首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SYNOPSIS. When the structures involved in digestive events in T. pyriformis are examined at the electron microscope level, some information is added to that long known from light microscopy. The food trapping mechanism consists of the three membranelles, undulating membrane, oral ribs, and a “valve” apparently closing the opening to the cytopharynx. Both of the latter structures are supported by microtubules. Fibers extend internally from the cytopharynx and are closely associated with the food vacuole as it forms. Clear vacuoles resembling pinocytic vacuoles appear to arise from differentiated areas of the pellicle and plasma membrane. These vacuoles may fuse with primary lysosomes. Hydrolases are thus contributed to the pinocytic vacuoles which may then fuse with food vacuoles. When first formed food vacuoles contain no hydrolases but may acquire them directly, from primary lysosomes or from pinocytic vacuoles. Digestion proceeds to completion in the food vacuole, at which time soluble food products are released to the cytoplasm. Undigested materials are lost through the cytopyge. In stationary growth phase cells autophagic vacuoles form containing mitochondria and other cellular particulates. Such vacuoles probably contain hydrolases when formed and they may receive others by fusion with primary lysosomes.  相似文献   

2.
A technique has been developed for the electron microscope studyof the free cells and small cell aggregates of suspension culturesof Acer pseudoplatanus, L. Changes in fine structure have beenfollowed during the growth of a batch culture over 24 days,covering the lag phase, the phase of exponential growth, andthe stationary phase to a condition where the cells show evidenceof senescence. During the lag phase there is a massive synthesisof new cytoplasm and an increase in the number of mitochondriaand ribosomes. By the point of transition to the phase of exponentialgrowth many of the ribosomes are either attached to the ER membranesor are organized in spherical or spiral clusters. Multivesicularbodies are frequently observed. The development of the cellplate can be followed in some detail at this stage. As the rateof cell division decreases and cell enlargement begins the cytoplasmcomes to constitute a thin lining layer with fewer ribosomes,less prominent ER membranes and apparently fewer mitochondria.At this time starch begins to form and the frequency of lipid(or protein) bodies and of membrane enclosed crystals increases.During the stationary phase, which begins at about the 15thday of culture, the old cell walls show characteristic changesand are frequently ruptured. Intra-cytoplasmic vacuoles appearand then with the continuation of culture disappear as the cytoplasmiclayer approaches its minimum thickness. Nuclei show invaginationsand these often contain characteristic ‘aged’ mitochondria.  相似文献   

3.
《Plant science》1987,53(2):139-145
We have investigated the sequential stages of microgametogenesis by electron microscopy, to determine the basis of maternal inheritance of plastids in Epilobium. The development of both the vegetative and generative cells has been followed using a semi-artificial growth system for pollen tubes. The generative cells inside the pollen grain contains numerous mitochondria, 5–8 proplastids, and, in contrast to the vegetative cytoplasm, only a few vacuoles. When the generative cell has divided into the two sperm cells inside the pollen tube, small vesicles deriving from dicytosome cisternae become abundant. These vesicles appear to form vacuoles by fusion which then contain remnants of fibrillar, globular or membranaceous material. It is suggested that this material derives from proplastids as the proplastids disappear either before or shortly after the generative cell has divided, concurrently with the appearance of the ‘remnants’ in the vacuoles. The mitochondria of the sperm cells remain intact.  相似文献   

4.
The cytoplasm of Rhynchosciara hollaenderi late larval, prepupal and pupal salivary gland cells was studied at the ultrastructural level. In the second half of the 4th instar, evidence of an intensive secretory activity is visible in the form of numerous secretory granules in the apical area of the cells. At the same stage, the endoplasmic reticulum cisternae adjacent to Golgi groups are active in the transfer of vesicular elements. At later stages this activity rapidly diminishes. Before the appearance of the DNA puffs, i.e. at the end of the 4th instar, mitochondria begin to show a granular deposit and normal mitochondria decrease in number. These with the granular deposit form clusters and initiate formation of single autophagic vacuoles before the appearance of the DNA puffs. Later, at the time, when the 2B puff opens, the autophagic vacuoles appear in great number. Simultaneously with the formation of the autophagic vacuoles the presence of acid phosphatase in the Golgi vesicles and in autophagic vacuoles was shown. In the last stages investigated (late pupae) acid phosphatase is present free in the cytoplasm and at the same time disappearance of free ribosomes, pycnosis of polytene chromosomes and breakage of nuclear membranes occur. It is concluded that the histolysis of the salivary gland cells begins before the large DNA puffs appear, then it becomes very intensive and continues after these puffs undergo regression.  相似文献   

