首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 329 毫秒
1.
Dynamics of dioxygen and carbon monoxide binding to soybean leghemoglobin   总被引:2,自引:0,他引:2  
The association of dioxygen and carbon monoxide to soybean leghemoglobin (Lb) has been studied by laser flash photolysis at temperatures from 10 to 320 K and times from 50 ns to 100 s. Infrared spectra of the bound and the photodissociated state were investigated between 10 and 20 K. The general features of the binding process in leghemoglobin are similar to the ones found in myoglobin. Below about 200 K, the photodissociated ligands stay in the heme pocket and rebinding is not exponential in time, implying a distributed enthalpy barrier between pocket and heme. At around 300 K, ligands migrate from the solvent through the protein to the heme pocket, and a steady state is set up between the ligands in the solvent and in the heme pocket. The association rate, lambda on, is mainly controlled by the final binding step at the heme, the bond formation with the heme iron. Differences between Lb and other heme proteins show up in the details of the various steps. The faster association rate in Lb compared to sperm whale myoglobin (Mb) is due to a faster bond formation. The migration from the solvent to the heme pocket is much faster in Lb than in Mb. The low-temperature binding (B----A) and the infrared spectra of CO in the bound state A and the photodissociated state B are essentially solvent-independent in Mb, but depend strongly on solvent in Lb. These features can be correlated with the x-ray structure.  相似文献   

2.
Recombination of carbon monoxide to myoglobin mutants YQR and YQRF was studied using transient infrared absorption spectroscopy and Fourier transform infrared-temperature derivative spectroscopy (FTIR-TDS). Photoproduct states B, C', C" and D associated with ligands residing in different protein cavities have been identified. After photolysis, ligands migrate to primary docking site B and subsequently rebind or escape to a secondary site (C) within the Xe4 cavity. For YQR, a global analysis of the isothermal rebinding kinetics below 160 K and the TDS data reveal a correlation between the enthalpy barriers governing the two processes. Above 120 K, a protein conformational change in both YQR and YQRF converts photoproduct C' into C" with markedly slowed kinetics. Above approximately 180 K, ligands migrate to the proximal Xe1 site (D) and also exit into the solvent, from where they rebind in a bimolecular reaction.  相似文献   

3.
We have investigated the kinetics of geminate carbon monoxide binding to the monomeric component III of Chironomus thummi-thummi erythrocruorin, a protein that undergoes pH-induced conformational changes linked to a pronounced Bohr effect. Measurements were performed from cryogenic temperatures to room temperature in 75% glycerol and either 0.1 M potassium phosphate (pH 7) or 0.1 potassium borate (pH 9) after nanosecond laser photolysis. The distributions of the low temperature activation enthalpy g(H) for geminate ligand binding derived from the kinetic traces are quite narrow and are influenced by temperature both below and above approximately 170 K, the glass transition temperature. The thermal evolution of the CO binding kinetics between approximately 50 K and approximately 170 K indicates the presence of some degree of structural relaxation, even in this temperature range. Above approximately 220 K the width of the g(H) progressively decreases, and at 280 K geminate CO binding becomes exponential in time. Based on a comparison with analogous investigations of the homodimeric hemoglobin from Scapharca inaequivalvis, we propose a link between dynamic properties and functional complexity.  相似文献   

