首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Endogenous P(i) recycling is a characteristic feature of the P homeostasis in ruminants. A pronounced salivary P(i) secretion into the rumen is balanced by a high intestinal P(i) absorption and an almost complete renal P(i) reabsorption. In monogastric animals, the major P(i) transport mechanism across the apical membrane of the enterocyte is an Na(+)-dependent transport mediated by NaPi cotransporter type IIb. In ruminants, an Na(+)-, as well as an H(+)-dependent, P(i) transport system seems to exist in the small intestines. Therefore, morphological localization, type of ionic dependence, and ability to adapt to dietary P or Ca restriction of duodenal and jejunal P(i) transport were characterized in goats. In the duodenum, there was an H(+)-dependent, Na(+)-sensitive P(i) transport system that did not belong to the NaPi type II family and was not influenced by dietary P or Ca restriction. In contrast, in the jejunum, there was an Na(+)-dependent, H(+)-sensitive P(i) transport mainly mediated by NaPi IIb. P restriction stimulated the NaPi IIb protein expression, resulting in higher P(i) transport capacity.  相似文献   

2.
The rapid development of precocial goats in the first weeks after birth requires an adequate adaptation of phosphate transport systems to maintain the P homeostasis at each developmental stage. Here we examined the age-related development of Na+-Pi transport systems in small intestines, kidneys, and parotid glands of goats. Kinetic parameters were determined by brush-border membrane vesicle uptake studies, and relative expression of NaPi type II mRNA and protein was recorded by molecular biological methods. High intestinal Pi transport capacity was already present on the first day of life. Within the first 3 wk of life there seemed to be a change in the type of Na+-dependent Pi transporter, and NaPi IIb was expressed increasingly up to the fifth month of life. Renal Na+-Pi transport capacity was also high at birth, and this was associated with high expression levels of NaPi IIa mRNA, indicating the important role of this transporter for renal Pi reabsorption. At weaning an increase in both intestinal and renal Na+-Pi transport balanced the increasing requirements for Pi to establish the endogenous Pi cycle. Salivary Pi concentration and parotid NaPi II mRNA rose markedly to guarantee an adequate Pi supply for rumen microbes. We concluded that the high demand for Pi in young goats was assured by high basal Na+-Pi transport capacity of small intestines and kidney expressed continuously during ontogenesis.  相似文献   

3.
In our former studies low crude protein (LCP) intake influenced N homeostasis and electrolyte handling in goats. We hypothesised that due to rumino-hepatic nitrogen (N) recycling adaptation of N homeostasis and adjustment of electrolyte handling to LCP intake differs between goats and monogastric animals. Therefore, an experiment similar to that with goats was conducted with rats. Two feeding groups received a diet either containing 20 or 8 % crude protein (as fed basis) for 5 weeks and intake and excretion of N, calcium (Ca) and phosphorus (P) were determined. To detect systemic and endocrine adaptation to LCP intake plasma concentrations of urea, Ca, phosphate (Pi), insulin-like growth factor 1 (IGF-1), 1,25-dihydroxyvitamin D3 (calcitriol), parathyroid hormone (PTH) and cross-linked telopeptide of type I collagen (CTX) were measured. Adjustment of renal electrolyte transport was assessed by detecting protein expression of key proteins of renal Pi transport. All data were compared with the data of the goat experiment. LCP intake decreased plasma urea concentration stronger in goats than in rats. In both species urinary N excretion declined, but faecal N excretion decreased in goats only. Furthermore, in goats urinary Ca excretion decreased, but in rats urinary Ca concentration increased. Decreased plasma IGF-1 and calcitriol concentrations were found in goats only. Thus, renal Ca excretion appears to be a common target in adaptation of electrolyte homeostasis in both species, but is regulated differently.  相似文献   

