首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Skeletal muscle takes up glucose in an insulin-sensitive manner and is thus important for the maintenance of blood glucose homeostasis. Insulin resistance during development of type 2 diabetes is associated with decreased ATP synthesis, but the causality of this association is controversial. In this paper, we report real-time oxygen uptake and medium acidification data that we use to quantify acute insulin effects on intracellular ATP supply and ATP demand in rat and human skeletal muscle cells. We demonstrate that insulin increases overall cellular ATP supply by stimulating the rate of glycolytic ATP synthesis. Stimulation is immediate and achieved directly by increased glycolytic capacity, and indirectly by elevated ATP demand from protein synthesis. Raised glycolytic capacity does not result from augmented glucose uptake. Notably, insulin-sensitive glucose uptake is increased synergistically by nitrite. While nitrite has a similar stimulatory effect on glycolytic ATP supply as insulin, it does not amplify insulin stimulation. These data highlight the multifarious nature of acute bioenergetic insulin sensitivity of skeletal muscle cells, and are thus important for the interpretation of changes in energy metabolism that are seen in insulin-resistant muscle.  相似文献   

2.
A chemotactic peptide, N-formyl-methionyl-leucyl-phenylalanine (fMLP), induced an acidification of cytosol by about 0.05 pH units in 30 sec followed by an alkalinization in human neutrophils. The quantitative contribution of acid production to the acidification was studied. The superoxide (O2 ) production stimulated by fMLP was not involved in the acidification because the production of acids in neutrophils from patients with chronic granulomatous disease who do not produce O2 , was the same as that in normal neutrophils. The intracellular acidification was completely inhibited by deoxyglucose, suggesting that energy metabolism enhanced upon stimulation by fMLP might be the main source of the acidification. Although enhancement of the lactate formation by fMLP was 0.8 nmol/106 cells, which could lower intracellular pH by 0.08 pH units, the lactate production could not explain the initial acidification because the production of lactate started at 1 min after the stimulation while the intracellular acidification began immediately after the stimulation. Mitochondrial respiratory inhibitors such as KCN and rotenone had no effects on the fMLP-induced intracellular acidification. The fMLP-induced production of CO2 in 30 sec through the hexose monophosphate shunt was only 2.6 pmol/106 cells, which was calculated to decrease intracellular pH by only 0.0014. Thus, changes of energy metabolism induced by fMLP does not explain the acidification.Abbreviations fMLP N-formyl-methionyl-leucyl-phenylalanine - BCECF-AM 2,7-bis(carboxyethyl)carboxyfluorescein acetoxymethyl ester - PMA phorbol 12-myristate 13-acetate - CGD chronic granulomatous disease - HMP hexose monophosphate - pHi intracellular pH  相似文献   

3.
Gonadotropin-releasing hormone (GnRH), acting via the GnRH receptor, elicited rapid extracellular acidification responses in mouse gonadotrope-derived alphaT3-1 cells as measured by the Cytosensor microphysiometer, which indirectly monitors cellular metabolic rates. GnRH increased the extracellular acidification rate of the cells in a dose-dependent manner (EC(50) = 1.81 +/- 0.24 nM). The GnRH-stimulated acidification rate could be attenuated by protein kinase C (PKC) down-regulation, extracellular Ca2+ depletion, and the voltage-sensitive Ca2+ channel (VSCC) blocker nifedipine, indicating that the acidification response is activated by both Ca2+ and PKC-mediated pathways. Upon continuous exposure to 100 nM GnRH or periodic stimulation by 10 nM GnRH at 40 min intervals, homologous desensitization was more pronounced in the absence of extracellular Ca2+, suggesting that desensitization of GnRH activity may be mediated via depletion of intracellular Ca2+ stores. We have also compared the potency of eight GnRH analogs on alphaT3-1 cells. No acidification response was detected for GnRH free acid, consistent with the idea that the C-terminal amide is a critical structural determinant for GnRH activity. Replacement of Gly-NH(2) at the C-terminus by N-ethylamide dramatically reduced the EC(50) value, suggesting that substitution of the Gly-NH(2) moiety by N-ethylamide increases the potency of GnRH analogs. Substitution of Gly at position 6 by D-Trp significantly reduced the EC(50) value, whereas D-Lys at the same position slightly increased the EC(50) value, implying that either an aromatic amino acid or a non-basic amino acid at position 6 may be essential for potent GnRH agonists. In summary, our results demonstrate that the Cytosensor microphysiometer can be used to evaluate the actions of GnRH and GnRH analogs in alphaT3-1 cells in a real-time and noninvasive manner. This silicon-based microphysiometric system should provide new information on the structure-function studies of GnRH and is an invaluable tool for the screening of new GnRH agonists and antagonists in the future.  相似文献   

