblast apoptosis was increased 2.5-fold by 10 microm GM6001. To investigate the mechanism by which MMPs mediate the survival of osteoblasts, we examined the effect of GM6001 on MC3T3-E1 osteoblasts in the presence of extracellular matrix components and growth factors, including tenascin, fibronectin, laminin, collagenase-cleaved collagen, gelatin, parathyroid hormone, basic fibroblast growth factor, vascular epidermal growth factor, insulin-like growth factor, interleukin-1, and latent and active transforming growth factor-beta (TGF-beta). Only active TGF-beta, but not latent TGF-beta or other agents tested, restored cell number and apoptosis to control levels. Furthermore, we found that the membrane type MMP, MT1-MMP, which is produced by osteoblasts, could activate latent TGF-beta and that antibodies neutralizing endogenous TGF-beta led to a similar decrease in cell number as GM6001. Whereas inhibitors of other protease families did not induce osteoblast apoptosis, an inhibitor of the p44/42 mitogen-activated protein kinase showed the same but non-synergetic effect as GM6001. These findings suggest that MMP-activated TGF-beta maintains osteoblast survival during trans-differentiation into osteocytes by a p44/42-dependent pathway.  相似文献   

15.
POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-α (TNF-α), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-α-induced down-regulation of POEM gene expression occurred in both time- and dose-dependent manners through the nuclear factor kappa B (NF-κB) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-α in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-α-induced inhibition of osteoblast differentiation. These results suggest that TNF-α inhibits POEM expression through the NF-κB signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-α.  相似文献   

16.
Pulsed electromagnetic fields (PEMF) can promote bone healing, while use of dexamethasone induces bone loss and osteoporosis. There is no report available on the combined effects of PEMF and dexamethasone on the activity of osteoblasts. Here, we investigated the effects of PEMF and dexamethasone on the proliferation and differentiation of MC3T3-E1 osteoblasts. Our results showed that PEMF and dexamethasone respectively increased and decreased the proliferation of MC3T3-E1 osteoblasts, meanwhile PEMF eliminated the effect of dexamethasone on MC3T3-E1 osteoblasts. Moreover, we also found that dexamethasone combined with PEMF upregulated the mRNA expression of IGF-1 at the early stage after the stimulation of PEMF and improved the decrease of COX-2 mRNA expression induced by dexamethasone at the late stage after the stimulation of PEMF. PEMF may be beneficial to improve dexamethasone-induced bone loss and osteoporosis.  相似文献   

17.
18.
Adrenomedullin (ADM) has been shown to mediate multifunctional responses in cell culture and animal system such as regulation of growth and apoptosis. ADM stimulates the proliferation of osteoblasts in vitro and promotes bone growth in vivo. The ability of ADM to influence osteoblastic cell number through inhibition of apoptosis has not yet been studied. To address this question we have investigated its effect on the apoptosis of serum-deprived osteoblastic cells using mouse MC3T3-E1 cells which express both ADM and ADM receptors. Treatment with ADM significantly blunted apoptosis, evaluated by caspase-3 activity, DNA fragmentation quantification and annexin V-FITC labeling. This effect was abolished by the subtype-1 CGRP receptor antagonist, CGRP(8-37). Both ADM and its specific receptor antagonist, the (22-52) ADM fragment exhibited a similar anti-apoptotic effect. Thus, our data suggest that ADM exerts anti-apoptotic effects through CGRP1 receptors. This was substantiated by a similar protective effect of CGRP on MC3T3-E1 cells apoptosis. Accordingly, neutralization of endogenous ADM by a specific antibody enhanced apoptosis. Finally, the selective inhibitor of MAPK kinase (MEK), PD98059, abolished the apoptosis protective effect of ADM and prevented ADM activation of ERK1/2. These data show that ADM acts as a survival factor in osteoblastic cells via a CGRP1 receptor-MEK-ERK pathway, which provides further understanding on the physiological function of ADM in osteoblasts.  相似文献   

19.
Glial cell line-derived neurotrophic factor (GDNF), a neuronal survival factor, binds its co-receptor GDNF family receptor alpha1 (GFR alpha 1) in a 2:2 ratio and signals through the receptor tyrosine kinase RET. We have solved the GDNF(2).GFR alpha 1(2) complex structure at 2.35 A resolution in the presence of a heparin mimic, sucrose octasulfate. The structure of our GDNF(2).GFR alpha 1(2) complex and the previously published artemin(2).GFR alpha 3(2) complex are unlike in three ways. First, we have experimentally identified residues that differ in the ligand-GFR alpha interface between the two structures, in particular ones that buttress the key conserved Arg(GFR alpha)-Glu(ligand)-Arg(GFR alpha) interaction. Second, the flexible GDNF ligand "finger" loops fit differently into the GFR alphas, which are rigid. Third, and we believe most importantly, the quaternary structure of the two tetramers is dissimilar, because the angle between the two GDNF monomers is different. This suggests that the RET-RET interaction differs in different ligand(2)-co-receptor(2)-RET(2) heterohexamer complexes. Consistent with this, we showed that GDNF(2).GFR alpha1(2) and artemin(2).GFR alpha 3(2) signal differently in a mitogen-activated protein kinase assay. Furthermore, we have shown by mutagenesis and enzyme-linked immunosorbent assays of RET phosphorylation that RET probably interacts with GFR alpha 1 residues Arg-190, Lys-194, Arg-197, Gln-198, Lys-202, Arg-257, Arg-259, Glu-323, and Asp-324 upon both domains 2 and 3. Interestingly, in our structure, sucrose octasulfate also binds to the Arg(190)-Lys(202) region in GFR alpha 1 domain 2. This may explain how GDNF.GFR alpha 1 can mediate cell adhesion and how heparin might inhibit GDNF signaling through RET.  相似文献   

20.
Although zinc (Zn) is known to participate in bone formation, its exact role in the remodeling of this tissue has not been fully clarified. The present study was designed to investigate whether Zn has a role at the resorptive sites in vitro. We investigated the migration of osteoblastic MC3T3-E1 cells in response to Zn using a Boyden chamber assay. Exposure of MC3T3-E1 cells to Zn stimulated the migration of MC3T3-E1 cells. Checkerboard analysis revealed that the migration of MC3T3-E1 cells toward Zn was a directional (chemotaxis) rather than a random (chemokinesis) motion. Pretreatment of MC3T3-E1 cells with pertussis toxin completely blocked the chemotactic response of cells to Zn, indicating that it is mediated by G-protein-coupled receptors. Because the bone is one of the major Zn storage sites, we suggest that Zn released from bone-resorptive sites plays an important role in the recruitment of osteoblasts and bone renewal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号