4.
Concentrative uptake of 32Pi induced by the dissipation of a Na+ gradient (overshoot) was demonstrated in brush border membrane vesicles obtained from isolated perfused canine kidneys. Na+-dependent 32Pi transport was decreased in brush border vesicles from isolated kidneys perfused with parathyroid hormone (PTH) for 2 h compared to uptake measured in vesicles from kidneys perfused without PTH. Cyclic AMP-dependent 32P phosphorylation of a 62,000 Mr protein band was demonstrable on autoradiograms of sodium dodecyl sulfate-polyacrylamide gels of membrane suspensions from kidneys perfused +/- PTH. Evidence that perfusion with PTH resulted in cAMP-dependent phosphorylation in isolated kidneys from parathyroidectomized dogs (decreased cAMP-dependent 32P phosphorylation of the 62,000-Mr band in brush border vesicles) was obtained after 2-h perfusion with PTH. Decreased 32P phosphorylation was not observed if membranes were allowed to dephosphorylate prior to 32P phosphorylation in vitro. We conclude that brush border vesicles from isolated perfused canine kidneys can be used to study the action of PTH on Na+-Pi cotransport in brush border membranes and on cAMP-dependent phosphorylation of the membrane. It is strongly suggested that PTH effects changes in Na+-dependent 32Pi transport in isolated brush border vesicles and changes in 32P phosphorylation of vesicles via a direct action on the renal cortical cell rather than as a consequence of extrarenal actions of the hormone.  相似文献   

5.
6.
Dietary intake of high phosphorus (P) is well-described to increase serum levels of PTH, however, how this increased serum PTH affects the PTH actions in major target tissues, particularly in kidney, remains uncovered. We therefore undertook to clarify this point in intact animals fed the high-P diet by examining various parameters of the PTH actions. Twelve weanling Wistar male rats were assigned randomly into the groups; a control group Ca: P = 1: 1 and a high-P group (Ca: P = 1: 3) fed the standard AIN 76 diet supplemented with P (0.5 and 1.5 g/100 g diet). After 3 week feeding, in the high-P diet group, we observed that serum Ca is lowered without difference in serum P when compared to those in the control group. Excretion of urine cAMP, an index of the renal PTH action, was also decreased with higher excretion of urine P by feeding the high P diet. In agreement with the decreased cAMP excretion, a clear reduction in the PTH/PTHrP receptor gene expression estimated by Northern blotting was observed in the kidney irrespective of increased levels of serum PTH. Thus, the present study indicated that high P dietary intake rather reduces the PTH actions in kidney though the serum PTH is increased.  相似文献   

7.
Isolated chick kidney proximal tubule cells have been used in a study of the mechanism by which PTH inhibits Na+-dependent Pi transport in the kidney. Treatment with PTH inhibits Pi uptake by the cells by 13% and stimulates cyclic AMP production by 77%. Forskolin, a potent activator of adenyl cyclase, brought about an 11-fold stimulation of cyclic AMP production by the cells, but in contrast to PTH, the drug had no effect on Na+-dependent Pi uptake. These results provide evidence that PTH action on phosphate transport is not mediated by cyclic AMP.  相似文献   

8.
Mammalian type II sodium-phosphate cotransporter (NaPi-II) and inorganic phosphate uptake stimulator (PiUS) genes are upregulated by dietary phosphorus (P) restriction to increase intestinal and renal P transport, but little is known about NaPi-II and PiUS regulation in other vertebrates. We studied the 1). the tissue distribution and dietary regulation of NaPi-II, PiUS, and sodium-glucose cotransporter (SGLT1) mRNA and NaPi-II protein in juvenile rainbow trout (Oncorhynchus mykiss) and 2). effects of dietary P on intestinal Pi absorption in vivo. NaPi-II, PiUS, and SGLT1 mRNA were found in the proximal and distal intestine, pyloric ceca, and kidney. PiUS mRNA was also found in the heart, gill, blood, stomach, liver, skin, and muscle. Tissue distribution of NaPi-II protein correlated with that of NaPi-II mRNA except in gill ionocytes where NaPi-II antibodies recognized related epitopes. Chronic consumption of a low-P diet increased NaPi-II and PiUS but not SGLT1 mRNA abundance in the intestine and kidney. Unlike mammals, there was no detectable shift in tissue or cellular localization of NaPi-II protein in response to dietary P restriction. Regulation of NaPi and PiUS mRNA expression was observed only in fish grown under optimal aqueous oxygen concentrations. In vivo fractional absorption of Pi by the intestine decreased in fish fed high-P diets. Decreases in absorption were less pronounced in fish previously fed low-P diets, suggesting that diet history modulates acute regulation of P absorption. Regulation of dietary Pi absorption in vivo may involve a specific change in intestinal NaPi-II and PiUS gene expression.  相似文献   

