首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The need for successful ex-vivo expansion and directed differentiation of haematopoietic stem cells (HSCs) for therapeutic applications has increased over the past decade. Haematopoietic cell cultures are complex and full characterisation of the process environment has yet to be achieved. The complexity and transient nature of HSC cultures make the identification, maintenance and control of optimal operating conditions challenging. Application of real-time, on-line monitoring techniques and process control strategies enhances the ability to operate bioprocesses of desired reproducibility and high product quality. In this review, we discussed the methods by which in vitro culture information necessary for bioprocess control may be obtained, including process considerations, monitoring and analytical tools, and design of experiments (DOE). The successful application of these tools may result in time- and cost-effective cultures for directed differentiation and expansion of haematopoietic components intended for clinical use.  相似文献   

2.
It is well established that embryonic stem (ES) cells can differentiate into functional cardiomyocytes in vitro. ES-derived cardiomyocytes could be used for pharmaceutical and therapeutic applications, provided that they can be generated in sufficient quantity and with sufficient purity. To enable large-scale culture of ES-derived cells, we have developed a robust and scalable bioprocess that allows direct embryoid body (EB) formation in a fully controlled, stirred 2 L bioreactor following inoculation with a single cell suspension of mouse ES cells. Utilizing a pitched-blade-turbine, parameters for optimal cell expansion as well as efficient ES cell differentiation were established. Optimization of stirring conditions resulted in the generation of high-density suspension cultures containing 12.5 x 10(6) cells/mL after 9 days of differentiation. Approximately 30%-40% of the EBs formed in this process vigorously contracted, indicating robust cardiomyogenic induction. An ES cell clone carrying a recombinant DNA molecule comprised of the cardiomyocyte-restricted alpha myosin heavy chain (alphaMHC) promoter and a neomycin resistance gene was used to establish the utility of this bioprocess to efficiently generate ES-derived cardiomyocytes. The genetically engineered ES cells were cultured directly in the stirred bioreactor for 9 days, followed by antibiotic treatment for another 9 days. The protocol resulted in the generation of essentially pure cardiomyocyte cultures, with a total yield of 1.28 x 10(9) cells in a single 2 L bioreactor run. This study thus provides an important step towards the large-scale generation of ES-derived cells for therapeutic and industrial applications.  相似文献   

3.
We describe derivation of induced pluripotent stem cells (iPSCs) from terminally differentiated mouse cells in serum- and feeder-free stirred suspension cultures. Temporal analysis of global gene expression revealed high correlations between cells reprogrammed in suspension and cells reprogrammed in adhesion-dependent conditions. Suspension culture-reprogrammed iPSCs (SiPSCs) could be differentiated into all three germ layers in vitro and contributed to chimeric embryos in vivo. SiPSC generation allowed for efficient selection of reprogramming factor-expressing cells based on their differential survival and proliferation in suspension culture. Seamless integration of SiPSC reprogramming and directed differentiation enabled scalable production of beating cardiac cells in a continuous single cell- and small aggregate-based process. This method is an important step toward the development of robust PSC generation, expansion and differentiation technology.  相似文献   

4.
Suspension bioreactors are an attractive alternative to static culture of human embryonic stem cells (hESCs) for the generation of clinically relevant cell numbers in a controlled system. In this study, we have developed a scalable suspension culture system using serum-free defined media with spinner flasks for hESC expansion as cell aggregates. With optimized cell seeding density and splitting interval, we demonstrate prolonged passaging and expansion of several hESC lines with overall expansion, yield, viability and maintenance of pluripotency equivalent to adherent culture. Human ESCs maintained in suspension as aggregates can be passaged at least 20 times to achieve over 1×10(13) fold calculated expansion with high undifferentiation rate and normal karyotype. Furthermore, the aggregates are able to differentiate to cardiomyocytes in a directed fashion. Finally, we show that the cells can be cryopreserved in serum-free medium and thawed into adherent or suspension cultures to continue passaging and expansion. We have successfully used this method under cGMP or cGMP-equivalent conditions to generate cell banks of several hESC lines. Taken together, our suspension culture system provides a powerful approach for scale-up expansion of hESCs under defined and serum-free conditions for clinical and research applications.  相似文献   