4.
Dynamics of ligand binding to myoglobin.   总被引:61,自引:0,他引:61  
Myoglobin rebinding of carbon monoxide and dioxygen after photodissociation has been observed in the temperature range between 40 and 350 K. A system was constructed that records the change in optical absorption at 436 nm smoothly and without break between 2 musec and 1 ksec. Four different rebinding processes have been found. Between 40 and 160 K, a single process is observed. It is not exponential in time, but approximately given by N(t) = (1 + t/to)-n, where to and n are temperature-dependent, ligand-concentration independent, parameters. At about 170 K, a second and at 200 K, a third concentration-independent process emerge. At 210 K, a concentration-dependent process sets in. If myoglobin is embedded in a solid, only the first three can be seen, and they are all nonexponential. In a liquid glycerol-water solvent, rebinding is exponential. To interpret the data, a model is proposed in which the ligand molecule, on its way from the solvent to the binding site at the ferrous heme iron, encounters four barriers in succession. The barriers are tentatively identified with known features of myoglobin. By computer-solving the differential equation for the motion of a ligand molecule over four barriers, the rates for all important steps are obtained. The temperature dependences of the rates yield enthalpy, entropy, and free-energy changes at all barriers. The free-energy barriers at 310 K indicate how myoglobin achieves specificity and order. For carbon monoxide, the heights of these barriers increase toward the inside; carbon monoxide consequently is partially rejected at each of the four barriers. Dioxygen, in contrast, sees barriers of about equal height and moves smoothly toward the binding site. The entropy increases over the first two barriers, indicating a rupturing of bonds or displacement of residues, and then smoothly decreases, reaching a minimum at the binding site. The magnitude of the decrease over the innermost barrier implies participation of heme and/or protein. The nonexponential rebinding observed at low temperatures and in solid samples implies that the innermost barrier has a spectrum of activation energies. The shape of the spectrum has been determined; its existence can be explained by assuming the presence of many conformational states for myoglobin. In a liquid at temperatures above about 230 K, relaxation among conformational states occurs and rebinding becomes exponential.  相似文献   

5.
Triton-solubilized Photosystem I particles from spinach chloroplasts exhibit largely reversible P-700 absorption changes over the temperature range from 4.2 K to room temperature. For anaerobic samples treated with dithionite and neutral red at pH 10 and illuminated during cooling, a brief (1 μs) saturating flash produces absorption changes in the long wavelength region that decay in 0.95 ± 0.2 ms from 4.2 to 50 K. Above 80 K a faster (100 ± 30 μs) component dominates in the decay process, but this disappears again above about 180 K. The major decay at temperatures above 200 K occurs in about 1 ms. The difference spectrum of these absorption changes between 500 and 900 nm closely resembles that of P-700. Using ascorbate and 2,6-dichlorophenolindophenol as the reducing system with a sample of Photosystem I particles cooled in darkness to 4.2 K, a fully reversible signal is seen upon both the first and subsequent flashes. The decay time in this case is 0.9 ± 0.3 ms.  相似文献   

6.
The sperm whale myoglobin mutant H64V, where the distal histidine is mutated to valine, is known to be five coordinated in the ferric state at room temperature and physiological pH. A change of the ligation in this H64V-Mbmet has been observed by optical absorption spectroscopy as a function of temperature from 20 K to 300 K. Above the dynamical transition at about 180 K one observes the temperature-dependent equilibrium between five- and six-ligated heme. Below the dynamical transition the equilibrium is frozen-in at about 50% of six-coordinate molecules. The water ligation of the iron occurs at temperatures where protein-specific motions are present, as monitored by M?ssbauer spectroscopy. The X-ray structures of H64V-Mbmet at 300 K and 110 K are reported with a resolution of 1.5 A and 1.3 A, respectively. The measurements at high resolutions are possible owing to crystallization in the space group P2(1), whereas all mutant myoglobins studies up to now have been carried out with crystals in the space group P6. The overall structure at both temperatures is very close to the native myoglobin. The binding of water at the sixth coordination site at lower temperatures is possible owing to a stabilizing water network extending from the protein surface to the active centre. The reduction of the H64V-Mbmet by electrons obtained by X-ray irradiation of the water-glycerol solvent at 85 K produces an intermediate low-spin state of the water-ligated molecules where Fe(II) retains the six-fold coordination. M?ssbauer spectroscopy shows that the relaxation of the metastable low-spin state to high-spin H64V-Mbdeoxy with dissociation of the Fe(II)-H(2)O bond starts at about 115 K and is completed at about 170 K. Differences in the dynamics properties of the native and mutant myoglobin and the connection to the dynamical transition around 180 K are discussed.  相似文献   