9.
The kinetic parameters (Vmax, Kt) of Na+-dependent D-glucose transport into brush border membrane vesicles (BBMV) from sheep and pig jejunum were determined. Due to the fermentation of ingested carbohydrates in the rumen the small intestine of ruminants (sheep) has to absorb much less glucose than the small intestine of monogastric omnivores (pigs) or herbivores. Kinetic analysis of the concentration dependence of D-glucose transport revealed a ten-fold smaller Vmax value combined with a five times lower Kt value in sheep BBMV compared with pig BBMV. The Vmax value for L-leucine transport did not differ between the two species investigated, whereas the Kt value in the sheep exceeded that in the pig. It is concluded from these results that the mechanism for Na+-dependent D-glucose transport in ruminants is adapted to the small amounts of carbohydrates reaching the small intestine.  相似文献   

10.
PTHR1 (type 1 parathyroid hormone receptors) mediate the effects of PTH (parathyroid hormone) on bone remodelling and plasma Ca2+ homoeostasis. PTH, via PTHR1, can stimulate both AC (adenylate cyclase) and increases in [Ca2+]i (cytosolic free Ca2+ concentration), although the relationship between the two responses differs between cell types. In the present paper, we review briefly the mechanisms that influence coupling of PTHR1 to different intracellular signalling proteins, including the G-proteins that stimulate AC or PLC (phospholipase C). Stimulus intensity, the ability of different PTH analogues to stabilize different receptor conformations ('stimulus trafficking'), and association of PTHR1 with scaffold proteins, notably NHERF1 and NHERF2 (Na+/H+ exchanger regulatory factor 1 and 2), contribute to defining the interactions between signalling proteins and PTHR1. In addition, cAMP itself can, via Epac (exchange protein directly activated by cAMP), PKA (protein kinase A) or by binding directly to IP3Rs [Ins(1,4,5)P3 receptors] regulate [Ca2+]i. Epac leads to activation of PLC?, PKA can phosphorylate and thereby increase the sensitivity of IP3Rs and L-type Ca2+ channels, and cAMP delivered at high concentrations to IP3R2 from AC6 increases the sensitivity of IP3Rs to InsP3. The diversity of these links between PTH and [Ca2+]i highlights the versatility of PTHR1. This versatility allows PTHR1 to evoke different responses when stimulated by each of its physiological ligands, PTH and PTH-related peptide, and it provides scope for development of ligands that selectively harness the anabolic effects of PTH for more effective treatment of osteoporosis.  相似文献   

11.
In rat enterocytes, signaling through the parathyroid hormone (PTH)/PTH-related peptide receptor type 1(PTHR1) includes stimulation of adenylyl cyclase, increases of intracellular calcium, activation of phospholipase C, and the MAP kinase pathway, mechanisms that suffer alterations with ageing. The purpose of this study was to evaluate whether an alteration at the level of the PTH receptor (PTHR1) is the basis for impaired PTH signaling in aged rat enterocytes. Western Blot analysis with a specific monoclonal anti-PTHR1 antibody revealed that a 85 kDa PTH binding component, the size expected for the mature PTH/PTHrP receptor, localizes in the basolateral (BLM) and brush border (BBM) membranes of the enterocyte, being the protein expression about 7-fold higher in the BLM. Two other bands of 105 kDa (corresponding to highly glycosylated, incompletely processed receptor form) and 65 kDa (proteolytic fragment) were also seen. BLM PTHR1 protein expression significantly decreases with ageing, while no substantial decrease was observed in the BBM from old rats. PTHR1 immunoreactivity was also present in the nucleus where PTHR1 protein levels were similar in enterocytes from young and aged rats. Immunohistochemical analysis of rat duodenal sections showed localization of PTHR1 in epithelial cells all along the villus with intense staining of BBM, BLM, and cytoplasm. The nuclei of these cells were reactive to the PTHR1 antiserum, but not all cells showed the same nuclear staining. The receptor was also detected in the mucosae lamina propria cells, but was absent in globets cells from epithelia. In aged rats, PTHR1 immunoreactivity was diffused in both membranes and cytoplasm and again, PTH receptor expression was lower than in young animals, while the cell nuclei showed a similar staining pattern than in young rats. Ligand binding to PTHR1 was performed in purified BLM. rPTH(1-34) displaced [I(125)]PTH(1-34) binding to PTHR1 in a concentration-dependent fashion. In both, aged (24 months) and young (3 months) rats, binding of [I(125)]PTH was characterized by a single class of high-affinity binding sites. The affinity of the receptor for PTH was not affected by age. The maximum number of specific PTHR1 binding sites was decreased by 30% in old animals. The results of this study suggest that age-related declines in PTH regulation of signal transduction pathways in rat enterocytes may be due, in part, to the loss of hormone receptors.  相似文献   

