首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new model of skeletal muscle contraction is presented from a unified view of muscle physiology, chemical energetics and newly obtained experimental data concerning actomyosin ATPase in vitro.In this model an interaction between actin and myosin, involving two distinct active sites, is considered to be the essential elementary mechanism for muscle contractions. These two sites are located on myosin. One site, forming a myosin-ADP-P, complex, has stored energy derived from ATP splitting before the beginning of a contraction. Another site, forming a myosin-ATP complex, upon interacting with actin, catalyzes ATP hydrolysis, using a fraction of the stored energy. The hydrolysis at the latter site is responsible for tension development, while the stored energy is released to drive the contractile reaction between actin and myosin unidirectionally. (Thus, the two sites act co-operatively and they can be viewed as forming an active enzyme.)There has been a difficulty in explaining the shortening heat production with apparent lack of corresponding chemical change at the early stage of contraction. The active enzyme model accounts for the shortening heat as the irreversible release of the stored energy. The heat production appears to precede its corresponding ATP splitting for “refueling” which occurs after complete exhaustion of the stored energy, while the actomyosin ATP hydrolysis takes place proportionally to the work. At the macroscopic level, the model is compatible with Hill's tension-velocity and heat relation.  相似文献   

2.
A theory of contraction and an associated model of striated muscle are presented, based on the assumption that chemical energy is being converted into electrical energy which, in turn, is being converted into mechanical energy and heat.The model, set up for the frog sartorius muscle, is able to predict the “rowing” motion of the cross-bridges, the force-velocity relation, the tension-length curve, the isometric force, all energy rates (heat and work rates), the metabolic rates and all known features of the stretched, stimulated muscle (no ATP-splitting, stretching tension higher than isometric tension, etc.). It also offers an alternative explanation for Hill's thermoelastic effect. The significance of Hill's force-velocity equation in the context of this theory is also discussed in detail.  相似文献   

3.
We derive the energy rate equation for muscle contraction. Our equation has only two parameters m, the maintenance heat rate and 1/S, the shortening heat coefficient. The impulsive model (previously described in earlier papers) provides a physical basis for parameter 1/S as well as for constants a and b in Hill’s force–velocity equation. We develop new theory and relate the efficiency and the step-size distance to our energy rate equation. Correlation between the efficiency and the step-size distance is established. The various numbers are listed in Table 1: we use data from five different muscles in the literature. In summary, our analysis strongly supports the impulsive model as the correct model of contraction.  相似文献   

4.
Myosin has two heads, each of which can interact with actin and ATP. We have investigated the possibility that co-operative interactions occur between the heads by measuring the force generated by single-headed myosin in reconstituted actomyosin threads. Myofibrils were digested with papain, actomyosin was extracted from the myofibrils, and one-headed myosin was purified by cycles of sedimentation with actin. The one-headed myosin was approximately 90 to 95% pure as determined by densitometer scans of polyacrylamide gels run in 20 mm-PP1 (impurities consisted of 1 to 5% of myosin and 1 to 5% myosin rod). The ATPase activity per mole of single-headed myosin was one half that of myosin under conditions where the activity was activated by Ca2+, K+ or actin. One-headed myosin could also participate in superprecipitation, although with a rate that was at least one order of magnitude slower than that for myosin. Myosin or one-headed myosin was mixed with actin, threads were formed via extrusion into low ionic strength, and the isometric forces and isotonic velocities generated by the threads were measured. The ratio of the isometric tension produced per head by the one-headed myosin to the isometric tension produced per head by myosin was 1·0 ± 0·1. The maximum velocity of thread contraction for the one-headed myosin was also not different from the control myosin. Thus, the absence of one head does not appear to impair the generation of force or motion by the remaining head.  相似文献   