7.
Triton-solubilized Photosystem I particles from spinach chloroplasts exhibit largely reversible P-700 absorption changes over the temperature range from 4.2 K to room temperature. For anaerobic samples treated with dithionite and neutral red at pH 10 and illuminated during cooling, a brief (1 microseconds) saturating flash produces absorption changes in the long wavelength region that decay in 0.95 +/- 0.2 ms from 4.2 to 50 K. Above 80 K a faster (100 +/- 30 microseconds) component dominates in the decay process, but this disappears again above about 180 K. The major decay at temperatures above 200 K occurs in about 1 ms. The difference spectrum of these absorption changes between 500 and 900 nm closely resembles that of P-700. Using ascorbate and 2.6-dichlorophenolindophenol as the reducing system with a sample of Photosystem I particles cooled in darkness to 4.2 K, a fully reversible signal is seen upon both the first and subsequent flashes. The decay time in this case is 0.9 +/- 0.3 ms.  相似文献   

8.
Ligand binding to heme proteins: connection between dynamics and function   总被引:18,自引:0,他引:18  
Ligand binding to heme proteins is studied by using flash photolysis over wide ranges in time (100 ns-1 ks) and temperature (10-320 K). Below about 200 K in 75% glycerol/water solvent, ligand rebinding occurs from the heme pocket and is nonexponential in time. The kinetics is explained by a distribution, g(H), of the enthalpic barrier of height H between the pocket and the bound state. Above 170 K rebinding slows markedly. Previously we interpreted the slowing as a "matrix process" resulting from the ligand entering the protein matrix before rebinding. Experiments on band III, an inhomogeneously broadened charge-transfer band near 760 nm (approximately 13,000 cm-1) in the photolyzed state (Mb*) of (carbonmonoxy)myoglobin (MbCO), force us to reinterpret the data. Kinetic hole-burning measurements on band III in Mb* establish a relation between the position of a homogeneous component of band III and the barrier H. Since band III is red-shifted by 116 cm-1 in Mb* compared with Mb, the relation implies that the barrier in relaxed Mb is 12 kJ/mol higher than in Mb*. The slowing of the rebinding kinetics above 170 K hence is caused by the relaxation Mb*----Mb, as suggested by Agmon and Hopfield [(1983) J. Chem. Phys. 79, 2042-2053]. This conclusion is supported by a fit to the rebinding data between 160 and 290 K which indicates that the entire distribution g(H) shifts. Above about 200 K, equilibrium fluctuations among conformational substates open pathways for the ligands through the protein matrix and also narrow the rate distribution. The protein relaxations and fluctuations are nonexponential in time and non-Arrhenius in temperature, suggesting a collective nature for these protein motions. The relaxation Mb*----Mb is essentially independent of the solvent viscosity, implying that this motion involves internal parts of the protein. The protein fluctuations responsible for the opening of the pathways, however, depend strongly on the solvent viscosity, suggesting that a large part of the protein participates. While the detailed studies concern MbCO, similar data have been obtained for MbO2 and CO binding to the beta chains of human hemoglobin and hemoglobin Zürich. The results show that protein dynamics is essential for protein function and that the association coefficient for binding from the solvent at physiological temperatures in all these heme proteins is governed by the barrier at the heme.  相似文献   

9.
Equilibrium fluctuations of the protein conformation have been studied in myoglobin by a novel method of time-resolved transient hole-burning spectroscopy over a temperature range of 180-300 K and a time range of 10 ns to 10 ms. The temporal shift of the hole spectrum has been observed in a wide temperature region of 200-300 K. It has been found that the time behavior of the peak position of the hole is highly nonexponential and can be expressed by a stretched exponential function with a beta value of 0.22. As compared with the results for a dye solution sample, the time scale of the fluctuation of the protein conformation is much more weakly dependent on temperature. The time scale of the observed conformational dynamics shows a temperature dependence similar to that associated with the ligand escape process of myoglobin.  相似文献   

