首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The spectral sensitivity of 21 eye preparations of Ascalaphus (Libelluloides) macaronius (Insecta, Neuroptera) has been re-measured using an up-to-date spectral scan method. 1. Dorso-frontal and ventro-lateral eyes have different spectral characteristics with peaks of sensitivity at 329 ± 8 nm (n = 15) and 343 ± 4 nm (n = 5) (P = 0.002), respectively. 2. The absorbance of the visual pigment layer, K, determined from the shape of the spectral sensitivity curves is 1.3 ± 1.8(n = 15) for dorso-frontal eyes and – 1.0 ± 0.3(n = 5) for ventrolateral eyes, thus implying higher selfscreening in the dorso-frontal eyes and narrowing of the spectral sensitivity curves as regards to a template visual pigment in ventro-lateral eyes. 3. Plotting K versus spectral sensitivity peak wavelength max revealed an inverse correlation between these variables with K = 42.5 – 0.126 max at r = 0.88(n = 19). 4. Extracts of ommochromes and carotenoids (Figs. 4 to 6) do not allow to account for the above diversity of optical properties of the Ascalaphus eye (Fig. 7).Abbreviations SSC spectral sensitivity curve - DF dorso-frontal eye - UV ultraviolet - VL ventro-lateral eye  相似文献   

2.
The two most common mechanisms of pupillary screening-pigment migration in arthropod superposition eyes are the cone and longitudinal pigment migration mechanisms. The dynamics of each were investigated by optical modelling and by determining experimentally the relationship between eye glow brightness and screening pigment position within the eyes of two representative insect species: the noctuid moth Agrotis infusa and the dung beetle Copris elphenor. During dark adaptation, in both mechanisms, the screening pigment is contracted distally to expose the proximal half of each crystalline cone. During light adaptation the pigment migrates proximally and reduces light flux in the retina. In the longitudinal mechanism, pigment migrates into the clear zone of the eye. In the cone mechanism, pigment never enters the clear zone and is instead restricted to the proximal half of each crystalline cone: a migrating sleeve of pigment creates a small aperture at the end of the crystalline cone, the area of which depends on the degree of light adaptation. According to the model, the cone mechanism provides a limited range of light attenuation (ca. 0.6 log units) for which both good spatial resolution and accuracy of control are maintained, and within this range attenuation is controlled very finely. Beyond this range, whilst attenuation is still possible, diffraction at the pigment aperture and increasing coarseness of control worsen visual performance significantly. In contrast, the longitudinal mechanism provides a much larger useful range of light attenuation (up to several log units) and maintains reasonable fineness of attenuation control over the entire range (although not as fine as the cone mechanism). The experimental results support the model. An extensive survey of arthropods with superposition eyes reveals that the cone mechanism is almost exclusively possessed by those animals experiencing a narrow range of light intensities, and the longitudinal mechanism by those experiencing a wide range.Dedicated to Professor Rolf Elofsson on the occasion of his retirement from the Chair of Zoology in Lund  相似文献   

3.
Summary Sensitivity to light was investigated in the refracting superposition eye of the dung beetle Onitis alexis using electrophysiological measurements and optical modelling. Intracellular recordings were made from single retinula cells over 24-h periods, with cells light and dark adapted, in order to measure the response/intensity (V-LogI) functions. The combined effects of a circadian rhythm and light adaptation allow the determination of the relative contributions of screening-pigment migration and transduction gain to changes in sensitivity in the eye. Between the extremes of dark adaptation at night and light adaptation during the day, the maximum sensitivity change possible is at least 4 log units, of which approximately 2 log units can be accounted for by changes in the transduction gain and at least 2 log units by screening-pigment migration. The role of the superposition aperture (the number of facets that contribute light to one rhabdom) in 3 species of dung beetle was investigated with an optical ray-tracing model of the eye. The facets of the superposition aperture do not contribute light equally to the target rhabdom; except in one species, the greatest contribution comes from facets located away from both the centre and periphery of the aperture. Light adaptation increases the optical density of the superposition aperture and decreases its size.  相似文献   