5.
Pluripotent stem cells (PSCs) have been traditionally expanded on a two-dimensional (2D) surface and require substrates coated with extracellular matrix (ECM) proteins. Recently, PSCs have been successfully expanded in suspension as undifferentiated PSC aggregates, which offer a means for large-scale production. Toward lineage-specific differentiation, PSCs can form aggregate-like structures known as embryoid bodies (EBs). The morphology and size of EBs have been shown to significantly affect the differentiation into specific lineages and three-dimensional (3D) tissue development, thus efforts have been devoted to form size-controlled EBs. The integration of both PSC expansion and differentiation in suspension promotes PSC-derived cell production in bioreactors. However, the cellular organization and differentiation potential of PSC aggregates, as well as the role of the cues provided by the reactors to regulate EB fate, have yet to be fully understood. Despite these challenges, integrated PSC aggregate-based culture provides a platform for a simple, scalable bioprocess for the potential application of PSCs in regenerative medicine, disease modeling, and drug discovery.  相似文献   

6.
The clinical use of neural precursor cells (NPCs) for the treatment of neurological diseases, such as Parkinson's disease and Huntington's disease, requires overcoming the scarcity of these cells through controlled expansion. The main objective of the present study was to develop a large-scale computer-controlled bioprocess for the expansion of mammalian NPCs in suspension culture by scaling up existing reactor protocols. In order to support the oxygen demands of the maximum cell densities achieved, the volumetric mass transfer coefficient was kept above 1.10/h while scaling-up from small-scale 125 mL vessels to large-scale 500 mL bioreactors. In addition, the maximum shear stress at the impeller tip was maintained between 0.30 and 0.75 Pa to reduce damage to the cells. The resulting large-scale bioprocess achieved maximum viable cell densities of 1.2 x 10(6) cells/mL and a batch multiplication ratio of 9.1. Moreover, the process successfully maintained the NPC characteristics observed in small-scale studies.  相似文献   

7.

Background

High proliferative and differentiation capacity renders embryonic stem cells (ESCs) a promising cell source for tissue engineering and cell-based therapies. Harnessing their potential, however, requires well-designed, efficient and reproducible expansion and differentiation protocols as well as avoiding hazardous by-products, such as teratoma formation. Traditional, standard culture methodologies are fragmented and limited in their fed-batch feeding strategies that afford a sub-optimal environment for cellular metabolism. Herein, we investigate the impact of metabolic stress as a result of inefficient feeding utilizing a novel perfusion bioreactor and a mathematical model to achieve bioprocess improvement.

Methodology/Principal Findings

To characterize nutritional requirements, the expansion of undifferentiated murine ESCs (mESCs) encapsulated in hydrogels was performed in batch and perfusion cultures using bioreactors. Despite sufficient nutrient and growth factor provision, the accumulation of inhibitory metabolites resulted in the unscheduled differentiation of mESCs and a decline in their cell numbers in the batch cultures. In contrast, perfusion cultures maintained metabolite concentration below toxic levels, resulting in the robust expansion (>16-fold) of high quality ‘naïve’ mESCs within 4 days. A multi-scale mathematical model describing population segregated growth kinetics, metabolism and the expression of selected pluripotency (‘stemness’) genes was implemented to maximize information from available experimental data. A global sensitivity analysis (GSA) was employed that identified significant (6/29) model parameters and enabled model validation. Predicting the preferential propagation of undifferentiated ESCs in perfusion culture conditions demonstrates synchrony between theory and experiment.