5.
The extra heat liberation accompanying muscular shortening, the force-determined shortening heat, is defined as the difference between the heat produced when shortening occurs and that produced in an isometric contraction developing the same amount of force and performing the same amount of internal work. Based on this definition, the initial energy production in twitches and tetanic contractions (E) is given by E = A + f (P, t) + αFx + W, where A is the activation heat, f(P, t), the tension-related heat (a heat production associated with the development and maintenance of tension), αFx, the force-determined shortening heat, and W, the external work. It is demonstrated that this equation accurately accounts for the time-course of heat evolution and the total initial energy production in both twitches and tetani at 0°C. The force-determined shortening heat is liberated, during shortening, in direct proportion to (a) the distance shortened, and (b) the force against which shortening occurs. The normalized value of the force-determined shortening heat coefficient, αF/Po, is the same in both the twitch and the tetanus. Finally, this formulation of the muscle's energy production also accounts for the total energy production in afterload isotonic twitches at 20°C, where a Fenn effect is not demonstrable.  相似文献   

6.
Evidence is presented that both myosin and actomyosin in presence of Mg2+ and KCl catalyze an incorporation of 32Pi into ATP. The rate with actomyosin is about 1500 the rate of ATP hydrolysis; the rate with myosin is less than 1100 of that with actomyosin. With myosin, but not with actomyosin, an apparent initial “burst” of 32Pi incorporation into ATP is observed. Actin binding thus promotes ATP dissociation. The data with myosin allow estimation of both the amount of enzyme-bound [32P]-ATP present and the rate constant, k?1, for dissociation of the myosin· ATP. From these results and other data a ?ΔGo for ATP binding to myosin of 12–13 kcal/mole may be estimated, with a much lower ?ΔGo for hydrolysis of enzyme-bound ATP. Protein conformational change accompanying ATP binding appears to be the principal means of capture of energy from the overall reaction of ATP cleavage.  相似文献   

7.
When isometrically contracting muscles are subjected to a quick release followed by a shortening ramp of appropriate speed (V(o)), tension decays from its value at the isometric plateau (P(o)) to <0. 05 P(o) with the same time course as the quick part of the release; thereafter, tension remains at a negligible level for the duration of the shortening ramp. X-ray diffraction data obtained under these conditions provide evidence that 1) at V(o) very few heads form an actomyosin complex, while the number of heads doing so at P(o) is significant; 2) relative to rest the actin filament at V(o) is approximately 0.12% shorter and more twisted, while it is approximately 0.3% longer and less twisted at P(o); and 3) the myosin heads attaching to actin during force development do so against a thin filament compliance of at least 0.646 +/- 0.046% nm per P(o).  相似文献   

8.
Substitution of 2'-deoxy ATP (dATP) for ATP as substrate for actomyosin results in significant enhancement of in vitro parameters of cardiac contraction. To determine the minimal ratio of dATP/ATP (constant total NTP) that significantly enhances cardiac contractility and obtain greater understanding of how dATP substitution results in contractile enhancement, we varied dATP/ATP ratio in porcine cardiac muscle preparations. At maximum Ca(2+) (pCa 4.5), isometric force increased linearly with dATP/ATP ratio, but at submaximal Ca(2+) (pCa 5.5) this relationship was nonlinear, with the nonlinearity evident at 2-20% dATP; force increased significantly with only 10% of substrate as dATP. The rate of tension redevelopment (k(TR)) increased with dATP at all Ca(2+) levels. k(TR) increased linearly with dATP/ATP ratio at pCa 4.5 and 5.5. Unregulated actin-activated Mg-NTPase rates and actin sliding speed linearly increased with the dATP/ATP ratio (p < 0.01 at 10% dATP). Together these data suggest cardiac contractility is enhanced when only 10% of the contractile substrate is dATP. Our results imply that relatively small (but supraphysiological) levels of dATP increase the number of strongly attached, force-producing actomyosin cross-bridges, resulting in an increase in overall contractility through both thin filament activation and kinetic shortening of the actomyosin cross-bridge cycle.  相似文献   