4.
锯缘青蟹复眼的单一感受系统   总被引:3,自引:0,他引:3  
锯缘青蟹视网膜电图的暗视光谱敏感曲线的峰值在500nm 左右,与视紫红(λ_max=510nm)的吸收光谱吻合得很好。其波形和振幅-强度曲线与刺激波长无关,均符合单变量原理。在蓝或绿背景光明适应时,长波段的相对光谱敏感性增高。红光明适应未能抑制这种增高,表明它并非是由于对长波敏感的感受系统的存在。在校正了屏蔽色素的选择性吸收特性后,长波段光谱敏感性与暗视时十分接近,提示该现象可能系明适应造成的色素迁移所致。本文结果表明,锯缘青蟹的复眼仅具有单一的感受系统。  相似文献   

5.
大草蛉成虫复眼的外部形态及其显微结构   总被引:2,自引:0,他引:2  
张海强  朱楠  范凡  魏国树 《昆虫学报》2007,50(5):454-460
用扫描电镜和光学显微镜观察了大草蛉Chrysopa pallens Ramber成虫复眼的外部形态及明、暗适应和性别对其显微结构的影响。结果发现:(1)其复眼呈半球形,位于头部两侧,略成“八”字形排列,单个复眼约由3 600个小眼组成,最前和最后小眼之间的夹角约为180°,最上和最下小眼之间的夹角约200°;(2)小眼主要由角膜、晶锥和6~8个小网膜细胞、基膜组成,外围环绕有2个初级虹膜色素细胞和6个次级虹膜色素细胞,基膜处有色素颗粒分布;(3)暗适应时,晶锥开裂程度较大,远端5~7个网膜细胞核向远端移动,与晶锥近端相接或接近,次级虹膜色素颗粒亦向远端移动包围晶锥;明适应时,晶锥开裂程度小或闭合,远端网膜细胞核向近端移动,透明带显现,大部分次级虹膜色素颗粒亦向近端移动分布在小网膜细胞柱周围,包被透明带;(4)在相同的明、暗适应下,雌、雄成虫复眼的显微结构无明显差异。结果表明大草蛉复眼为透明带明显的重叠象眼,其小眼不但具有次级虹膜色素颗粒纵向移动的常规调光机制,还存在晶锥开闭、远端网膜细胞核移动和基膜色素颗粒纵向扩散的调光新机制。  相似文献   

6.
In a single male specimen of Myrmeleon mexicanum Banks the sex chromosomes, normally X and Y, were replaced by what appeared to be X1X2 and Y. These segregated as expected on that interpretation in only half of the spermatocytes — in the other half, one X and the Y segregated from the other X. This atypical segregation is explicable on the assumption that one of the supposed Xs is a supernumerary, not a sex chromosome, and the diploid complement of the male comprises six pairs of autosomes plus a supernumerary and the X and Y sex chromosomes. The orientation of the X chromosomes at first metaphase was variable: kinetochoric activity may be localized midway the length of the chromosome, as in gonial mitosis, or terminally. Comparative study of three congeneric species, seven of Brachynemurus, one of Psammoleon, and one of Vella showed normal segregation in all, and no evidence for secondary kinetochoric activity. In nine of the species studied one pair of autosomes was unconjoined at first metaphase in 0.3%–1.2% of primary spermatocytes. These autosomes segregated precociously with the sex chromosomes in the central unit of the spindle. In one exceptional male of Brachynemurus hubbardi Currie all first meiotic metaphases showed this behavior, and a compound X1X2/Y1Y2 system was thus simulated. Bivalent formation replaced distance segregation of sex chromosomes in 0.4%–3.2% of the spermatocytes in seven of the thirteen species studied. These sex-bivalents frequently displayed partial or complete failure in congression.  相似文献   