5.
Endosymbiosis in ciliates is a common and highly diverse phenomenon in nature, but its development at the mechanistic level and the origins are not easy to understand, since these associations may have arisen at any time during evolution. Therefore a laboratory model is helpful. It could be provided by the interaction of Tetrahymena pyriformis and Escherichia coli. Microscopic analyses with a genetically manipulated fluorescent strain of E. coli show single bacteria leaving food vacuoles and escaping digestion, an important prerequisite for further experiments. Under selective conditions, beneficial for T. pyriformis, the ciliate was shown to internalize E. coli cells. After feeding, bacteria, transformed with the plasmids pBS-neoTet or pNeo4, provide T. pyriformis with the ability to handle toxic conditions, caused by the aminoglykoside antibiotic paromomycin. Axenic cultures or cocultures with untransformed bacteria show lower cell numbers and survival rates compared to cocultures with transformed bacteria after transfer to paromomycin containing media. PCR detects bacterial DNA inside T. pyriformis cells. Additionally, microscopical analysis of selectively grown cocultures reveals fluorescing particles in the cytoplasm of T. pyriformis containing DNA and lipids, corresponding in size to E. coli. This system could be a reasonable model for understanding mechanisms of endosymbiosis establishment in ciliates.  相似文献   

6.
SYNOPSIS. Electron microscopic examination of Plasmodium chabaudi in mouse erythrocytes revealed many characteristics resembling those observed in other mammalian malarial parasites. A double unit membrane surrounds the trophozoite cytoplasm which contains many ribonucleoprotein particles, a limited amount of endoplasmic reticulum and membraned organelles including sausage-shaped vacuoles and multilaminated membraned bodies. More or less circular double membraned vacuoles, possibly cross sections of the sausage-shaped vacuoles, are common. Typical protozoan mitochondria are lacking. The limiting membrane of the merozoites is triple-layered. Paired organelles and small dense bodies are found in the merozoites along with dense granular masses in the nuclei. Trophozoites have cytostomal structures as well as invaginations of the plasma membrane at sites where no cytostomes are evident. Digestion appears to occur in single membrane-bound vesicles which contain one to several pigment grains. P. chabaudi frequently contains multiple food vacuoles and has polymorphism manifested in part by the presence of cytoplasmic extensions and of nuclei with a variety of shapes. Several apparently free forms are noted, often accompanied by a thin rim of host cytoplasm. “Appliqué” forms are common among the trophozoites as are forms in which 2 or more trophozoites are joined together. Finally, alterations in the host cytoplasm resembling the socalled Maurer's clefts are frequent. Ferritin-containing vacuoles also appear in the host cell.  相似文献   

7.
Changes at the level of cell fine structure have been studied during lens regeneration in the toad, Xenopus laevis, where cornea gives rise to the new lens. The transformation of these cells may be divided into three phases. (1) In the cornea, flattened cells become cuboidal and rough endoplasmic reticulum increases in amount. (2) In the new lens vesicle, cisternae of the rough ER break down into vesicles, smooth-walled vesicles and free ribosomes increase in number, and mitochondria can become enlarged and irregular, then centrally attenuated. Rudimentary cilia form. (3) As new lens fibers form, ribosomes become very numerous and low density fibrous elements and dense clumps appear in the cytoplasm. These phases are accompanied by marked nucleolar changes. The changes during the 3rd phase are similar to changes in the lens during normal development. The first two phases show an unexpected morphological complexity.  相似文献   

8.
Xia Cai  Wei Li  Lingfang Yin 《Protoplasma》2009,238(1-4):3-10
Acid phosphatase (AcPase) activities are involved in the degeneration process of cytoplasm in plants. In this study, acid phosphatase was detected by the method of lead nitrate and cytochemical electron microscopy during the development of nonarticulated laticifers in Euphorbia kansui Liou. The most important feature in the differentiation of the laticifers in E. kansui is that the development of small vacuoles arises from endoplasmic reticulum (ER). The mature laticifers possess a thin layer of electron-dense peripheral cytoplasm in which the organelle cannot be distinguished and a large central vacuole filled with latex particles. AcPase cytochemistry studies show AcPase reaction products congregated into heaps are distributed along the tonoplast of central vacuole and around the mitochondria and plastids. Some small vacuoles which develop at later developmental stages of laticifers contain AcPase reaction products. As a result, the central vacuole is formed by cellular autophagy and fusion of small vacuoles which apparently arises from ER.  相似文献   