4.
The Monoamines 5-hydroxytryptamine (5-HT), noradrenaline (NA) and histamine, and the peptide Vasoactive Intestinal Polypeptide (VIP), regulate energy metabolism in nervous tissue, in addition to producing excitation and/or inhibition. These transmitters induce glycogen hydrolysis in a concentration dependent manner. The glycogen breakdown is brought about by increased cyclic AMP formation, or translocation of calcium ions to activate phosphorylase, and is partially localized in glial cells. Data from a diversity of nervous systems, including leech and snail ganglia, and rodent cortex, point towards important roles for neurons containing these transmitters in the regulation of the glycogen turnover. It is proposed that energy metabolism may be controlled within domains defined by the geometric arrangements of the neurons releasing these transmitters. The different domains may overlap temporally and spatially to coordinate energy metabolism in relation to increases in neuronal activity. The non-myelin forming glial cells, which contain glycogen whose turnover rate is altered by the transmitters, appear to be important in the local supply of energy substrate to neurons.  相似文献   

5.
Reproduction places severe demands on the energy metabolism in human females. When physical work entails higher energy expenditure, not enough energy will be left for the support of the reproductive processes and temporal suppression of the reproductive function is expected. While energy needed for reproduction may be obtained by increases in energy intake, utilization of fat reserves, or reallocation of energy from basal metabolism, several environmental or physiological constraints render such solutions unlikely. For human ancestors increases in energy intake were limited by availability of food, by labor of food preparation and by metabolic ceilings to energy assimilation. Energy stored as fat may support only a fraction of the requirements for reproduction (especially lactation). Effects of intense physical activity on basal metabolism may also interfere with fat accumulation during pregnancy. Finally, the female physiology may experience demands on increasing the basal metabolism as a consequence of physical activity and, at the same time, on decreasing the basal metabolism, when energy to support the ongoing pregnancy or lactation is inadequate. The resulting metabolic dilemmas could constitute a plausible cause for the occurrence of reproductive suppression in response to physical activity. It is, therefore, likely that allocating enough energy to the reproductive processes during periods when energy expenditure rises may be difficult due to physiological and bioenergetic constraints. Females attempting pregnancy in such conditions may compromise their lifetime reproductive output. A reproductive suppression occurring in low energy availability situations may thus represent an adaptive rather then a pathological response.  相似文献   

6.
Uptake of neurotransmitters into synaptic vesicles is driven by the proton gradient established across the vesicle membrane. The acidification of synaptic vesicles, therefore, is a crucial component of vesicle function. Here we present measurements of acidification rate constants from isolated, single synaptic vesicles. Vesicles were purified from mice expressing a fusion protein termed SynaptopHluorin created by the fusion of VAMP/synaptobrevin to the pH-sensitive super-ecliptic green fluorescent protein. We calibrated SynaptopHluorin fluorescence to determine the relationship between fluorescence intensity and internal vesicle pH, and used these values to measure the rate constant of vesicle acidification. We also measured the effects of ATP, glutamate, and chloride on acidification. We report acidification time constants of 500 ms to 1 s. The rate of acidification increased with increasing extravesicular concentrations of ATP and glutamate. These data provide an upper and a lower bound for vesicle acidification and indicate that vesicle readiness can be regulated by changes in energy and transmitter availability.  相似文献   