12.
NaPi IIb cotransporter is expressed in various tissues including mammary glands of mice. The physiological role of NaPi IIb in lactating mammary glands is still unclear. Therefore, it was the aim of the study to detect and to localize NaPi IIb protein in lactating goat mammary glands by Western analysis and immunohistochemistry. Furthermore, Na(+)-dependent P(i) uptake into apical membrane vesicles isolated from goat milk was determined using rapid filtration technique. NaPi IIb protein could specifically be detected in the apical membranes of lactating alveolar epithelial cells. Na(+)-dependent P(i) uptake into apical membrane vesicles could be measured, which was inhibited by phosphonoformic acid. The kinetic parameters were V(max) with 0.9 nmol/mg protein/10 s and K(m) with 0.22 mmol/L for P(i) affinity, K(m) value for Na(+) affinity 11 mmol/L. Stoichiometry of this mammary gland Na(+)/P(i) transport across the apical membranes seemed to be 1:1 P(i):Na(+) without cooperativity in P(i) and Na(+) binding as assessed by Scatchard and Hill plots. These features of Na(+)/P(i) transport suggest that it could be mediated by NaPi IIb. The quantitative role of this P(i) transport which is directed from the alveolar lumen into the epithelial cell of goat mammary gland will be the topic of further investigations.  相似文献   

13.
To understand the mechanisms underlying ischemia-reperfusion-induced renal proximal tubule damage, we analyzed the expression of the Na+-dependent phosphate (Na+/Pi) cotransporter NaPi-2 in brush border membranes (BBM) isolated from rats which had been subjected to 30 min renal ischemia and 60 min reperfusion. Na+/Pi cotransport activities of the BBM vesicles were also determined. Ischemia caused a significant decrease (about 40%, P < 0.05) in all forms of NaPi-2 in the BBM, despite a significant increase (31+/-3%, P < 0.05) in the Na+/Pi cotransport activity. After reperfusion, both NaPi-2 expression and Na+/Pi cotransport activity returned to control levels. In contrast with Na+/Pi cotransport, ischemia significantly decreased Na+-dependent glucose cotransport but did not affect Na+-dependent proline cotransport. Reperfusion caused further decreases in both Na+/glucose (by 60%) and Na+/proline (by 33%) cotransport. Levels of NaPi-2 were more reduced in the BBM than in cortex homogenates, suggesting a relocalization of NaPi-2 as a result of ischemia. After reperfusion, NaPi-2 levels returned to control values in both BBM and homogenates. These data indicate that the NaPi-2 protein and BBM Na+/Pi cotransport activity respond uniquely to reversible renal ischemia and reperfusion, and thus may play an important role in maintaining and restoring the structure and function of the proximal tubule.  相似文献   

14.
To determine the density of Na(+)-Pi symporters in brush border membranes (BBM) from rat renal cortex, [14C] phosphonoformic acid [( 14C] PFA), a competitive inhibitor of Na(+)-Pi cotransport, was employed as a probe. The [14C]PFA binding was measured in BBM vesicles (BBMV) under equilibrated conditions (extra-vesicular Na+, K+, and H+ = intravesicular Na+, K+, and H+) to avoid modulatory effects of these solutes. BBMV were preincubated in media without or with addition of molar excess of Pi (greater than 20 times) to determine the Pi-protectable PFA-binding sites, and then [14C] PFA binding was determined. Only the [14C]PFA binding in the presence of Na+ displaceable by an excess of Pi was saturated and was independent of intravesicular volume of BBMV. This value denoted as "Pi-protectable Na(+)-[14C]PFA binding," was analyzed by Scatchard plot showing BmaxPFA = 375 +/- 129 pmol of PFA/mg protein, KDPFA = 158 +/- 18 microM; the Hill coefficient was congruent to 1. For Na(+)-dependent binding of [3H]phlorizin, in the same BBMV, Bmax = 310 +/- 37 pmol/mg protein and KD V 2.2 +/- 0.5 microM. BBMV prepared from cortex of thyroparathyroidectomized rats infused with phosphaturic doses of parathyroid hormone (PTH) were compared with vehicle-infused controls. Administration of PTH resulted in decrease of BmaxPFA (-38%) and of Na(+)-gradient-dependent uptake of 32Pi (-35%), but KDPFA was not changed. Neither BmaxPhl and KDPhl for Na(+)-phlorizin binding, nor the Na(+)-gradient-dependent uptake of [3H]D-glucose differed between PTH-treated and control rats. We conclude: (a) measurement of Pi-protectable Na(+)-[14C]PFA binding determines numbers and affinity of Na(+)-Pi symporters in renal BBMV; (b) the affinity of PFA for Na(+)-Pi symporter is similar to apparent affinity for Pi (KmPi), as determined from measurements of Na(+)-gradient-dependent 32Pi uptake by BBMV; (c) both Na(+)-Pi symporter and [Na+]D-glucose symporters are present within renal BBM in a similar range of density; (d) PTH decreases the number of Na(+)-Pi cotransporters in BBMV commensurate with the parallel decrease of Na(+)-gradient-dependent Pi transport, whereas the affinity of Na(+)-Pi symporters for Pi is not changed. These observations support the hypothesis that PTH decreases capacity for Na(+)-dependent Pi reabsorption by internalization of Na(+)-Pi symporters in BBM of renal proximal tubules.  相似文献   