7.
The asymmetry of karyotype previously regarded as a Family character of the Mantispidae is absent in 4 species representative of one of the species-groups tyxonomically distinguishable in the Mantispas of the Western Hemisphere. Further diversity is evident in the evolutionary loss of the Y chromosome in Plega dactylota Rehn and the substitution of a Neo-XY system for distance segregation in P. signata (Hagen). In the Mantispas pseudo- or sticky sex-bivalents are present at diakinesis with a maximum frequency of 50% in M. fuscicornis Banks. By final metaphase this is reduced to 2% or less except in M. uhleri Banks in which 6% of the spermatocytes retain sex-bivalents. Univalent autosomes, observed in all but one of the species studied, occur in less than 1% of the cells at first metaphase except in M. interrupta Say and Plega dactylota in which their frequency approaches 8%. The precocious segregation of these unconjoined autosomes shows that univalency, rather than any sex-related attribute, underlies distance segregation.Dedicated with affection and admiration to Professor Hans Bauer on the occasion of his 75th birthday  相似文献   

8.
【目的】观察研究黑带食蚜蝇Episyrphus balteatus De Geer成虫复眼形态、小眼结构和不同光暗条件对小眼结构的影响,以明确其光视觉的结构基础和调光机制。【方法】利用组织切片法和扫描电镜等技术。【结果】1.复眼位于头部两侧,正面观呈半球形,占据除额颜外大部分头部。雄虫与雌虫单个复眼分别有约7 180个、7 230个小眼。各小眼面呈整齐排列的规则六边形。2.小眼由角膜及伪晶锥组成的屈光器、不同水平面分布的8个小网膜细胞及其特化形成的离散型视杆、屏蔽色素细胞和基膜等组成。小眼自远端至近端由主色素细胞和12个附属色素细胞围绕。3.随光暗条件的改变小眼内的附属色素细胞色素和基细胞细胞核沿小眼纵轴移动。光适应时,附属色素细胞色素颗粒沿小眼纵轴均匀分布,基细胞细胞核位于基膜上方。暗适应时,附属色素细胞色素颗粒向伪晶锥近端压缩,基细胞细胞核亦向远端移动,到达视杆中段。【结论】黑带食蚜蝇复眼精密的小眼排列形式和内部结构均显示了其强大的生理功能;屏蔽色素颗粒的移动是其复眼适应外界光环境变化的重要机制。本试验为进一步探究黑带食蚜蝇视觉结构和光调节机制,以及与其飞行行为间的关系提供了一定的理论基础。  相似文献   

9.
The compound eyes of most diurnal butterflies have a reflecting tapetum below the retina. Light that enters the eye is guided down the rhabdom, reflected by the tapetum, and then guided back up the rhabdom. The light that is not absorbed by the rhabdom is reemitted and gives rise to an eyeshine. We have measured the fraction of the incident light that is re-emitted, and also the degree to which this light retains its original polarization. The following conclusions are drawn:
1.  Even at the wavelength where the eyeshine is most intense, only a few percent of the incident photons are re-emitted.
2.  The tapetum acts as a plane mirror that preserves polarization.
3.  The light that passes through the rhabdom in second-order waveguide modes is depolarized to a greater extent than the light contained in first-order modes. The depolarization is expected to decrease only slightly the polarization sensitivity of the retina.
4.  Theoretical modelling of the waveguide properties of the rhabdom provided a way of using depolarization measurements for estimating the refractive index of the rhabdom. The measured amount of depolarization is consistent with the dispersion of phase velocities of different second-order modes propagating in a rhabdom of refractive index 1.363.
  相似文献   