7.
1. Regulation of the cytoplasmic pH(pHi) was studied in quiescent and activated human neutrophils. Acid-loaded unstimulated cells regulate pHi by activating an electroneutral Na+/H+ exchange. 2. When activated, neutrophils undergo a biphasic change in pHi: an acidification followed by an alkalinization. The latter is due to stimulation of the Na+/H+ antiport. 3. The acidification, which is magnified in Na+-free or amiloride-containing media, is associated with net H+ efflux from the cells. 4. A good correlation exists between cytoplasmic acidification and superoxide generation: inhibition of the latter by adenosine, deoxyglucose or pertussis toxin also inhibits the pHi changes. 5. Moreover, acidification is absent in chronic granulomatous disease patients, which cannot generate superoxide. 6. Regulation of pHi is essential for neutrophil function. The oxygen dependent bactericidal activity is inhibited upon cytoplasmic acidification. This can result from impairment of Na+/H+ exchange, or from influx of exogenous acid equivalents. 7. The latter mechanism may account for the inability of neutrophils to resolve bacterial infections in abscesses, which are generally made acidic by accumulation of organic acids that are by-products of bacterial anaerobic metabolism.  相似文献   

8.
Measurements of glycolysis and mitochondrial function are required to quantify energy metabolism in a wide variety of cellular contexts. In human pluripotent stem cells (hPSCs) and their differentiated progeny, this analysis can be challenging because of the unique cell properties, growth conditions and expense required to maintain these cell types. Here we provide protocols for analyzing energy metabolism in hPSCs and their early differentiated progenies that are generally applicable to mature cell types as well. Our approach has revealed distinct energy metabolism profiles used by hPSCs, differentiated cells, a variety of cancer cells and Rho-null cells. The protocols measure or estimate glycolysis on the basis of the extracellular acidification rate, and they measure or estimate oxidative phosphorylation on the basis of the oxygen consumption rate. Assays typically require 3 h after overnight sample preparation. Companion methods are also discussed and provided to aid researchers in developing more sophisticated experimental regimens for extended analyses of cellular bioenergetics.  相似文献   

9.
Earlier it was demonstrated that the transition of E. coli K-12 cells to anaerobiosis is accompanied by the activation of K+ uptake. K+ that are additionally accumulated during the transition to anaerobiosis are released from the cells after the turning on of the respiratory chain. The K+ accumulation by the cells is potential-dependent both under aerobic and anaerobic conditions. A correlation was found between the degree of acidification of the cytoplasm and the rate of K+ uptake during the transition to anaerobiosis. It was assumed that under aerobic conditions the functioning of the electrogenic system of K+ uptake is concomitant with the operation of the K+ release system, K+/H+ antiporter, which is inactivated at the beginning of anaerobiosis, presumably as a result of cytoplasm acidification. This effect manifests itself as the activation of K+ uptake. The trigger function of the K+/H+ antiporter in E. coli cells was suggested to provide for the control of the intracellular pH as well as the switching from the aerobic to the anaerobic pathway of energy metabolism.  相似文献   

10.
11.
A cellular sensoring system was designed in which metabolism-dedicated pH-ISFETs and the unicellular green alga Chlamydomonas reinhardtii as a biological component, were combined. The system permits on-line detection of pH changes caused by the metabolic and photosynthetic activities of the cells. Photosynthetic activity results in a basification of the medium caused by uptake of CO2. In darkness, an acidification of the medium, resulting from the production of CO2 by degradation of starch was observed. Both, acidification and basification, are sensitive indicators for the physiological activity of the alga. Experiments using inhibitors of energy metabolism or photosynthesis illustrate the utility of this system for an on-line monitoring of substances of eco-toxicological importance.  相似文献   