10.
A frozen solution of 57Fe-enriched metmyoglobin was irradiated by x rays at 77 K. Mössbauer spectra showed a reduction of Fe(III) high spin by thermalized electrons and a production of a metastable Fe(II) low spin myoglobin complex with H2O at its sixth coordination site. The relaxation of the intermediate was investigated by Mössbauer spectroscopy as a function of temperature and time. The relaxation process starts above 140 K and is fully completed at approximately 200 K. At temperatures between 140 and 200 K, the relaxation lasts for hours and is nonexponential in time. Up to 180 K, the process can be described satisfactorily by a gamma distribution of activation enthalpies with an Arrhenius relation for the rate coefficient. The temperature and time dependence of the Mössbauer parameters indicates structural changes in the active center of the protein as early as 109 K that continue for several hours at higher temperatures. Above 180 K, structural rearrangements involving the whole protein molecule lead to a shift and narrowing of the barrier height distribution.  相似文献   

11.
Rebinding and relaxation in the myoglobin pocket   总被引:28,自引:0,他引:28  
The infrared stretching bands of carboxymyoglobin (MbCO) and the rebinding of CO to Mb after photodissociation have been studied in the temperature range 10-300 K in a variety of solvents. Four stretching bands imply that MbCO can exist in four substates, A0-A3. The temperature dependences of the intensities of the four bands yield the relative binding enthalpies and and entropies. The integrated absorbances and pH dependences of the bands permit identification of the substates with the conformations observed in the X-ray data (Kuriyan et al., J. Mol. Biol. 192 (1986) 133). At low pH, A0 is hydrogen-bonded to His E7. The substates A0-A3 interconvert above about 180 K in a 75% glycerol/water solvent and above 270 K in buffered water. No major interconversion is seen at any temperature if MbCO is embedded in a solid polyvinyl alcohol matrix. The dependence of the transition on solvent characteristics is explained as a slaved glass transition. After photodissociation at low temperature the CO is in the heme pocket B. The resulting CO stretching bands which are identified as B substates are blue-shifted from those of the A substates. At 40 K, rebinding after flash photolysis has been studied in the Soret, the near-infrared, and the integrated A and B substates. All data lie on the same rebinding curve and demonstrate that rebinding is nonexponential in time from at least 100 ns to 100 ks. No evidence for discrete exponentials is found. Flash photolysis with monitoring in the infrared region shows four different pathways within the pocket B to the bound substates Ai. Rebinding in each of the four pathways B----A is nonexponential in time to at least 10 ks and the four pathways have different kinetics below 180 K. From the time and temperature dependence of the rebinding, activation enthalpy distributions g(HBA) and preexponentials ABA are extracted. No pumping from one A substate to another, or one B substate to another, is observed below the transition temperature of about 180 K. If MbCO is exposed to intense white light for 10-10(3) s before being fully photolyzed by a laser flash, the amplitude of the long-lived states increases. The effect is explained in terms of a hierarchy of substates and substate symmetry breaking. The characteristics of the CO stretching bands and of the rebinding processes in the heme pocket depend strongly on the external parameters of solvent, pH and pressure. This sensitivity suggests possible control mechanisms for protein reactions.  相似文献   

12.
A single water molecule (w135), buried within the structure of rat intestinal fatty acid binding protein (I-FABP), is investigated by NMR, molecular dynamics simulations, and analysis of known crystal structures. An ordered water molecule was found in structurally analogous position in 24 crystal structures of nine different members of the family of fatty acid binding proteins. There is a remarkable conservation of the local structure near the w135 binding site among different proteins from this family. NMR cross-relaxation measurements imply that w135 is present in the I-FABP:ANS (1-sulfonato-8-(1')anilinonaphthalene) complex in solution with the residence time of >300 ps. Mean-square positional fluctuations of w135 oxygen observed in MD simulations (0.18 and 0.13 A2) are comparable in magnitude to fluctuations exhibited by the backbone atoms and result from highly constrained binding pocket as revealed by Voronoi volumes (averages of 27.0 +/- 1.8 A3 and 24.7 +/- 2.2 A3 for the two simulations). Escape of w135 from its binding pocket was observed only in one MD simulation. The escape process was initiated by interactions with external water molecules and was accompanied by large deformations in beta-strands D and E. Immediately before the release, w135 assumed three distinct states that differ in hydrogen bonding topology and persisted for about 15 ps each. Computer simulations suggest that escape of w135 from the I-FABP matrix is primarily determined by conformational fluctuations of the protein backbone and interactions with external water molecules.  相似文献   