9.
Inactivation of the PPN1 gene, encoding one of the enzymes involved in polyphosphate metabolism in the yeast Saccharomyces cerevisiae, was found to decrease exopolyphosphatase activity in the cytosol and vacuoles. This effect was more pronounced in the stationary growth phase than in the phase of active growth. The gene inactivation resulted in elimination of a 440-kDa exopolyphosphatase in the vacuoles but did not influence a previously unknown vacuolar exopolyphosphatase with a molecular mass of >1000 kDa, which differed from the former enzyme in the requirement for bivalent cations and sensitivity to heparin. Inactivation of the PPN1 gene did not influence the level of polyphosphates in the cytosol but increased it more than twofold in the vacuoles. In this case, the polyphosphate chain length in the cytosol increased from 10–15 to 130 phosphate residues both in the stationary and active growth phases. In the vacuoles, the polyphosphate length increased only in the stationary growth phase. A conclusion can be made that the PPN1 gene product has different effects on polyphosphate metabolism in the cytosol and the vacuoles.  相似文献   

10.
Nonimmune sera or ascites fluids induce the formation of large and small bodies in the ciliate Tetrahymena pyriformis as seen by light microscopy. Staining indicates that the large bodies are polysaccharide and the small ones lipid. The large bodies generally cannot be identified by transmission electron microscopy, while the small bodies appear to be lipid drops. Immune fluids agglutinate and immobilize the protozoa, which later become ensheathed within an exudate derived from these protozoa. As long as the ciliates remain agglutinated and ensheathed, the large bodies do not appear but do so when the animals leave the clumps and again are swimming freely. The present study is concerned with identifying the large bodies either as food vacuoles or as endocytic vacuoles formed by coalescing food vacuoles and pinocytic vacuoles or as new structures. The addition of latex particles to ciliates exposed to preimmune or immune fluids in the presence or absence of cytochalasin B, a drug which reportedly inhibits food vacuole formation, has not yet allowed the further identification of the large body structures.  相似文献   

11.
Cytolytic processes in posterior silk gland cells of the silkworm, Bombyx mori, during metamorphosis from larva to pupa have been studied. During this stage, the wet weight and the amounts of RNA and protein of the gland decrease rapidly and markedly, while the amount of DNA decreases slowly and slightly. The ultrastructural changes observed at the beginning of the prepupal stage consist of the appearance or the increase in the number of autophagosomes containing endoplasmic reticulum (ER), or "early autophagosomes" as we have called them, which seem to be gradually transformed to autolysosomes. A number of usual lysosomes, which frequently contain myelin figures, also appear in the cytoplasm. Sometimes they fuse with each other to form large conglomerates. In the middle of the prepupal stage, a number of smooth membrane-bounded vacuoles appear in cytoplasm. Towards the end of the prepupal stage the partition or sequestration of cytoplasm was observed. Thus large autophagosomes containing cytoplasmic organelles such as rough ER and/or mitochondria are formed. The nucleus is partitioned in a similar way by smooth membranes, and then autophagosomes containing condensed chromatin blocks are formed. These various kinds of autophagosomes, or "late autophagosomes" as we have generally called them, are continuously released into the hemolymph until the gland is completely disintegrated.  相似文献   

12.
NUCLEOLAR AGING IN TETRAHYMENA DURING THE CULTURAL GROWTH CYCLE   总被引:1,自引:1,他引:0       下载免费PDF全文
Nucelolar morphology was studied by electron microscopy in control and actinomycin D-treated populations of Tetrahymena pyriformis (W) during the cultural growth cycle. Nucleoli exhibit an "aging" cycle concomitant with the cultural growth cycle, but independent of the individual cell cycle. Four different stages in the course of this aging process have been defined. Stage 1 occurs upon inoculation (low number of cells per milliliter) and lasts through lag and accelerating growth phases. In this stage, many small nucleoli are found at the nuclear periphery. In stages 2 and 3, nucleolar fusion begins. Stage 2 dominates the first half of logarithmic growth, and stage 3 dominates the second half. In late decelerating growth phase, the nucleoli enter stage 4. In this stage, only a few large nucleoli are present and these are apparently inactive in ribosome production. In stationary phase, where total RNA remains constant, only stage 4 nucleoli are present. The relative preponderance of granular vs. fibrous components in the nucleoli changes during this cycle, the granular component dominating stage 1 nucleoli and the fibrillar, stage 4 nucleoli. There is a shortening of the intermediate nucleolar stages in the treated cultures; fusion occurs early and is now pronounced. Not enough ribosomes accumulate to carry the treated cultures through the number of generations equivalent to those of the control, which produces a premature stationary phase.  相似文献   