12.
The starchy endosperm (SE) of the developing grain (caryopsis) of barley (Hordeum vulgare L.) cv Himalaya, as well as that of other barley cultivars examined, acidifies during maturation. The major decrease in pH begins with the attainment of maximum grain dry weight, onset of dehydration, and completion of chlorophyll loss. Acidification is correlated with the accumulation of malate and lesser amounts of citrate and lactate, produced and probably secreted by the pericarp/testa/aleurone (PTA). It is accompanied by large concurrent rises in phosphoeno/pyruvate carboxylase and alcohol dehydrogenase (ADH) activity in the PTA. The activity of seven other enzymes of oxaloacetate and pyruvate metabolism was found to fall or rise only slightly during acidification. Sequential changes in relative amount of ADH isozymes were found in both PTA and SE. The PTA maintained a high respiration rate and adenylate energy charge (AEC) throughout acidification, whereas the SE showed a low respiration rate and rising AEC. The data are consistent with the occurrence of hypoxia in the SE. It is suggested that the above enzyme changes are required for the development of a malate/ethanol fermentation (i.e. a mixed metabolism) in the aleurone layer during maturation.  相似文献   

13.
The activation of a wide range of cellular receptors has been detected previously using a novel instrument, the microphysiometer. In this study microphysiometry was used to monitor the basal and cholinergic-stimulated activity of the Na+/K+ adenosine triphosphatase (ATPase) (the Na+/K+ pump) in the human rhabdomyosarcoma cell line TE671. Manipulations of Na+/K+ ATPase activity with ouabain or removal of extracellular K+ revealed that this ion pump was responsible for 8.8 +/- 0.7% of the total cellular energy utilization by those cells as monitored by the production of acid metabolites. Activation of the pump after a period of inhibition transiently increased the acidification rate above baseline, corresponding to increases in intracellular [Na+] ([Na+]i) occurring while the pump was off. The amplitude of this transient was a function of the total [Na+]i excursion in the absence of pump activity, which in turn depended on the duration of pump inhibition and the Na+ influx rate. Manipulations of the mode of energy metabolism in these cells by changes of the carbon substrate and use of metabolic inhibitors revealed that, unlike some other cells studied, the Na+/K+ ATPase in TE671 cells does not depend on any one mode of metabolism for its adenosine triphosphate source. Stimulation of cholinergic receptors in these cells with carbachol activated the Na+/K+ ATPase via an increase in [Na+]i rather than a direct activation of the ATPase.  相似文献   

14.
The extracellular acidification rate of the human bone marrow cell line, TF-1, increases rapidly in response to a bolus of recombinant granulocyte-macrophage colony stimulating factor (GM-CSF). Extracellular acidification rates were measured using a silicon microphysiometer. This instrument contains micro-flow chambers equipped with potentiometric sensors to monitor pH. The cells are immobilized in a fibrin clot sandwiched between two porous polycarbonate membranes. The membranes are part of a disposable plastic “cell capsule” that fits into the microphysiometer flow chamber. The GM-CSF activated acidification burst is dose dependent and can be neutralized by pretreating the cytokine with anti-GM-CSF antibody. The acidification burst can be resolved kinetically into at least two components. A rapid component of the burst is due to activation of the sodium/proton antiporter as evidenced by its elimination in sodium-free medium and in the presence of amiloride. A slower component of the GM-CSF response is a consequence of increased glycolytic metabolism as demonstrated by its dependence on D-glucose as a medium nutrient. Okadaic acid (a phospho-serine/threonine phosphatase inhibitor), phorbol 12-myristate 13-acetate (PMA, a protein kinase C (PKC) activator), and ionmycin (a calcium ionophore) all produce metabolic bursts in TF-1 cells similar to the GM-CSF response. Pretreatment of TF-1 cells with PMA for 18 h resulted in loss of the GM-CSF acidification response. Although this treatment is reported to destroy protein kinase activity, we demonstrate here that it also down-regulates expression of high-affinity GM-CSF receptors on the surface of TF-1 cells. In addition, GM-CSF driven TF-1 cell proliferation was decreased after the 18 h PMA treatment. Short-term treatment with PMA (1–2h) again resulted in loss of the GM-CSF acidification response, but without a decrease in expression of high-affinity GM-CSF receptors. Evidence for involvement of PKC in GM-CSF signal transduction was obtained using calphostin C, a specific inhibitor of PKC, which inhibited the GM-CSF metabolic burst at a subtoxic concentration. Genistein and herbimycin A, tyrosine kinase inhibitors, both inhibited the GM-CSF response of TF-1 cells, but only at levels high enough to also inhibit stimulation by PMA. These results indicate that GM-CSF activated extracellular acidification of TF-1 cells is caused by increases in sodium/proton antiporter activity and glycolysis, through protein kinase signalling pathways which can be both activated and down-regulated by PMA. © 1993 Wiley-Liss, Inc.  相似文献   