10.
This paper presents the first evidence of tetrachromacy among invertebrates. The Japanese yellow swallowtail butterfly, Papilio xuthus, uses colour vision when foraging. The retina of Papilio is furnished with eight varieties of spectral receptors of six classes that are the ultraviolet (UV), violet, blue (narrow-band and wide-band), green (single-peaked and double-peaked), red and broad-band classes. We investigated whether all of the spectral receptors are involved in colour vision by measuring the wavelength discrimination ability of foraging Papilio. We trained Papilio to take nectar while seeing a certain monochromatic light. We then let the trained Papilio choose between two lights of different wavelengths and determined the minimum discriminable wavelength difference Deltalambda. The Deltalambda function of Papilio has three minima at approximately 430, 480 and 560nm, where the Deltalambda values approximately 1nm. This is the smallest value found for wavelength discrimination so far, including that of humans. The profile of the Deltalambda function of Papilio can be best reproduced by postulating that the UV, blue (narrow-band and wide-band), green (double-peaked) and red classes are involved in foraging. Papilio colour vision is therefore tetrachromatic.  相似文献   

11.
中华通草蛉复眼光感受性   总被引:3,自引:0,他引:3  
运用视网膜电位(Electroretinogram,ERG)技术,对中华通草蛉Chrysopa sinica Tjedar成虫复眼在暗适应过程中对单色光和白光刺激的光感受变化进行了测定。结果表明:(1)在340~605 nm光谱范围内该草蛉的光反应表现3个峰,其中最高峰位于562 nm,次峰在524 nm,第3峰在460 nm;(2)一定光强度(LogI=4.5~0)范围内,其复眼ERG值随光强度的增强而增大,呈近线性增长式样;(3)暗适应时间影响其复眼的ERG值大小,在暗适应100 min时其ERG值达到稳定;(4)中华通草蛉复眼ERG的波形由4个部分组成:开光反应、正相电位、持续负电位和闭光反应。  相似文献   

12.
Superposition optics and the time of flight in onitine dung beetles   总被引:1,自引:0,他引:1  
Dung beetles fly to fresh dung, with vision essential for flight navigation. The daily period of flight varies among different species: some beetles fly only in sunlight, others only when ambient light levels change rapidly during dusk or dawn and others in the constant dark of night. Measurements of the optical properties of the lenses, eye geometry and photoreceptor dimensions were used in a computer ray-tracing model to determine the optical performance of the superposition eyes of nine species of onitine dung beetles. Eye sensitivity to light is determined mainly by body size, by the refractive-index parameters and size of the crystalline cones, and by the photoreceptor dimensions. Based on the optics of the ommatidial lenses and absorption of light in the retina, the most sensitive eyes, found in the crepuscular-nocturnal beetles, are 85 times or nearly two log units more sensitive than the eyes of the diurnal beetles. Three possible criteria are considered to determine the best position for the retina: maximum amount of light absorbed in the target rhabdom; maximum amount of light falling on the target rhabdom (best focus); and maximum resolution. The structure and physiological optics of the superposition compound eyes of an onitine dung beetle are matched to the range of light intensities at which it flies. Accepted: 4 February 1998  相似文献   

13.
【目的】柚木野螟Eutectona machaeralis主要取食危害珍贵树种柚木。本研究旨在观察研究柚木野螟成虫复眼的形态、组织结构和超微结构,分析其复眼结构特征,为更好了解该物种复杂的视觉行为与感光、趋光机制的关系奠定基础。【方法】运用光学显微镜以及扫描和透射电子显微镜技术观察了柚木野螟成虫复眼的形态、组织结构和超微结构。【结果】柚木野螟成虫复眼着生于头部触角基部,呈椭球形,属对称性复眼。雌、雄成虫复眼分别有2 300~2 755和1 950~2 316个小眼。小眼呈正六边形,表面密被角膜乳突,间隙偶有感觉毛。每个小眼由1个角膜、4个晶锥细胞、1对初级色素细胞,6个次级色素细胞、不同水平面分布的12个视网膜细胞和基膜等组成。沿小眼纵轴11个视网膜细胞的向心侧细胞膜特化成细丝状微绒毛,形成放射状排列的视小杆,组合呈融合型视杆;第12个视网膜细胞位于小眼基部。基膜上方,视网膜细胞和次级色素细胞末端膨大,以轴突形式穿过基底膜。【结论】柚木野螟复眼为典型的重叠像眼,雌、雄成虫小眼排列方式及内部结构无明显差异,但雌、雄虫小眼数量和大小具有明显的性二型现象。  相似文献   