13.
Spores of Bacillus thuringiensis subsp. israelensis and their toxic crystals are bioencapsulated in the protozoan Tetrahymena pyriformis, in which the toxin remains stable. Each T. pyriformis cell concentrates the spores and crystals in its food vacuoles, thus delivering them to mosquito larvae, which rapidly die. Vacuoles containing undigested material are later excreted from the cells. The fate of spores and toxin inside the food vacuoles was determined at various times after excretion by phase-contrast and electron microscopy as well as by viable-cell counting. Excreted food vacuoles gradually aggregated, and vegetative growth of B. thuringiensis subsp. israelensis was observed after 7 h as filaments that stemmed from the aggregates. The outgrown cells sporulated between 27 and 42 h. The spore multiplication values in this system are low compared to those obtained in carcasses of B. thuringiensis subsp. israelensis-killed larvae and pupae, but this bioencapsulation represents a new possible mode of B. thuringiensis subsp. israelensis recycling in nontarget organisms.  相似文献   

14.
15.
Summary During imbibition ofPhoenix dactylifera embryos, all cotyledon cells show the same changes: protein and lipid bodies degrade, smooth endoplasmic reticulum (ER) increases in amount, and dictyosomes appear. At germination, the distal portion of the cotyledon expands to form the haustorium. At this time, epithelial cells have a dense cytoplasm with many extremely small vacuoles. Many ribosomes are present along with ER, dictyosomes, and mitochondria. The parenchyma cells have large vacuoles and a small amount of peripheral cytoplasm. Between 2 and 6 weeks after germination, epithelial cells still retain the dense cytoplasm and many organelles appear: glyoxysomes, large lipid bodies, amyloplasts, large osmiophilic bodies, and abundant rough and smooth ER which appear to merge into the plasmalemma. A thin electron-transparent inner wall layer with many small internal projections is added to the cell walls. Starch grains appear first in the subsurface and internal parenchyma and subsequently in the epithelium. Lipid bodies, glyoxysomes, protein, and osmiophilic bodies occur in the epithelial and subepithelial cell layers but not in the internal parenchyma. At 8 weeks after germination, the cytoplasm becomes electron transparent, vacuolation occurs, lipid bodies and osmiophilic bodies degrade, and the endomembranes disassemble. After 10 weeks, the cells are empty. These data support the hypothesis that the major functions of the haustorium are absorption and storage.  相似文献   

16.
Summary Elongating caulonemal apical cells of the mossPhyscomitrium turbinatum were cultivatedin vitro and observed during successive stages of cell elongation and division. Actively-growing cells which had completed approximately half of their growth in length were examined by electron microscopy. The distribution of many organelles changes progressively from the cell tip to the distal edge of the large basal vacuole, establishing an apical-basal gradient in organization. Whereas the vacuoles become progressively more extensive in more mature parts of the cell, the dictyosomes, chloroplasts and smooth endoplasmic reticulum are more numerous in younger regions. Some mitochondria in the younger regions of the cell contain localized areas of membrane invagination. Attempts were made to clarify the origin and growth of vacuoles, which become increasingly prominent as the apical cell elongates.Morphological evidence suggests that vacuoles arise in close association with endoplasmic reticulum and dictyosomes as a result of ER dilation and/or cytoplasmic sequestration. The number of vacuolar profiles is highest at the cell tip, decreasing progressively toward the base of the cell, Conversely, the mean area of vacuolar profiles increases progressively toward more basal regions of the cell. These features, along with the increasing number of closely grouped vacuolar profiles along an apical-basal gradient are compatible with the concept of vacuolar growth by coalescence, culminating in their union with the basal vacuole.  相似文献   