15.
We present a new technique for the simultaneous measurement of cell volume changes and intracellular ionic activities in single cells. The technique uses measurement of changes in the concentration of intracellularly trapped fluorescent dyes to report relative cell volume. By using pH- or Ca(2+)-sensitive dyes and recording at the ion-sensitive and -insensitive (isosbestic) wavelengths, the method can measure both cell volume changes and intracellular ionic activities. The technique was used to study the mechanisms of regulatory volume decrease (RVD) in the osteosarcoma cell line UMR-106-01 grown on cover slips. Swelling cells in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)-buffered hypotonic medium was followed by stable cytosolic acidification and a decrease in cell volume back toward normal. The recovery of cell volume could be blocked by depolarization, treatment with ouabain, or depletion of cell Cl-. These suggest the conductive efflux of K+ and Cl- during RVD. The cytosolic acidification that accompanied cell swelling was not blocked by amiloride, bafilomycin A, or removal of Cl- and could not be reproduced by depletion of cellular ATP. These findings exclude Na+/H+ and Cl-/HCO-3 exchange, intracellularly generated acid, or increased metabolism, respectively, as the cause of the acidification. The cell swelling-induced acidification was inhibited by depolarization, suggesting the involvement of an electrogenic pathway. The acidification, as well as RVD, was inhibited by short incubation with deoxyglucose, and these effects could not be reversed by valinomycin. Thus, the anionic pathway(s) participating in RVD and the acidification are sensitive to the cellular level of ATP. Together, these studies indicate that RVD in UMR-106-01 cells in HEPES-buffered medium is mediated by the conductive efflux of K+, Cl-, and OH-.  相似文献   

16.
The effect of N-acetyl-p-benzoquinone imine (NAPQI), a reactive metabolite of acetaminophen, on the energy metabolism in isolated hepatocytes was investigated. Incubation of cells with NAPQI (400 microM) resulted in an immediate uptake into the mitochondria, followed by both reduction and glutathione conjugation of the quinone imine. These reactions were extremely rapid and were associated with depletion of the mitochondrial ATP content (greater than 80% depletion after 1 min exposure). The loss of ATP was accompanied by increases in ADP and AMP, as well as NADP. No effect on mitochondrial NAD was observed during this initial phase. Similar alterations were produced by NAPQI in the cytosolic compartment. Furthermore, incubation of hepatocytes with NAPQI inhibited oxygen consumption by nearly 90% within 10 s. In parallel to these biochemical changes, there was marked bleb formation on the surface of the hepatocytes, which was found to precede cell death (trypan blue uptake). In conclusion, our results demonstrate that during exposure of hepatocytes to NAPQI, dramatic changes in cellular energy metabolism occur. These biochemical alterations may be caused by a rapid decrease in mitochondrial function, and they may play an important role in the initiation of NAPQI-induced cytotoxicity.  相似文献   

