首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Villasmil ML  Ansbach A  Nickels JT 《Genetics》2011,187(2):455-465
Saccharomyces cerevisiae haploid cells respond to extrinsic mating signals by forming polarized projections (shmoos), which are necessary for conjugation. We have examined the role of the putative lipid transporter, Arv1, in yeast mating, particularly the conserved Arv1 homology domain (AHD) within Arv1 and its role in this process. Previously it was shown that arv1 cells harbor defects in sphingolipid and glycosylphosphatidylinositol (GPI) biosyntheses and may harbor sterol trafficking defects. Here we demonstrate that arv1 cells are mating defective and cannot form shmoos. They lack the ability to initiate pheromone-induced G1 cell cycle arrest, due to failure to polarize PI(4,5)P(2) and the Ste5 scaffold, which results in weakened MAP kinase signaling activity. A mutant Ste5, Ste5(Q59L), which binds more tightly to the plasma membrane, suppresses the MAP kinase signaling defects of arv1 cells. Filipin staining shows arv1 cells contain altered levels of various sterol microdomains that persist throughout the mating process. Data suggest that the sterol trafficking defects of arv1 affect PI(4,5)P(2) polarization, which causes a mislocalization of Ste5, resulting in defective MAP kinase signaling and the inability to mate. Importantly, our studies show that the AHD of Arv1 is required for mating, pheromone-induced G1 cell cycle arrest, and for sterol trafficking.  相似文献   

2.
In Saccharomyces cerevisiae, ARV1 encodes a 321 amino acid transmembrane protein localized to the endoplasmic reticulum (ER) and Golgi. It has been shown previously that arv1 cells harbor defects in sphingolipid and glycosylphosphatidylinositol biosyntheses, and may harbor sterol trafficking defects. Using C-terminal fusion to Suc2-His4, we determined the orientation of full-length Arv1 in the ER membrane. Once membrane topology was determined, we used this information and truncation analysis to establish the minimum protein length required for Arv1 function and phenotypic suppression. By understanding the topology of Arv1 we can now further analyze its putative lipid and glycosylphosphatidylinositol intermediate transport activities.  相似文献   

3.
arv1Delta mutant cells have an altered sterol distribution within cell membranes (Tinkelenberg, A.H., Liu, Y., Alcantara, F., Khan, S., Guo, Z., Bard, M., and Sturley, S. L. (2000) J. Biol. Chem. 275, 40667-40670), and thus it has been suggested that Arv1p may be involved in the trafficking of sterol in the yeast Saccharomyces cerevisiae and also in humans. Here we present data showing that arv1Delta mutants also harbor defects in sphingolipid metabolism. [(3)H]inositol and [(3)H]dihydrosphingosine radiolabeling studies demonstrated that mutant cells had reduced rates of biosynthesis and lower steady-state levels of complex sphingolipids while accumulating certain hydroxylated ceramide species. Phospholipid radiolabeling studies showed that arv1Delta cells harbored defects in the rates of biosynthesis and steady-state levels of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol. Neutral lipid radiolabeling studies indicated that the rate of biosynthesis and steady-state levels of sterol ester were increased in arv1Delta cells. Moreover, these same studies demonstrated that arv1Delta cells had decreased rates of biosynthesis and steady-state levels of total fatty acid and fatty acid alcohols. Gas chromatography/mass spectrometry analyses examining different fatty acid species showed that arv1Delta cells had decreased levels of C18:1 fatty acid. Additional gas chromatography/mass spectrometry analyses determining the levels of various molecular sterol species in arv1Delta cells showed that mutant cells accumulated early sterol intermediates. Using fluorescence microscopy we found that GFP-Arv1p localizes to the endoplasmic reticulum and Golgi. Interestingly, the heterologous expression of the human ARV1 cDNA suppressed the sphingolipid metabolic defects of arv1Delta cells. We hypothesize that in eukaryotic cells, Arv1p functions in the sphingolipid metabolic pathway perhaps as a transporter of ceramides between the endoplasmic reticulum and Golgi.  相似文献   

4.
Intracellular cholesterol redistribution between membranes and its subsequent esterification are critical aspects of lipid homeostasis that prevent free sterol toxicity. To identify genes that mediate sterol trafficking, we screened for yeast mutants that were inviable in the absence of sterol esterification. Mutations in the novel gene, ARV1, render cells dependent on sterol esterification for growth, nystatin-sensitive, temperature-sensitive, and anaerobically inviable. Cells lacking Arv1p display altered intracellular sterol distribution and are defective in sterol uptake, consistent with a role for Arv1p in trafficking sterol into the plasma membrane. Human ARV1, a predicted sequence ortholog of yeast ARV1, complements the defects associated with deletion of the yeast gene. The genes are predicted to encode transmembrane proteins with potential zinc-binding motifs. We propose that ARV1 is a novel mediator of eukaryotic sterol homeostasis.  相似文献   