Conclusions/Significance

The limitations of batch culture highlight the importance of cellular metabolism in maintaining pluripotency, which necessitates the design of suitable ESC bioprocesses. We propose a novel investigational framework that integrates a novel perfusion culture platform (controlled metabolic conditions) with mathematical modeling (information maximization) to enhance ESC bioprocess productivity and facilitate bioprocess optimization.  相似文献   

8.
Cell transplantation is emerging as a promising new approach to replace scarred, nonfunctional myocardium in a diseased heart. At present, however, generating the numbers of donor cardiomyocytes required to develop and test animal models is a major limitation. Embryonic stem (ES) cells may be a promising source for therapeutic applications, potentially providing sufficient numbers of functionally relevant cells for transplantation into a variety of organs. We developed a single-step bioprocess for ES cell-derived cardiomyocyte production that enables both medium perfusion and direct monitoring and control of dissolved oxygen. Implementation of the bioprocess required combining methods to prevent ES cell aggregation (hydrogel encapsulation) and to purify for cardiomyocytes from the heterogeneous cell populations (genetic selection), with medium perfusion in a controlled bioreactor environment. We used this bioprocess to investigate the effects of oxygen on cardiomyocyte generation. Parallel vessels (250 mL culture volume) were run under normoxic (20% oxygen tension) or hypoxic (4% oxygen tension) conditions. After 14 days of differentiation (including 5 days of selection), the cardiomyocyte yield per input ES cell achieved in hypoxic vessels was 3.77 +/- 0.13, higher than has previously been reported. We have developed a bioprocess that improves the efficiency of ES cell-derived cardiomyocyte production, and allows the investigation of bioprocess parameters on ES cell-derived cardiomyogenesis. Using this system we have demonstrated that medium oxygen tension is a culture parameter that can be manipulated to improve cardiomyocyte yield.  相似文献   

9.
Fu S  Fei Q  Jiang H  Chuai S  Shi S  Xiong W  Jiang L  Lu C  Atadja P  Li E  Shou J 《PloS one》2011,6(11):e27965
Generation of hepatocyte from embryonic stem cells (ESCs) holds great promise for hepatocyte replacement therapy to treat liver diseases. Achieving high efficiency of directed differentiation of ESCs to hepatocyte is of critical importance. Previously, Wnt3a has been reported to promote Activin A-induced human definitive endoderm (DE) differentiation, the early stage of hepatocyte differentiation. However, the underlying molecular mechanisms are not clear. Growing evidence demonstrated that microRNAs (miRNAs) are key regulators involved in various important biological processes including the regulation of stem cell differentiation. In the present study, we profiled genome wide miRNA expression during Wnt3a and Activin A induced mouse DE differentiation. We uncovered distinct miRNA expression patterns during DE differentiation with the identification of a subset of miRNAs whose expression is synergistically regulated by Wnt3a/Activin A treatment at different stages of DE differentiation. Forced expression of a pool of such synergistically regulated miRNAs alone could partially promote DE differentiation, indicating a regulatory role of them. Using TargetScan and GeneGO pathway analyses, the synergistically regulated miRNAs are predicted to regulate key pathways involved in DE differentiation; among them includes the regulation of histone acetylation. Consistently, Wnt3a and Activin A treatment increased global histone acetylation which can be partially mimicked by over expression of the pooled miRNAs. Chromatin IP (ChIP) experiments demonstrated that the promoter regions of Sox17 and Foxa2 are subjected to histone acetylation regulation. Administration of Hdac inhibitors greatly augmented DE differentiation. Our data uncovered a novel epigenetic mechanism of Wnt3a and Activin A induced DE differentiation, whereby the treatment of growth factors induced histone acetylation at least in part by the regulation of miRNA expression.  相似文献   