17.
4-pirydone-3-carboxamide-1β-d-ribonucleoside (4PYR) is an endogenous nucleoside that could be converted to triphosphates, diphosphates, monophosphates and an analogue of NAD − 4PYRAD. Elevated level of these compounds have been reported in chronic renal failure, cancer and active HIV infection. However, little is known about the effect on cell functionality and the metabolic pathways. This study tested effects of 4PYR in different cell types on nucleotide, energy metabolism and clarified enzymes that are involved in conversions of 4PYR.We have found that human neuroblastoma cells, human malignant melanoma cells, human adipose-derived stem cells, human bone marrow-derived stem cells, human dermal microvascular endothelial cells and human embryonic kidney cells, were capable to convert 4PYR into its derivatives. This was associated with deterioration of cellular energetics. Incubation with 4PYR did not affect mitochondrial function, but decreased glycolytic rate (as measured by extracellular acidification) in endothelial cells. Silencing of adenosine kinase, cytosolic 5′-nucleotidase II and nicotinamide nucleotide adenylyltransferase 3, blocked metabolism of 4PYR. Incubation of endothelial cells with 4PYR decreased AMP deaminase activity by 40%.The main finding of this paper is that human cells (including cancer type) are capable of metabolizing 4PYR that lead to deterioration of energy metabolism, possibly as the consequence of inhibition of glycolysis. This study, it was also found that several enzymes of nucleotide metabolism could also contribute to the 4PYRconversions  相似文献   

18.
This paper reports changes in ion transport and energy metabolism of plant cells during short- and long-term expositions, resp., to antibiotic nystatin, which is known to specifically bind with plasma membrane sterols to form channels. The excised roots of 5 days old wheat seedlings were used as a model system in this research. It has been shown that treatment of excised roots with nystatin leads to activation of energy metabolism expressed as an increase of respiration and heat production by root cells. Furthermore, in the presence of nystatin increased pH of incubation medium, plasma membrane depolarization and a significant loss of potassium ions were observed. Nystatin-induced stimulation of respiration was prevented by malonate, an inhibitor of succinate dehydrogenase, electron acceptor dichlorophenolindophenol, and AgNO3, an inhibitor of H(+)-ATPase. Based on the data obtained it can be suggested that nystatin-induced stimulation of respiration is related to electron transport activation via mitochondrial respiratory chain, and is connected with activation of plasmalemma proton pump. Moreover, nystatin-induced increase of oxygen consumption was prevented by cerulenin, an inhibitor of fatty acid and sterol synthesis. This indicates that additional sterols and phospholipids may be synthesized in root cells to "heal" nystatin-caused damage of plasma membrane. A supposed chain of events of cell response to nystatin action may by as following: formation of nystatin channels-influx of protons--depolarization of plasmalemma-efflux of potassium ions-disturbance of ion homeostasis--activation of H(+)-ATPase work-increase in energy "requests" for H(+)-ATPase function--increase in the rate of oxygen consumption and heat production. The increased energy production under the action of nystatin, may provide the work of proton pump and synthesis of sterols and phospholipids, which are necessary for membrane regeneration.  相似文献   

19.
Cancer cells can reprogram their metabolic machinery to survive. This altered metabolism, which is distinct from the metabolism of normal cells, is thought to be a possible target for the development of new cancer therapies. In this study, we constructed a screening system that focuses on bioenergetic profiles (specifically oxygen consumption rate and extracellular acidification rate) and characteristic proteomic changes. Thus, small molecules that target cancer-specific metabolism were investigated. We screened the chemical library of RIKEN Natural Products Depository (NPDepo) and found that unantimycin A, which was recently isolated from the fraction library of microbial metabolites, and NPL40330, which is derived from a chemical library, inhibit mitochondrial respiration. Furthermore, we developed an in vitro reconstitution assay method for mitochondrial electron transport chain using semi-intact cells with specific substrates for each complex of the mitochondrial electron transport chain. Our findings revealed that NPL40330 and unantimycin A target mitochondrial complexes I and III, respectively.  相似文献   

20.
The addition of glucose or other sugars to resting cells of Serratia maurcescens induced rapid acidification of the extracellular medium. This acidification was due to the catabolism of sugars. The rate of acidification depended on the carbon source and its concentration. HPLC analysis of the supernatants demonstrated that the progressive fall in pH resulted from the rapid production of lactic, acetic, pyruvic and citric acids. Other microorganisms were tested for their ability to produce this rapid acidification of the medium. This study may provide a rapid and simple method for metabolism studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号