5.
Inositol phosphoryl transferases from human pathogenic fungi   总被引:3,自引:0,他引:3  
The IPC1 gene from Saccharomyces cerevisiae, which encodes inositolphosphorylceramide (IPC) synthase, was first identified as a novel and essential gene encoding resistance to the natural product antifungal aureobasidin A (AUR1). The formation of IPC in fungi is essential for viability, suggesting inhibitors of IPC1p function would make ideal antifungal drug candidates. Homologs of the AUR1/IPC1 gene were identified from a number of human pathogenic fungi, Candida glabrata, Candida krusei, Candida parapsilosis, Candida tropicalis and Cryptococcus neoformans. Comparison of these genes with other homologous genes from Candida albicans, Aspergillus fumigatus, Aspergillus nidulans, Saccharomyces cerevisiae and Schizosaccharomyces pombe reveals a conserved structural motif for inositolphosphoryl transferases which is similar to a motif recently described for lipid phosphatases, but with unique characteristics.  相似文献   

6.
Cell division is strictly regulated by a diversity of proteins and lipids to ensure proper duplication and segregation of genetic material and organelles. Here we report a novel role of the putative lipid transporter ACAT-related protein required for viability 1 (Arv1) during telophase. We observed that the subcellular localization of Arv1 changes according to cell cycle progression and that Arv1 is recruited to the cleavage furrow in early telophase by epithelial protein lost in neoplasm (EPLIN). At the cleavage furrow Arv1 recruits myosin heavy chain 9 (MYH9) and myosin light chain 9 (MYL9) by interacting with IQ-motif-containing GTPase-activating protein (IQGAP1). Consequently the lack of Arv1 delayed telophase-progression, and a strongly increased incidence of furrow regression and formation of multinuclear cells was observed both in human cells in culture and in follicle epithelial cells of egg chambers of Drosophila melanogaster in vivo. Interestingly, the cholesterol-status at the cleavage furrow did not affect the recruitment of either IQGAP1, MYH9 or MYL. These results identify a novel function for Arv1 in regulation of cell division through promotion of the contractile actomyosin ring, which is independent of its lipid transporter activity.  相似文献   

7.
The pan‐eukaryotic endoplasmic reticulum (ER) membrane protein Arv1 has been suggested to play a role in intracellular sterol transport. We tested this proposal by comparing sterol traffic in wild‐type and Arv1‐deficient Saccharomyces cerevisiae. We used fluorescence microscopy to track the retrograde movement of exogenously supplied dehydroergosterol (DHE) from the plasma membrane (PM) to the ER and lipid droplets and high performance liquid chromatography to quantify, in parallel, the transport‐coupled formation of DHE esters. Metabolic labeling and subcellular fractionation were used to assay anterograde transport of ergosterol from the ER to the PM. We report that sterol transport between the ER and PM is unaffected by Arv1 deficiency. Instead, our results indicate differences in ER morphology and the organization of the PM lipid bilayer between wild‐type and arv1Δ cells suggesting a distinct role for Arv1 in membrane homeostasis. In arv1Δ cells, specific defects affecting single C‐terminal transmembrane domain proteins suggest that Arv1 might regulate membrane insertion of tail‐anchored proteins involved in membrane homoeostasis .  相似文献   

8.
9.
10.
Fungal infections arise frequently in immunocompromised patients, and sterol synthesis is a primary pathway targeted by antifungal drugs. In particular, the P450 protein Erg11/Cyp51 catalyzes a critical step in ergosterol synthesis, and the azole class of antifungal drugs inhibits Erg11. Dap1 is a heme-binding protein related to cytochrome b5 that activates Erg11, so that cells lacking Dap1 accumulate the Erg11 substrate and are hypersensitive to Erg11 inhibitors. Heme binding by Dap1 is crucial for its function, and point mutants in its heme-binding domain render Dap1 inactive for sterol biosynthesis and DNA damage resistance. Like Dap1, the human homologue, PGRMC1/Hpr6, also regulates sterol synthesis and DNA damage resistance. In the present study, we demonstrate that the Dap1 heme-1 domain is required for growth under conditions of low iron availability. Loss of Dap1 is suppressed by elevated levels of Erg11 but not by increased heme biosynthesis. Dap1 localizes to punctate cytoplasmic structures that co-fractionate with endosomes, and Dap1 contributes to the integrity of the vacuole. The results suggest that Saccharomyces cerevisiae Dap1 stimulates a P450-catalyzed step in sterol synthesis via a distinct localization from its homologues in Schizosaccharomyces pombe and mammals and that this function regulates iron metabolism.  相似文献   

11.
12.
Proteins belonging to the Progestin and AdipoQ Receptor (PAQR) superfamily of membrane bound receptors are ubiquitously found in fungi. Nearly, all fungi possess two evolutionarily distinct paralogs of PAQR protein, which we have called the PQRA and PQRB subtypes. In the model fungus Saccharomyces cerevisiae, these subtypes are represented by the Izh2p and Izh3p proteins, respectively. S. cerevisiae also possesses two additional PQRA-type receptors called Izh1p and Izh4p that are restricted to other species within the "Saccharomyces complex". Izh2p has been the subject of several recent investigations and is of particular interest because it regulates fungal growth in response to proteins produced by plants and, as such, represents a new paradigm for interspecies communication. We demonstrate that IZH2 and IZH3 gene dosage affects resistance to polyene antifungal drugs. Moreover, we provide additional evidence that Izh2p and Izh3p negatively regulate fungal filamentation. These data suggest that agonists of these receptors might make antifungal therapeutics, either by inhibiting fungal development or by sensitizing fungi to the toxic effects of current antifungal therapies. This is particularly relevant for pathogenic fungi such as Candida glabrata that are closely related to S. cerevisiae and contain the same complement of PAQR receptors.  相似文献   