13.
Evidence for ligand migration toward the xenon-binding cavities in myoglobin comes from a number of laser photolysis studies of MbO2 including mutants and from cryo- and time-resolved crystallography of MbCO. To explore ligand migration in greater detail, we investigated the rebinding kinetics of both MbO2 and MbCO under a xenon partial pressure ranging from 1 to 16 atm over the temperature range (293–77 K). Below 180 K xenon affects to a significant, but minor, extent the thermodynamic parameters for rebinding from the primary docking site in each Mb taxonomic substate. Above 200 K the ligand migrates to the proximal Xe1 site but when the latter is occupied by xenon a new kinetic process appears. It is attributed to rebinding from transient docking sites located on the path between the primary and the secondary docking site of both ligands. Ligand escape exhibits a more complicated pattern than expected. At room temperature O2 and CO escape appears to take place exclusively from the primary site. In contrast, at T ≈ 250 K, roughly 50% of the CO molecules that have escaped from the protein originate from the Xe1 secondary site.  相似文献   

14.
X-irradiation of single crystals of 5-iododeoxyuridine (IUdR) in the temperature range 8-300 K produces mainly four different radicals which have been studied by electron spin resonance (e.s.r.) and electron nuclear double resonance (ENDOR)-spectroscopy. At low temperatures, a pi-anion is formed which shows predominantly an interaction of the unpaired electron with a proton at carbon C6 of the base (-11.8 G, -23.9 G, -4.6 G). Above 10-20 K, the anion protonates at C6 to yield a RC-I(CH2)-R' radical comprising alpha-iodo and beta-methylene proton hyperfine interactions. The primary oxidation product is an O5'-situated alkoxy radical RCH2O which shows inequivalent beta-proton couplings of about 100 G and 35 G together with a highly anisotropic g-tensor. Upon warming to 265 K, a C2'-located radical on the deoxyribose is formed which is stable at room temperature. A detailed account of its spectral features as obtained by ENDOR exhibits three different alpha-type couplings, two small beta-protons and a dipolar interaction. Other radicals, not reproducibly observed, involve a C5'-hydroxyalkyl radical and a species related to the base cation at low temperatures.  相似文献   

15.
The study of the thermal evolution of the Soret band in heme proteins has proved to be a useful tool to understand their stereodynamic properties; moreover, it enables one to relate protein matrix fluctuations and functional behavior when carried out in combination with kinetic experiments on carbon monoxide rebinding after flash photolysis. In this work, we report the thermal evolution of the Soret band of deoxy, carbonmonoxy, and nitric oxide derivatives of the cooperative homodimeric Scapharca inaequivalvis hemoglobin in the temperature range 10-300 K and the carbon monoxide rebinding kinetics after flash photolysis in the temperature range 60-200 K. The two sets of results indicate that Scapharca hemoglobin has a very rigid protein structure compared with other hemeproteins. This feature is brought out i) by the absence of nonharmonic contributions to the soft modes coupled to the Soret band in the liganded derivatives, and ii) by the almost "in plane" position of the iron atom in the photoproduct obtained approximately 10(-8) s after dissociating the bound carbon monoxide molecule at 15 K.  相似文献   