10.
Induction of definitive endoderm (DE) cells is a prerequisite for the whole process of embryonic stem (ES) cells differentiating into hepatic or pancreatic progenitor cells. We have established an efficient method to induce mouse ES cell-derived DE cells in suspension embryonic body (EB) culture. Similar to previous studies, mouse ES cell-derived DE cells, which were defined as Cxcr4(+) c-Kit(+) , Cxcr4(+) E-cadherin(+) cells or Cxcr4(+) PDGFRa(-) cells, could be induced in the serum-free EBs at Day 4 of induction. The activations of Wnt, Nodal, and FGF signaling pathways in differentiating EBs promoted DE cell differentiation, while activation of BMP4 signaling inhibited the process. In the present study, we found that chemical activation of canonical Wnt signaling pathway by LiCl could synergize with Activin A-mediated Nodal signaling pathway to promote induction of DE cells, and inhibition of Bmp4 signaling by Noggin along with Activin A/LiCl further improved the efficiency of DE cell differentiation. The derived DE cells were proved for their capacities to become hepatic progenitor cells or pancreatic progenitor cells. In conclusion, we significantly improved the efficiency of generating mouse ES cell-derived DE cells by combined Activin A/LiCl/Noggin treatment. Our work will be greatly helpful to generate ES cell-derived hepatic cells and ES cell-derived pancreatic cells for future regenerative medicine.  相似文献   

11.
Conditioned medium from mesophyll cell-suspension cultures of Zinnia elegans L. has striking effects on cell expansion and tracheary element differentiation when applied to cultures of freshly isolated mesophyll cells. These effects include (a) induction of early cell expansion, (b) delay in differentiation by 48 h or more, (c) reduction in the synchrony of differentiation, and (d) early formation of very large, metaxylem-like tracheary elements. Like reduced osmotic potential and buffering at pH 5.5, conditioned medium appears to have its primary effect on cell expansion. Partial characterization of the expansion-inducing factor indicates that it is heat stable, of low molecular mass, and is resistant to protease. It also binds reversibly to concanavalin A but is not adsorbed by charcoal. We suggest that the secreted factor may be an oligosaccharide involved in the coordination of cell expansion and differentiation and the regulation of the protoxylem-like to metaxylem-like transition in xylogenic suspension cultures.  相似文献   

12.
Miniaturized bioreactors for suspension cultures of animal cells, such as Chinese Hamster Ovary (CHO) cells, could improve bioprocess development through the ability to cheaply explore a wide range of bioprocess operating conditions. A miniaturized pressure-cycled bioreactor for animal cell cultures, described previously (Diao et al., 2008), was tested with a suspension CHO cell line producing commercially relevant quantities of human IgG. Results from the suspended CHO cell line showed that the cell growth was comparable to conventional flask controls and the target protein production was enhanced in the minibioreactor, which may be due to the relatively high oxygen transfer rate and the moderate shear stress, measured and simulated previously. Microcarrier culture using an anchorage-dependent CHO cell line and Cytodex 3 also showed a similar result: comparable growth and enhanced production of a model protein (secreted alkaline phosphatase or SEAP). Various fed-batch schemes were applied to the CHO cells producing human IgG, yielding cell numbers (1.1 × 10(7) /mL) at day 8 and titers of human IgG (2.3 g/L) at day 14 that are typical industrial values for CHO cell fed-batch cultures. The alteration of the volumetric oxygen transfer coefficient is a key parameter for viability of the CHO cell line producing human IgG. We conclude that the minibioreactor can provide favorable cell culture environments; oxygen transfer coefficient and mixing time can be altered to mimic values in a larger scale system allowing for potential prediction of response during scale-up.  相似文献   