13.
To find novel drugs for effective antifungal therapy in candidiasis, we examined disulfiram, a drug used for the treatment of alcoholism, for its role as a potential modulator of Candida multidrug transporter Cdr1p. We show that disulfiram inhibits the oligomycin-sensitive ATPase activity of Cdr1p and 2.5mM dithiothreitol reverses this inhibition. Disulfiram inhibited the binding of photoaffinity analogs of both ATP ([alpha-(32)P]8-azidoATP; IC(50)=0.76 microM) and drug-substrates ([(3)H]azidopine and [(125)I]iodoarylazidoprazosin; IC(50) approximately 12 microM) to Cdr1p in a concentration-dependent manner, suggesting that it can interact with both ATP and substrate-binding site(s) of Cdr1p. Furthermore, a non-toxic concentration of disulfiram (1 microM) increased the sensitivity of Cdr1p expressing Saccharomyces cerevisiae cells to antifungal agents (fluconazole, miconazole, nystatin, and cycloheximide). Collectively these results demonstrate that disulfiram reverses Cdr1p-mediated drug resistance by interaction with both ATP and substrate-binding sites of the transporter and may be useful for antifungal therapy.  相似文献   

14.
15.
Several pathogens have been described to enter host cells via cholesterol-enriched membrane lipid raft microdomains. We found that disruption of lipid rafts by the cholesterol-extracting agent methyl-β-cyclodextrin or by the cholesterol-binding antifungal drug Amphotericin B strongly impairs the uptake of the fungal pathogen Candida albicans by human monocytes, suggesting a role of raft microdomains in the phagocytosis of the fungus. Time lapse confocal imaging indicated that Dectin-1, the C-type lectin receptor that recognizes Candida albicans cell wall-associated β-glucan, is recruited to lipid rafts upon Candida albicans uptake by monocytes, supporting the notion that lipid rafts act as an entry platform. Interestingly disruption of lipid raft integrity and interference with fungus uptake do not alter cytokine production by monocytes in response to Candida albicans but drastically dampen fungus specific T cell response. In conclusion, these data suggest that monocyte lipid rafts play a crucial role in the innate and adaptive immune responses to Candida albicans in humans and highlight a new and unexpected immunomodulatory function of the antifungal drug Amphotericin B.  相似文献   

16.
17.
Arv1p is involved in the regulation of cellular lipid homeostasis in the yeast Saccharomyces cerevisiae. Here, we report the characterization of the two Arabidopsis thaliana ARV genes and the encoded proteins, AtArv1p and AtArv2p. The functional identity of AtArv1p and AtArv2p was demonstrated by complementation of the thermosensitive phenotype of the arv1Delta yeast mutant strain YJN1756. Both A. thaliana proteins contain the bipartite Arv1 homology domain (AHD), which consists of an NH(2)-terminal cysteine-rich subdomain with a putative zinc-binding motif followed by a C-terminal subdomain of 33 amino acids. Removal of the cysteine-rich subdomain has no effect on Arvp activity, whereas the presence of the C-terminal subdomain of the AHD is critical for Arvp function. Localization experiments of AtArv1p and AtArv2p tagged with green fluorescent protein (GFP) and expressed in onion epidermal cells demonstrated that both proteins are exclusively targeted to the endoplasmic reticulum. Analysis of beta-glucuronidase (GUS) activity in transgenic A. thaliana plants carrying chimeric ARV1::GUS and ARV2::GUS genes showed that ARV gene promoters direct largely overlapping patterns of expression that are restricted to tissues in which cells are actively dividing or expanding. The results of this study support the notion that plants, yeast and mammals share common molecular mechanisms regulating intracellular lipid homeostasis.  相似文献   

18.
19.
Azole antifungal compounds are important in agriculture and in the treatment of mycotic infection The target enzyme, sterol 14α-demethylase (CYP51), is inhibited through binding of triazole N-4 to the haem of this P450, as a sixth ligand together with the N-1 substituent groups interacting in some way with the apoprotein. Here we use Saccharomyces cerevisiae expression systems for the target enzyme of Candida albicans to investigate binding of enantiomers of the azole antifungal compounds SCH39304 and tetraconazole. A molecular model produced previously provided qualitative explanations for these differences. Interaction of the azole antifungal aromatic group with Phe-233 or -235 may cause the higher activity for (R)-tetraconazole while inactivity of the (SS)-enantiomer of SCH39304 was predicted to result from incompatibility of the hydrophilic sulfonyl moiety when located into the hydrophobic pocket of the active site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号