16.
Carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS) is a bifunctional enzyme that catalyzes the reversible reduction of carbon dioxide into carbon monoxide and the coupled synthesis of acetyl-CoA from the carbon monoxide produced. Exposure of CODH/ACS from Moorella thermoacetica to carbon monoxide gives rise to several infrared bands in the 2100-1900 cm(-1) spectral region that are attributed to the formation of metal-coordinated carbon monoxide species. Infrared bands attributable to M-CO are not detected in the as-isolated enzyme, suggesting that the enzyme does not contain intrinsic metal-coordinated CO ligands. A band detected at 1996 cm(-1) in the CO-flushed enzyme is assigned as arising from CO binding to a metal center in cluster A of the ACS subunit. The frequency of this band is most consistent with it arising from a terminally coordinated Ni(I) carbonyl. Multiple infrared bands at 2078, 2044, 1970, 1959, and 1901 cm(-1) are attributed to CO binding at cluster C of the CODH subunit. All infrared bands attributed to metal carbonyls decay in a time-dependent fashion as CO(2) appears in the solution. These observations are consistent with the enzyme-catalyzed oxidation of carbon monoxide until it is completely depleted from solution during the course of the experiments.  相似文献   

17.
García AE  Hummer G 《Proteins》2000,38(3):261-272
The kinetics of water penetration and escape in cytochrome c (cyt c) is studied by molecular dynamics (MD) simulations at various temperatures. Water molecules that penetrate the protein interior during the course of an MD simulation are identified by monitoring the number of water molecules in the first coordination shell (within 3.5 A) of each water molecule in the system. Water molecules in the interior of cyt c have 0-3 water molecules in their first hydration shell and this coordination number persists for extended periods of time. At T = 300 K we identify over 200 events in which water molecules penetrate the protein and reside inside for at least 5 picoseconds (ps) within a 1.5 nanoseconds (ns) time period. Twenty-seven (27) water molecules reside for at least 300 ps, 17 water molecules reside in the protein interior for times longer than 500 ps, and two interior water molecules do not escape; at T = 360 K one water molecule does not escape; at 430 K all water molecules exchange. Some of the internal water molecules show mean square displacements (MSD) of 1 A2 characteristic of structural waters. Others show MSD as large as 12 A2, suggesting that some of these water molecules occupy transient cavities and diffuse extensively within the protein. Motions of protein-bound water molecules are rotationally hindred, but show large librations. Analysis of the kinetics of water escape in terms of a survival time correlation function shows a power law behavior in time that can be interpreted in terms of a broad distribution of energy barriers, relative to kappa BT, for water exchange. At T = 300 K estimates of the roughness of the activation energy distribution is 4-10 kJ/mol (2-4 kappa BT). Activation enthalpies for water escape are 6-23 kJ/mol. The difference in activation entropies between fast exchanging (0.01 ns) and slow exchanging (0.1-1 ns) water molecules is -27 J/K/mol. Dunitz (Science 1997;264:670.) has estimated the maximum entropy loss of a water molecule due to binding to be 28 J/K/mol. Therefore, our results suggest that the entropy of interior water molecules is similar to entropy of bulk water.  相似文献   