14.
Daisuke Yamamoto 《Genetica》1993,88(2-3):153-164
An ommatidium of aDrosophila compound eye contains eight photoreceptor cells, R1–R8. The fates of the photoreceptors are determined exclusively by inductive interactions between neuronal precursors in the cell cluster from which the ommatidium is formed. R7 induction has been extensively analysed at the molecular level. Activation of a membrane receptor tyrosine kinase (Sevenless) in the R7 precursor by a ligand (Bride of sevenless) present on the surface of R8 triggers a transduction cascade mediated by Ras, establishing the R7 fate of this cell. Other Sev-expressing cells are prevented from taking on the R7 fate by several different mechanisms. Pokkuri-mediated repression represents one such regulatory mechanism. The positive and negative signaling pathways operating in the fate determination of other photoreceptor cells are also discussed.  相似文献   

15.
Summary The ommatidia in the dorsal eye of male Bibio marci (March flies) are comprised of eight retinula cells (R1–8). In the distal region, the open rhabdomeres of retinula cells 1–6 are arranged in a symmetrically circular pattern with their microvilli directed radially. Immediately beneath the crystalline cone, cell 7 forms a rhabdomere that is about 1 m long and lies in the center of the circle formed by the rhabdomeres of cells 1–6. For the remaining length of an ommatidium it is replaced by the rhabdomere of retinula cell 8. The cell body of this retinula cell almost encloses its own rhabdomere by forming a deep invagination. Consequently, no ommatidial cavity is present. In the left eye rhabdomeres R 3, 5 and 6 first twist clockwise along their longitudinal axes, while rhabdomeres R1, 2, 4 and 8 twist counterclockwise. Opposite twisting is observed in the right eye. The twist rate varies along the length of the rhabdomeres. In a middle region of 60 m, within which the direction of twist does not change, the maximal twist rates are approximately 2°–5°/m in R1–6 and even higher in R 8. In a proximal region, the direction of twist is reversed, but the initial orientation of the microvilli not reestablished. Both the cross-sectional shape of the rhabdomeres and their geometric arrangement in the retinula change along with the twisting. It is substantiated that the rhabdomeric twist is not due to artifactual deformation.Supported by the Deutsche Forschungsgemeinschaft (SFB 4: E 2)The authors thank Dr. I. de la Motte for providing the material used in this study, Prof. H. Altner for critical discussion and Dr. M. Burrows for his attentive linguistic corrections  相似文献   

16.
作为昆虫种群的重要组成部分,夜行性昆虫成功进化出了与其生存环境相适应的感觉机制,普遍认为夜行性昆虫主要依靠嗅觉和机械性感受等来探索环境,其视觉器官发生了退化或功能丧失.近年来,随着红外夜视、视网膜电位(electroretinogram,ERG)和视觉神经等生物新技术的应用,昆虫视觉生态学研究出现了突破性进展,自200...  相似文献   