9.
The effect of ethylene glycol on the contractile properties of skeletal muscles was studied using glycerinated rabbit psoas muscle fibers. Measurements were made at an ionic strength of 0.2 M, pH 7.0, and at 10 degrees C. Ethylene glycol reversibly reduced isometric tension, active stiffness, the tension-to-stiffness ratio, and the shortening velocity at zero load (Vo) in a dose-dependent fashion. Ethylene glycol also reduced the Ca sensitivity for contraction. The extent of the reduction in Vo by ethylene glycol was much larger than that in the actomyosin ATPase activity reported by Travers and Hillaire (Eur. J. Biochem. 98, 293-299 [1979]). Although ethylene glycol reduced tension and Vo, the MgATP concentration dependence of these two quantities was almost unaffected. These results suggest that in the presence of ethylene glycol, force produced by crossbridges in the principal force-producing state is reduced and/or the relative population of the attached crossbridges in the low-force state increases. The results also suggest that the reduction in Vo by ethylene glycol is caused not only by a reduction in the actomyosin ATPase activity but also by a reduction in the shortening distance per mole of ATP split.  相似文献   

10.
The chemical states of a cross-bridge--nucleotide complex were studied using a fluorescent ATP analogue, 1-N6-etheno-2-aza-ATP(epsilon-2-aza-ATP). The fluorescence of epsilon-2-aza-ATP at specific emission wavelengths was enhanced by 12.5 times upon binding to myosin in a relaxed muscle and the fluorescence from the resultant myosin(M)-epsilon-2-aza-ADP-Pi intermediate was 2.5 times greater than that from a M-epsilon-2-aza-ADP complex. Similar enhancements of the fluorescence of epsilon-2-aza-ATP and epsilon-2-aza-ADP were observed upon binding to heavy meromyosin in solution. Binding of F-actin did not change the fluorescence of epsilon-2-aza-ATP or epsilon-2-aza-ADP bound to heavy meromyosin. When a muscle went from a relaxed state to a state of isometric contraction or contraction with shortening, the fluorescence intensity decreased only slightly or not at all, i.e. the fluorescence of nucleotides bound to most of the myosin heads during contraction is the same as that of the M-epsilon-2-aza-ADP-Pi intermediate. These results suggest that an actomyosin(AM)-epsilon-2-aza-ADP-Pi intermediate is the predominant attached state during contraction. When the ionic strength of the relaxing solution was decreased, cross-bridges formed at 6 degrees C without tension generation. At 20 degrees C, a large tension was produced although the shortening velocity was negligibly small or zero. The fluorescence intensity decreased by 15% at 20 degrees C but only a small decrease of 3% was observed at 6 degrees C, suggesting that the predominant complexes in the attached state were AM-epsilon-2-aza-ATP and/or AM-2-aza-ADP-Pi at 6 degrees C and AM-epsilon-2-aza-ADP at 20 degrees C. Thus, the identification of the actomyosin-nucleotide complexes existing before and after the force-generating step lent further support to the conclusion that the sliding force is generated by conformational changes in actomyosin when the (epsilon-2-aza-)ADP-Pi complex is bound to it.  相似文献   

11.
Hydrolysis of the triphosphate moiety of ATP, catalyzed by myosin, induces alterations in the affinity of the myosin heads for actin filaments via conformational changes, thereby causing motility of the actomyosin complexes. To elucidate the contribution of the triphosphate group attached to adenosine, we examined the enzymatic activity of heavy meromyosin (HMM) with actin filaments for inorganic tripolyphosphate (3PP) using a Malachite green method and evaluated using fluorescence microscopy the effects of 3PP on actin filament motility on HMM-coated glass slides. In the presence of MgCl2, HMM hydrolyzed 3PP at a maximum rate of 0.016 s−1 HMM−1, which was four times lower than the hydrolysis rate of ATP. Tetrapolyphosphate (4PP) was hydrolyzed at a rate similar to that of 3PP hydrolysis. The hydrolysis rates of 3PP and 4PP were enhanced by roughly 10-fold in the presence of actin filaments. In motility assays, the presence of polyphosphates did not lead to the sliding movement of actin filaments. Moreover, in the presence of ATP at low concentrations, the sliding velocity of actin filaments decreased as the concentration of added polyphosphate increased, indicating a competitive binding of polyphosphate to myosin heads with ATP. These results suggested that the energy produced by standalone triphosphate hydrolysis did not induce the unidirectional motion of actomyosin and that the link between triphosphate and adenosine was crucial for motility.  相似文献   