15.
To find whether a high phosphorus (P) diet stimulate the secretion of PTH, a high-P diet was fed to rats and an increase in serum P levels has occurred. All rats were fed a control diet (0.5% calcium (Ca), 0.5% P) for 7 days, while they were being adapted, for 1 hour at 8:00 AM and again at 8:00 PM. Four groups were switched to the high-P diet (0.5% Ca, 1.5% P) at the time of their morning meal for 1 hour. The other 4 groups continued to receive the control diet. Blood samples were collected from the rats in the remaining group, which served as a pre-feeding control. Every 30 minutes after the start of feeding (30, 60, 90, 120 min), blood samples were collected from the rats in the groups fed the control and high-P diets. Serum P concentrations increased upon intake of the high P diet, within 30 minutes after the start of feeding. Serum PTH levels also increased upon intake of the high P diet, within 30 minutes after the start of feeding, and the levels were significantly higher in the high-P group than in the control group. However, no significant difference was observed in serum Ca levels between the two groups. From these results, our findings suggest that an increase in serum P concentration might be a trigger of PTH secretion without any changes of serum calcium levels.  相似文献   

16.
The mechanisms by which calcium (Ca2+) and inorganic phosphate (Pi) accumulate into matrix vesicles (MV) have not been elucidated. In the present study the characteristics of Pi uptake into MV isolated from mildly rachitic chicken growth plate cartilage have been investigated. The results indicate that Pi accumulates into MV mainly via a Na(+)-dependent Pi transport system. In the absence of NaCl in the extravesicular medium, Pi uptake was a nonsaturable process. In the presence of 150 mM NaCl, the initial rate of Pi uptake was 4.38 +/- 1.02-fold higher than with 150 mM choline chloride (mean +/- S.E., n = 8, p less than 0.005). Other cations showed partial activity to drive Pi into MV as compared to Na+:Li+ (64.4%) greater than K+ (39.8%) greater than choline (39.0%) greater than tetramethylammonium (30.0%) greater than N-methylglucamine (26.3%). Na(+)-dependent Pi transport activity displayed saturability towards increasing extra-vesicular concentrations of Na+ and Pi. The apparent Km for Pi was 0.68 +/- 0.16 mM. The Na+ concentration producing half-maximum Pi transport activity was 106.2 +/- 11.0 mM. Kinetic analysis suggests that Na+ interacts with the Pi carrier with a stoichiometry of more than one Na+ ion with one Pi molecule. In MV isolated from normal chicken growth plate cartilage, this Na(+)-dependent Pi transport system was barely expressed. In contrast to the effect on Pi uptake by MV, the activity of alkaline phosphatase was not changed when NaCl was substituted for choline chloride in the assay medium. In addition to this observation which suggests that this enzyme is not related to the Pi transport activity described in this study, levamisole, which inhibited alkaline phosphatase activity did not affect the Na(+)-dependent uptake of Pi. Both arsenate and phosphonoformic acid, two inhibitors of the epithelial Na(+)-dependent Pi transport systems, were active inhibitors of the Na(+)-dependent Pi uptake by MV with a higher potency for phosphonoformic acid. Associated with the expression of a facilitated Na(+)-coupled Pi transport in MV, in vitro calcification assessed by 45Ca2+ uptake also showed a marked dependence on extravesicular sodium. This relationship was markedly attenuated in MV isolated from normal chicken growth plate cartilage expressing a weak Na(+)-facilitated Pi transport activity. In conclusion, a saturable Na(+)-dependent Pi carrier has been characterized which facilitates Pi transport in MV. Its potential role for Ca-Pi accumulation into MV and subsequent development of vesicular calcification followed by mineralization of the osteogenic matrix is proposed and remains to be further investigated.  相似文献   