13.
The promise of human embryonic stem cells (hESCs) to provide an unlimited supply of cells for cell therapy and tissue engineering depends on the availability of a controllable bioprocess for their expansion and differentiation. We describe for the first time the formation of differentiating human embryoid bodies (hEBs) in rotating bioreactors to try and control their agglomeration. The efficacy of the dynamic process compared to static cultivation in Petri dishes was analyzed with respect to the yield of hEB formation and differentiation. Quantitative analyses of hEBs, DNA and protein contents, and viable cell concentration, as measures for culture cellularity and scale-up, revealed 3-fold enhancement in generation of hEBs compared to the static culture. Other metabolic indices such as glucose consumption, lactic acid production, and pH pointed to efficient cell expansion and differentiation in the dynamic cultures. The type of rotating vessel had a significant impact on the process of hEB formation and agglomeration. In the slow turning lateral vessel (STLV), hEBs were smaller in size and no large necrotic centers were seen, even after 1-month cultivation. In the high aspect rotating vessel (HARV), hEB agglomeration was massive. The appearance of representative tissues derived from the three germ layers as well as primitive neuronal tube organization, blood vessel formation, and specific-endocrine secretion indicated that the initial developmental events are not altered in the dynamically formed hEBs. Collectively, our study defines the culture conditions in which control over the aggregation of differentiating hESCs is obtained, thus enabling scaleable cell production for clinical and industrial applications.  相似文献   

14.
Development of a human embryonic stem cell (hESC)-based therapy for type 1 diabetes will require the translation of proof-of-principle concepts into a scalable, controlled, and regulated cell manufacturing process. We have previously demonstrated that hESC can be directed to differentiate into pancreatic progenitors that mature into functional glucose-responsive, insulin-secreting cells in vivo. In this study we describe hESC expansion and banking methods and a suspension-based differentiation system, which together underpin an integrated scalable manufacturing process for producing pancreatic progenitors. This system has been optimized for the CyT49 cell line. Accordingly, qualified large-scale single-cell master and working cGMP cell banks of CyT49 have been generated to provide a virtually unlimited starting resource for manufacturing. Upon thaw from these banks, we expanded CyT49 for two weeks in an adherent culture format that achieves 50-100 fold expansion per week. Undifferentiated CyT49 were then aggregated into clusters in dynamic rotational suspension culture, followed by differentiation en masse for two weeks with a four-stage protocol. Numerous scaled differentiation runs generated reproducible and defined population compositions highly enriched for pancreatic cell lineages, as shown by examining mRNA expression at each stage of differentiation and flow cytometry of the final population. Islet-like tissue containing glucose-responsive, insulin-secreting cells was generated upon implantation into mice. By four- to five-months post-engraftment, mature neo-pancreatic tissue was sufficient to protect against streptozotocin (STZ)-induced hyperglycemia. In summary, we have developed a tractable manufacturing process for the generation of functional pancreatic progenitors from hESC on a scale amenable to clinical entry.  相似文献   

15.
Tissue-specific human neural precursor cells (hNPCs) can be isolated from various regions of the developing or adult central nervous system and may serve as a viable source of cells in cell replacement therapies for the treatment of neurodegenerative disorders. However, in order for cell replacement strategies to become a routine therapeutic option for the treatment of neurodegenerative disorders, hNPCs should be generated under standardized and controlled conditions. Studies over the last two decades have focused on developing cell growth media and cell handling protocols for expansion and differentiation of hNPCs in culture. Key studies have reported the development of serum-free growth media and large-scale computer-controlled suspension bioreactors that can support high cell proliferation rates (doubling times < 3 days), multipotentiality, and potential neurogenic differentiation (more than 60% neurons). Moreover, bioengineering studies have focused on controlling culture conditions in suspension bioreactors including inoculation, hydrodynamics of culture, oxygen and nutrients transfer to the cells, monitoring in situ physiological parameters using process control techniques, and expansion for extended periods of time. In addition, in vitro and in vivo characterization of hNPCs have been performed, providing information on stem/progenitor cell characteristics, cell surface analysis, and appropriate type of cells to use in transplantation studies.  相似文献   

