首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Motility structures, called flagella, have been described in all three domains of life: Bacteria, Archaea and Eukarya. These structures are well studied in both Bacteria and Eukarya. However, already in eukaryotes there exists some confusion as to whether these structures should actually be called cilia. With increased studies conducted on organisms of the third domain of life, the Archaea, it has become clear that the archaeal flagellum only functionally appears similar to the bacterial flagellum, whereas it structurally resembles a bacterial type IV pilus. To resolve confusion due to unclear nomenclature, we propose renaming the archaeal flagellum as the 'archaellum'. This will make clear that the archaellum and the bacterial flagellum are two distinct structures that happen to both be used to enable microorganisms to swim.  相似文献   

4.
5.
Neural induction: old problem, new findings, yet more questions   总被引:11,自引:0,他引:11  
During neural induction, the embryonic neural plate is specified and set aside from other parts of the ectoderm. A popular molecular explanation is the 'default model' of neural induction, which proposes that ectodermal cells give rise to neural plate if they receive no signals at all, while BMP activity directs them to become epidermis. However, neural induction now appears to be more complex than once thought, and can no longer be fully explained by the default model alone. This review summarizes neural induction events in different species and highlights some unanswered questions about this important developmental process.  相似文献   

6.
Microbial cells, under moist conditions, are able to adhere to surfaces and to form structured communities embedded in a matrix of extracellular polymeric substances (EPS). In industrial environments, biofilms can cause heat and mass transfer limitations whilst in medical facilities they can be a source of contamination and proliferation of infections. Biofilm formation is related to the pathogenicity of some bacterial strains and cells in biofilms are usually resistant to antimicrobials agents, which increases the interest in new and sound methods for their prevention and destruction.  相似文献   

7.
Background Manganese (Mn) is an essential micronutrient that is phytotoxic under certain edaphic and climatic conditions. Multiple edaphic factors regulate Mn redox status and therefore its phytoavailability, and multiple environmental factors including light intensity and temperature interact with Mn phytotoxicity. The complexity of these interactions coupled with substantial genetic variation in Mn tolerance have hampered the recognition of Mn toxcity as an important stress in many natural and agricultural systems.Scope Conflicting theories have been advanced regarding the mechanism of Mn phytotoxicity and tolerance. One line of evidence suggests that Mn toxicity ocurs in the leaf apoplast, while another suggests that toxicity occurs by disruption of photosynthetic electron flow in chloroplasts. These conflicting results may at least in part be attributed to the light regimes employed, with studies conducted under light intensities approximating natural sunlight showing evidence of photo-oxidative stress as a mechanism of toxicity. Excessive Mn competes with the transport and metabolism of other cationic metals, causing a range of induced nutrient deficiencies. Compartmentation, exclusion and detoxification mechanisms may all be involved in tolerance to excess Mn. The strong effects of light, temperature, precipitation and other climate variables on Mn phytoavailability and phytotoxicity suggest that global climate change is likely to exacerbate Mn toxicity in the future, which has largely escaped scientific attention.Conclusions Given that Mn is terrestrially ubiquitous, it is imperative that the heightened risk of Mn toxicity to both managed and natural plant ecosystems be factored into evaluation of the potential impacts of global climate change on vegetation. Large inter- and intraspecific genetic variation in tolerance to Mn toxicity suggests that increased Mn toxicity in natural ecosystems may drive changes in community composition, but that in agroecosystems crops may be developed with greater Mn tolerance. These topics deserve greater research attention.  相似文献   

8.
Phytanic acid (3,7,10,14-tetramethylhexadecanoic acid) is a branched-chain fatty acid which is known to accumulate in a number of different genetic diseases including Refsum disease. Due to the presence of a methyl-group at the 3-position, phytanic acid and other 3-methyl fatty acids can not undergo β-oxidation but are first subjected to fatty acid α-oxidation in which the terminal carboxyl-group is released as CO2. The mechanism of α-oxidation has long remained obscure but has been resolved in recent years. Furthermore, peroxisomes have been found to play an indispensable role in fatty acid α-oxidation, and the complete α-oxidation machinery is probably localized in peroxisomes. This Review describes the current state of knowledge about fatty acid α-oxidation in mammals with particular emphasis on the mechanism involved and the enzymology of the pathway.  相似文献   

9.
Phytanic acid (3,7,10,14-tetramethylhexadecanoic acid) is a branched-chain fatty acid which is known to accumulate in a number of different genetic diseases including Refsum disease. Due to the presence of a methyl-group at the 3-position, phytanic acid and other 3-methyl fatty acids can not undergo beta-oxidation but are first subjected to fatty acid alpha-oxidation in which the terminal carboxyl-group is released as CO(2). The mechanism of alpha-oxidation has long remained obscure but has been resolved in recent years. Furthermore, peroxisomes have been found to play an indispensable role in fatty acid alpha-oxidation, and the complete alpha-oxidation machinery is probably localized in peroxisomes. This Review describes the current state of knowledge about fatty acid alpha-oxidation in mammals with particular emphasis on the mechanism involved and the enzymology of the pathway.  相似文献   

10.
11.
Hardie DG 《Current biology : CB》2000,10(20):R757-R759
The phenomenon whereby the presence of oxygen regulates the rate of glucose metabolism was first described by Louis Pasteur. A novel mechanism has now been discovered, involving the AMP-activated protein kinase cascade, that can account for the Pasteur effect in ischaemic heart muscle.  相似文献   

12.
13.
Fanconi anaemia (FA) comprises a group of autosomal recessive disorders resulting from mutations in one of eight genes (FANCA, FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF and FANCG). Although caused by relatively simple mutations, the disease shows a complex phenotype, with a variety of features including developmental abnormalities and ultimately severe anaemia and/or leukemia leading to death in the mid teens. Since 1992 all but two of the genes have been identified, and molecular analysis of their products has revealed a complex mode of action. Many of the proteins form a nuclear multisubunit complex that appears to be involved in the repair of double-strand DNA breaks. Additionally, at least one of the proteins, FANCC, influences apoptotic pathways in response to oxidative damage. Further analysis of the FANC proteins will provide vital information on normal cell responses to damage and allow therapeutic strategies to be developed that will hopefully supplant bone marrow transplantation.  相似文献   

14.
15.
16.
17.
Evolution of genome size: new approaches to an old problem   总被引:2,自引:0,他引:2  
Eukaryotic genomes come in a wide variety of sizes. Haploid DNA contents (C values) range > 80,000-fold without an apparent correlation with either the complexity of the organism or the number of genes. This puzzling observation, the C-value paradox, has remained a mystery for almost half a century, despite much progress in the elucidation of the structure and function of genomes. Here I argue that new approaches focussing on the genetic mechanisms that generate genome-size differences could shed much light on the evolution of genome size.  相似文献   

18.
19.
Functional reasons for specific changes in mammal foot skeleton occurring in course of formation and progressive evolution of locomotion on the parasagittal extremities are formulated for the first time. The paper establishes the base of the study of highly parasagittal forms (terrestrial catarhine monkeys, man and his ancestors), that evolved in primate history much later then their counterparts in other orders. The foot of primitive primate (Lemur catta) is scrutinized as a model of a primitive foot structure, that determined the peculiarities of foot evolution in higher forms. Primate foot traits as elements of general mammal foot evolution are described. Some specializations of the primate foot to the arboreal habitats are concluded to preclude the primate foot from progressing to the state inherent in highly advanced parasagittal members of other mammalian orders.  相似文献   

20.
Malaria: new ideas, old problems, new technologies   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号