17.
In this study, the putative anion transporter 1 (ANTR1) from Arabidopsis thaliana was shown to be localized to the chloroplast thylakoid membrane by Western blotting with two different peptide-specific antibodies. ANTR1 is homologous to the type I of mammalian Na+-dependent inorganic phosphate (Pi) transporters. The function of ANTR1 as a Na+-dependent Pi transporter was demonstrated by heterologous expression and uptake of radioactive Pi into Escherichia coli cells. The expression of ANTR1 conferred increased growth rates to the transformed cells and stimulated Pi uptake in a pH- and Na+-dependent manner as compared with the control cells. Among various tested effectors, Pi was the preferred substrate. Although it competed with the uptake of Pi, glutamate was not transported by ANTR1 into E. coli. In relation to its function as a Pi transporter, several physiological roles for ANTR1 in the thylakoid membrane are proposed, such as export of Pi produced during nucleotide metabolism in the thylakoid lumen back to the chloroplast stroma and balance of the trans-thylakoid H+ electrochemical gradient storage.  相似文献   

18.
研究了甲状腺素(T3/T4)及维甲酸(RA)对大鼠成骨样细胞ROS17/2.8细胞林甲状旁腺素(PTH)受体的调节作用.实验结果表明:细胞经T3/T4处理后,可显著增高PTH受体结合率及碱性磷酸酶活性,以及PTH受体mRNA的表达.细胞经RA处理后,则相反地降低PTH受体结合率及碱性磷酸酶活性.  相似文献   

19.
For ruminants, marked differences to monogastric species have been described concerning the localisation and vitamin D sensitivity of gastrointestinal calcium absorption, particularly with respect to the forestomach compartment. Therefore, we investigated gastrointestinal calcium transport of sheep as influenced by a dietary calcium restriction and/or a supraphysiological dosage of exogenous calcitriol. Using the Ussing chamber technique, we determined calcium and mannitol flux rates to differentiate between para- and transcellular calcium transport in rumen, duodenum, jejunum and colon. Expression of epithelial calcium channels, calbindin-D(9K), and basolateral extrusion mechanisms was determined by quantitative RT-PCR and Western blot analysis. Active calcium transport could be demonstrated in jejunum and rumen. A significant stimulation of jejunal calcium absorption was only observed in animals treated with calcitriol. The alimentary calcium restriction alone did not result in significant effects indicating a less effective intestinal adaptation to alimentary calcium restriction than observed in monogastric animals. The observed ruminal calcium transport was not affected at all, neither by the diet nor the calcitriol treatment. Furthermore, no significant expression of epithelial calcium channels or calbindin-D(9K) could be detected in the rumen; therefore it is concluded that calcium transport in the forestomachs is probably mediated by a different, so far unknown mechanism.  相似文献   

20.
The dietary phosphorus (P) requirement for large fish is difficult to estimate because of insensitivities of known P status indicators. We examined dietary P requirement of large rainbow trout (mean body weight 278 g) using recently identified P-responsive genes (mRNA abundances) as well as conventional serum P and bone P. Fish were fed six diets (varied P contents), and the tissues of intestine, pyloric caeca (PC), kidney, serum and bone were collected at varying time intervals. Serum P responded clearly to dietary P by day 2, but the estimated P requirement based on this variable changed as feeding duration continued. Bone P did not respond clearly until week 7. Among P-responsive genes studied, Na/Pi cotransporter in PC (PC-NaPi) was the most sensitive, and responded in 2 days. Fish-to-fish (within treatment) variance was larger in mRNA than in serum P and bone P levels. Estimated dietary P requirements (%P in dry diet) were 0.45 (based on serum P), 0.45 (based on bone P), 0.36 (based on PC-NaPi), 0.33 (based on intestinal NaPi), 0.71 (based on renal NaPi), and 0.33 (based on mitochondrial Pi carrier). This study is the first to evaluate the potential of genomic approaches in determining nutrient requirements of fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号