16.
Mesophyll suspension cultures of Zinnia elegans L. have been used extensively to investigate the development of tracheary elements. Here we have modified the culture conditions to promote cell expansion and inhibit tracheary element differentiation and cell division. Cell expansion, measured by computer image analysis, was stimulated by auxin ( α -naphthyleneacetic acid), cytokinin (N6-benzylaminopurine), gibberellic acid, brassinosteroid (24-epibrassinolide), and light, all of which are known to promote cell expansion in whole plants or excised organs. Whereas light stimulated cell expansion primarily during the first 48 h of culture, auxin, cytokinin, gibberellic acid and brassinosteroid had little effect until after 48 h. Treatments also differed in their relative effects on cell elongation and radial cell expansion. Light and cytokinin had a greater effect on radial cell expansion, auxin and epibrassinolide promoted only cell elongation, and gibberellic acid had nearly equal effects on expansion in both directions. We have also shown by combining treatments that the effects of cytokinin and auxin are additive. Neither hormone treatment, however, was additive with the effect of light treatment. Finally, in contrast to xylogenic cultures where expansion occurs by tip growth, cell expansion in non-differentiating cells was due to diffuse growth. These data show that cell expansion can be induced by hormones in primary mesophyll cultures from Zinnia in contrast to serially transferred plant suspension cultures. Furthermore, they indicate that auxin, cytokinin, and light induce cell expansion by different mechanisms in these cultures.  相似文献   

17.
Embryonic stem cells (ESCs) can differentiate into all somatic cell types, but the development of effective strategies to direct ESC fate is dependent upon defining environmental parameters capable of influencing cell phenotype. ESCs are commonly differentiated via cell aggregates referred to as embryoid bodies (EBs), but current culture methods, such as hanging drop and static suspension, yield relatively few or heterogeneous populations of EBs. Alternatively, rotary orbital suspension culture enhances EB formation efficiency, cell yield, and homogeneity without adversely affecting differentiation. Thus, the objective of this study was to systematically examine the effects of hydrodynamic conditions created by rotary orbital shaking on EB formation, structure, and differentiation. Mouse ESCs introduced to suspension culture at a range of rotary orbital speeds (20–60 rpm) exhibited variable EB formation sizes and yields due to differences in the kinetics of cell aggregation. Computational fluid dynamic analyses indicated that rotary orbital shaking generated relatively uniform and mild shear stresses (≤2.5 dyn/cm2) within the regions EBs occupied in culture dishes, at each of the orbital speeds examined. The hydrodynamic conditions modulated EB structure, indicated by differences in the cellular organization and morphology of the spheroids. Compared to static culture, exposure to hydrodynamic conditions significantly altered the gene expression profile of EBs. Moreover, varying rotary orbital speeds differentially modulated the kinetic profile of gene expression and relative percentages of differentiated cell types. Overall, this study demonstrates that manipulation of hydrodynamic environments modulates ESC differentiation, thus providing a novel, scalable approach to integrate into the development of directed stem cell differentiation strategies. Biotechnol. Bioeng. 2010; 105: 611–626. © 2009 Wiley Periodicals, Inc.  相似文献   

18.
We have developed a hematopoietic co-culture system using the hollow fiber bioreactor (HFBR) as a potential in vitro bone marrow model for evaluating leukemia. Supporting stroma using HS-5 cells was established in HFBR system and the current bioprocess configuration yielded an average glucose consumption of 640 mg/day and an average protein concentration of 6.40 mg/mL in the extracapillary space over 28 days. Co-culture with erythroleukemia K562 cells was used as a model for myelo-leukemic cell proliferation and differentiation. Two distinct localizations of K562 cells (loosely adhered and adherent cells) were identified and characterized after 2 weeks. The HFBR co-culture resulted in greater leukemic cell expansion (3,130 fold vs. 43 fold) compared to a standard tissue culture polystyrene (TCP) culture. Majority of expanded cells (68%) in HFBR culture were the adherent population, highlighting the importance of cell-cell contact for myelo-leukemic proliferation. Differentiation tendencies in TCP favored maturation toward monocyte and erythrocyte lineages but maintained a pool of myeloid progenitors. In contrast, HFBR co-culture exhibited greater lineage diversity, stimulating monocytic and megakaryocytic differentiation while inhibiting erythroid maturation. With the extensive stromal expansion capacity on hollow fiber surfaces, the HFBR system is able to achieve high cell densities and 3D cell-cell contacts mimicking the bone marrow microenvironment. The proposed in vitro system represents a dynamic and highly scalable 3D co-culture platform for the study of cell-stroma dependent hematopoietic/leukemic cell functions and ex vivo expansion.  相似文献   