18.
Ebola viruses (EBOVs) cause an acute and serious illness which is often fatal if untreated, and there is no effective vaccine until now. Multifunctional VP35 is critical for viral replication, RNA silencing suppression and nucleocapsid formation, and it is considered as a future target for the molecular biology technique. In the present work, the binding of inhibitor pyrrole‐based compounds (GA017) to wild‐type (WT), single (K248A, K251A, and I295A), and double (K248A/I295A) mutant VP35 were investigated by all‐atom molecular dynamic (MD) simulations and Molecular Mechanics Generalized Born surface area (MM/GBSA) energy calculation. The calculated results indicate that the binding with GA017 makes the binding pocket more stable and reduces the space of the binding pocket. Moreover, the electrostatic interactions (ΔEele) and VDW energy (ΔEvdw) provide the major forces for affinity binding, and single mutation I295A and double mutation K248A/I295A have great influence on the conformation of the VP35 binding pocket. Interestingly, the residues R300‐G301‐D302 of I295A form a new helix and the sheet formed by the residues V294‐I295‐H296‐I297 disappears in the double mutation K248A/I295A as compared with WT. Moreover, the binding free energy calculations show that I295A and K248A/I295A mutations decrease of absolute binding free energies while K248A and K251A mutations increase absolute binding free energy. Our calculated results are in good agreement with the experimental results that K248A/I295A double mutant results in near‐complete loss of compound binding. The obtained information will be useful for design effective inhibitors for treating Ebola virus. Proteins 2015; 83:2263–2278. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
In the spectral region 350-800 nm at 4.2 K we measured magnetic circular dichroism (MCD) spectra of the pentacoordinated complex of protcheme with 2-methylimidazole, deoxyleghemoglobin, neutral and alkaline forms of reduced horseradish peroxidase in the equilibrium states, as well as in non-equilibrium states produced by low-temperature photolysis of their carbon monoxide derivatives. Earlier the corresponding results have been obtained for myoglobin, hemoglobin and cytochromes P-450 and P-420. The energies of Fe-N (proximal His) and Fe-N(pyrroles) bonds and their changes upon ligand binding in heme proteins and enzymes were compared with those in the model heme complex thus providing conformational contribution into stereochemistry of the active site. The examples of weak and strong conformational "pressure" on stereochemistry were analysed and observed. If conformational energy contribution into stereochemistry prevails the electronic one the heme stereochemistry remains unchanged on ligand binding as it was observed for leghemoglobin and alkaline horseradish peroxidase. The change of bond energies in myoglobin and hemoglobin on ligand binding are comparable with those in protein free pentacoordinated protoheme, giving an example of weak conformational contribution to heme stereochemistry. The role of protein conformation energy in the modulation of ligand binding properties of heme in leghemoglobin relative to those in myoglobins is discussed. The most striking result were obtained in the study of reduced horseradish peroxidase in the pH region of 6.0-10.2. It was found that such different perturbations as ligand binding and heme-linked ionization of the distal amino acid residue induce identical changes in heme stereochemistry. Neither heme-linked ionization in the carbon monoxide complex nor the geometry of Fe-Co bond affect the heme local structure of photoproducts. These and other findings suggest a very low conformation mobility of horseradish peroxidase whose protein constraints appear to allow only two preferable geometries of specific amino acid residues that form the heme pocket. The role of the two tertiary structure constraints on the heme in the mechanism of horseradish peroxidase function is discussed. It is supposed that one conformation produces a heme environment suitable for two-electron oxidation of the native enzyme to compound I by hydrogen peroxide while another conformation changes the heme stereochemistry in the direction favourable for back reduction of compound I by the substrate to the resting enzyme through two one-electron steps. The switch from one tertiary structure to another is expected to be induced by substrate bind  相似文献   

20.
B Mao 《Biophysical journal》1991,60(4):966-973
The mass-weighted molecular dynamics simulation method was developed previously for sampling the multidimensional conformational space of linear and cyclic polypeptides and studying their conformational flexibility. Herein results from molecular dynamics simulations of the protein-ligand complex of the aspartyl protease rhizopuspepsin and a polypeptide inhibitor are reported. The dihedral conformational space sampling for the linear peptide inhibitor in situ was found to be increased in the mass-weighted simulation as in other molecular systems previously studied. More significantly, the physical space of the enzyme binding pocket was also sampled efficiently in the simulations and multiple binding sites were identified for the inhibitor. These results suggest that it may be possible now to study, by computer simulations, the putative initial enzyme-inhibitor complex suggested experimentally from the time-dependent kinetics of enzyme inhibition by slow-binding inhibitors (Morrison, J. F., and C. T. Walsh. 1988. Adv. Enzymol. 61:201), and/or conformational substates in protein-ligand complexes suggested in the study of reassociation dynamics of myoglobin and carbon monoxide following photolysis (Austin, R. H., K. W. Beeson, L. Eisenstein, H. Frauenfelder, and I. C. Gunsalus. 1975. Biochemistry. 14:5355). Moreover, the intermediate binding steps and the molecular flexibility of the inhibitor shown in the MWMD simulation may have crucial roles in the ligand binding process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号