17.
The vacuolar apparatus of various plant cells consists of two distinct features: the large central vacuole and peripheral vacuoles which are derived from invaginations of the plasma membrane. Peripheral vacuoles are conspicuous structures in both living and fixed hair or filament cells of Tradescantia virginiana. They occur as spherical structures along the inner boundary of the peripheral cytoplasm and can be recognized as projections into the central vacuole. These structures are variable in size and number within a cell and can represent a significant proportion of the volume of the vacuole. Peripheral vacuoles most frequently are observed in motion with the streaming cytoplasm although their velocity is usually somewhat slower that that of the cytoplasmic organelles. Ultrastructural studies show two closely approximated membranes, one for each vacuole, in areas where a peripheral vacuole projects into the central vacuole. These are separated by an intermembrane zone continuous with the peripheral cytoplasm. The movement of organelles over the perimeter of the peripheral vacuole is presumed to occur along this intermembrane zone. The internal area of the peripheral vacuoles may appear empty although some contain a vesicular content of unknown origin and function.  相似文献   

18.
Strain D of species (syngen) 1, Tetrahymena pyriformis, differs from other inbred strains in its manifestation of certain abnormal patterns of adoral membranelles. Instead of the usual three membranelles some cells have a greater number, most frequently 4 or 5, but occasionally up to 7. The extra membranelles, or even all membranelles of any given set, are shorter than M-1 and M-2 of the normal pattern. In other cases, the only alteration observed is a change in the relative lengths of the three membranelles. The frequency of abnormal cells varies from about 5% to 15% during exponential growth to over 50% after prolonged stationary culture. The genetic basis for the abnormality is shown to be due to a single recessive gene which segregates normally in various crosses and which manifests vegetative assortment as do most allelic variants in species 1.  相似文献   

19.
Blood collected from rats infected with Plasmodium berghei was centrifuged and the pellet was fixed for 1 hour in 1 per cent buffered OsO4 with 4.9 per cent sucrose. The material was embedded in n-butyl methacrylate and the resulting blocks sectioned for electron microscopy. The parasites were found to contain, in almost all sections, oval bodies of the same density and structure as the host cytoplasm. Continuity between these bodies and the host cytoplasm was found in a number of electron micrographs, showing that the bodies are formed by invagination of the double plasma membrane of the parasite. In this way the host cell is incorporated by phagotrophy into food vacuoles within the parasite. Hematin, the residue of hemoglobin digestion, was never observed inside the food vacuole but in small vesicles lying around it and sometimes connected with it. The vesicles are pinched off from the food vacuole proper and are the site of hemoglobin digestion. The active double limiting membrane is responsible not only for the formation of food vacuoles but also for the presence of two new structures. One is composed of two to six concentric double wavy membranes originating from the plasma membrane. Since no typical mitochondria were found in P. berghei, it is assumed that the concentric structure performs mitochondrial functions. The other structure appears as a sausage-shaped vacuole surrounded by two membranes of the same thickness, density, and spacing as the limiting membrane of the body. The cytoplasm of the parasite is rich in vesicles of endoplasmic reticulum and Palade's small particles. Its nucleus is of low density and encased in a double membrane. The host cells (reticulocytes) have mitochondria with numerous cristae mitochondriales. In many infected and intact reticulocytes ferritin was found in vacuoles, mitochondria, canaliculi, or scattered in the cytoplasm.  相似文献   

20.
Toxins produced by the fungus Metarrhizium anisopliae and the bacterium Pseudomonas aeruginosa in the ecdysial space of a molting wireworm are absorbed through the thin new cuticle and ultrastructurally change the epidermal cells into two distinct types. One is a rounded, degenerative type characterized by a “light” cytoplasm with vesiculated rough endoplasmic reticulum, rounded mitochondria with degenerated cristae, little ground plasm, and a rounded nucleus with little nucleoplasm and large globules of condensed chromatin from which chromatin fibrils separate in loose folds or granulelike tight folds. The other type has very irregular outlines and is characterized by a “dark” cytoplasm with abundant, whorled laminae of rough endoplasmic reticulum and abundant free ribosomes in a dense ground plasm, large rounded clear vacuoles, and apparently normal mitochondria and nuclei. The fungal toxins are believed to be primarily responsible for the formation of the light cells, and the bacterial toxins, for the separation of the chromatin into fibrils in the light cells, the fusion of their nuclei into large nuclear bodies, and the changes in the cytoplasmic contents of the dark cells. The dark cells, although abnormal, appear to retain a limited secretory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号