19.
Lim YC  Oh SY  Kim H 《Experimental cell research》2012,318(10):1104-1111
Although head and neck squamous carcinoma cancer stem cells (HNSC-CSCs) can be enriched in serum-free suspension cultures, it is difficult to stably expand HNSC-CSC lines in suspension due to spontaneous apoptosis and differentiation. Here, we investigated whether HNSC-CSCs can be expanded without loss of stem cell properties by adherent culture methods. Cell culture plates were coated with type IV collagen, laminin, or fibronectin. We examined cancer stem cell traits of adherent HNSC-CSCs grown on these plates using immunocytochemistry for stem cell marker expression and analyses of chemo-resistance and xenograft tumorigenicity. We also assessed the growth rate, apoptosis rate, and gene transduction efficiency of adherent and suspended HNSC-CSCs. HNSC-CSCs grew much faster on type IV collagen-coated plates than in suspension. Adherent HNSC-CSCs expressed putative stem cell markers (OCT4 and CD44) and were chemo-resistant to various cytotoxic drugs (cisplatin, fluorouracil, paclitaxel, and docetaxel). Adherent HNSC-CSCs at the limiting dilution (1000 cells) produced tumors in nude mice. Adherent HNSC-CSCs also showed less spontaneous apoptotic cell death and were more competent to lentiviral transduction than suspended HNSC-CSCs. In conclusion, compared to suspension cultures, adherence on type IV collagen-coated culture plates provides better experimental conditions for HNSC-CSC expansion, which should facilitate various refined cellular studies.  相似文献   

20.
Scale-up of a myoblast culture process   总被引:3,自引:0,他引:3  
The effects of different types of cell carriers, strategies for cell transfer on carriers, and of several fusion inhibitors on the growth kinetics of primary human myoblasts culture were studied in order to develop a bioprocess suitable for the treatment of Duchenne muscular dystrophy based on the transplantation of unfused cells. Our results indicate that myoblast production is larger on Cytodex 1 and 3 than on polypropylene or polyester fabrics and on a commercial porous macrocarrier. Myoblast growth conditions with Cytodex 1 were further investigated to establish the bioprocess operating conditions. It was found that microcarrier density of 3 g DW l(-1), inoculum density of 2x10(5) cells ml(-1), and continuous agitation speed of 30-rpm result in final myoblast production comparable to static cultures. However, for all the culture conditions used, myoblasts growth kinetics exhibited a lag phase that lasted a minimum of 1 week prior to growth, the end of the lag phase correlating with the appearance of microcarrier aggregates. Based on this observation, we propose that aggregation promotes cell growth by offering a network of very large inter-particular pores that protect cells from mechanical stress. We took advantage of the presence of these aggregates for the scale-up of the culture process. Indeed, using myoblast-loaded microcarrier-aggregates instead of myoblast suspension to inoculate a fresh suspension of microcarriers significantly reduced the duration of the lag phase and allowed the scale-up of the bioprocess at the 500-ml scale. In order to ensure the production of unfused myoblasts, the efficiency of five different fusion inhibitors was investigated. Only calpeptin (9.1 microg ml(-1)) significantly inhibited the fusion of the myoblasts, while TGFbeta (50 ng ml(-1)) and LPA (10 microg ml(-1)) increased myoblasts growth but did not affect fusion, sphingosine (30 microg ml(-1)) induced a 50% death and NMMA (25 microg ml(-1)) had no effect on either growth or fusion. Finally, transplantation trials on severe combined immunodeficient mice showed that microcarrier-cultured human myoblasts grown using the optimized bioprocess resulted in grafts as successful as myoblasts grown in static cultures. The bioprocess, therefore, prove to be suitable for the large-scale production of myoblasts required for muscular dystrophy treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号