17.
Visual-pigment absorbance spectra and eye spectral sensitivities were examined in eight populations of opossum shrimp from different light environments. Four Finnish populations, two from the Baltic Sea and two from freshwater lakes, represent Mysis relicta, sensu stricto. The sibling species M. salemaai and M. diluviana are represented by, respectively, two Baltic Sea populations and two populations from freshwater lakes in Idaho, USA. In M. relicta, the visual pigments of the two lake populations were similar (λmax=554.3±0.8 nm and 556.4±0.4 nm), but significantly red-shifted compared with the sea populations (at 529 and 535 nm) and with M. salemaai (at 521 and 525 nm). All these pigments had only A2 chromophore and the lake/sea difference indicates adaptive evolution of the opsin. In M. diluviana, λmax varied in the range 505–529 nm and the shapes of spectra suggested varying A1/A2 chromophore proportions, with pure A1 in the 505 nm animals. Eye sensitivity spectra were flatter and peaked at longer wavelengths than the relevant visual-pigment templates, but declined with the same slope beyond ca. 700 nm. The deviations from visual-pigment spectra can be explained by ocular light filters based on three types of identified screening pigments.  相似文献   

18.

Larvae of decapod and stomatopod crustaceans possess paired compound eyes not unlike those of adult crustaceans. However, the visual demands of larval and adult life differ considerably. Furthermore, the eyes of adult stomatopods appear to be far more specialized than those of the larvae. We examined eyes of several stomatopod species just before and after larval metamorphosis. At this time, the entire larval retina is joined by a new, adult‐type retinal array which gradually replaces the remnants of the larval retina. The new retina of the postlarva is anatomically similar to that of the full‐grown adult, and has virtually identical assemblages of intrarhabdomal filters. We determined the photopigments of Gonodactylus aloha, the only species for which we were able to obtain both larval and adult specimens, using microspectrophotometry. The single middle‐wavelength larval rhodopsin (λmax= 499 nm) disappears at metamorphosis; none of the 10 classes of adult rhodopsins has λmax between 473 and 510 nm. This metamorphic change of visual pigment does not occur in a comparison species of decapod crustacean, the blue crab Callinectes sapidus. Here, rhodopsins both of the megalops larva and the adult had λmax at 503–504 nm. The difference between these two species can be explained by the varying ecological requirements of their larvae and adults, and more study of visual pigments in retinas of larval and adult crustaceans is warranted.  相似文献   

19.
The evolutionary origin of holometabolous larvae is a long‐standing and controversial issue. The Mecoptera are unique in Holometabola for their larvae possessing a pair of compound eyes instead of stemmata. The ultrastructure of the larval eyes of the scorpionfly Panorpa dubia Chou and Wang, 1981 was investigated using transmission electron microscopy. Each ommatidium possesses a cornea, a tetrapartite eucone crystalline cone, eight retinula cells, two primary pigment cells, and an undetermined number of secondary pigment cells. The rhabdomeres of the eight retinula cells form a centrally‐fused, tiered rhabdom of four distal and four proximal retinula cells. The rhabdomeres of the four distal retinula cells extend distally into a funnel shape around the basal surface of the crystalline cone. Based on the similarity of the larval eyes of Panorpidae to the eyes of the hemimetabolous insects and the difference from the stemmata of the holometabolous larvae, the evolutionary origin of the holometabolous larvae is briefly discussed. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
棉铃虫蛾复眼光反应特性   总被引:14,自引:4,他引:14  
用视网膜电位图(electroretinogram,ERG)技术研究了棉铃虫Helicoverpa armigera蛾暗适应过程中对单色光和白光刺激的光感受性变化。结果显示:(1)依ERG振幅大小(峰-峰值),在340~605 nm波谱内有3个大小不等的峰-主峰位于绿 黄光区562 nm,次峰在蓝光区483 nm,第3个峰在近紫外区400 nm,显示其至少有3种感受器;(2)性别、日龄及暗适应时间长短对其光谱敏感性有影响,低龄时雄蛾对单色光刺激较雌蛾敏感,高日龄时相反;1~5日龄内, 3日龄蛾的视网膜电位(ERP)值最高;随暗适应时间延长,其复眼对近紫外区400 nm敏感性明显增加;(3)一定光强度范围内,随单色光和白光光强度增强该蛾复眼的ERP值增大,初期增加较缓,中期较快,呈近似S型曲线,显示其复眼具有较强的光强度自调节和适应机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号