12.
H Iwamoto 《Biophysical journal》1995,69(3):1022-1035
The dynamic characteristics of the low force myosin cross-bridges were determined in fully calcium-activated skinned rabbit psoas muscle fibers shortening under constant loads (0.04-0.7 x full isometric tension Po). The shortening was interrupted at various times by a ramp stretch (duration, 10 ms; amplitude, up to 1.8% fiber length) and the resulting tension response was recorded. Except for the earlier period of velocity transients, the tension response showed nonlinear dependence on stretch amplitude; i.e., the magnitude of the tension response started to rise disproportionately as the stretch exceeded a critical amplitude, as in the presence of inorganic phosphate (Pi). This result, as well as the result of stiffness measurement, suggests that the low force cross-bridges similar to those observed in the presence of Pi (presumably A.M.ADP.Pi) are significantly populated during shortening. The critical amplitude of the shortening fibers was greater than that of isometrically contracting fibers, suggesting that the low force cross-bridges are more negatively strained during shortening. As the load was reduced from 0.3 to 0.04 P0, the shortening velocity increased more than twofold, but the amount of the negative strain stayed remarkably constant (approximately 3 nm). This This insensitiveness of the negative strain to velocity is best explained if the dissociation of the low force cross-bridges is accelerated approximately in proportion to velocity. Along with previous reports, the results suggest that the actomyosin ATPase cycle in muscle fibers has at least two key reaction steps in which rate constants are sensitively regulated by shortening velocity and that one of them is the dissociation of the low force A.M.ADP.Pi cross-bridges. This step may virtually limit the rate of actomyosin ATPase turnover and help increase efficiency in fibers shortening at high velocities.  相似文献   

13.
The field of the randomly connected neural network is approximately formulated by Griffith's equation, regarding the network as being continuous. An integral representation of Griffith's equation is derived. If a relative refractory period can be ignored, it is X(x,t)=1ods?vsvsdnkv2te?avs X(x?n, t?s) ? θ where X(x, t) corresponds to the firing rate and θ means the threshold of the neural firing, τ the absolute refractory period and v the velocity for the spike potential travelling down the axon. The above equation is formally analogous to Caianiello's equation, but the former describes the more macroscopic behaviour of the neural network than the latter. With the aid of computer simulation, appropriate solutions are successfully obtained.In regions where X = 1, neurones are firing at a high constant rate of 1τ (active regions). In regions where X = 0, there is no firing of neurones (resting regions). In the neural net for which 0 < a2τθk < 1, the net is generally a mixture of the active regions and of the resting regions. In the case that a large active region is in contact with a large resting region, the propagation velocity of boundary between the two regions tends to the velocity u given by u = (1 ? 2a2τθk)v. This expression of velocity u was deduced from the fact that there exists a solution of the type X(x, t) = 1 (ut ? x) for equation (A). In the case of 0 < a2τθk < 0 · 5, the active region grows and in the case of 0 · 5 < a2τθk < 1, the resting region grows. A fatigue effect is introduced, for which it is hard for neurones to maintain firing states. In this case an active region of definite width L propagates with constant velocity u′. The dependence of L and u′ on characteristics of neural network and on the fatigue effect is investigated.  相似文献   

14.
The mechanism of ATP hydrolysis by myosin and actomyosin was investigated for the four major classes of vertebrate muscles: fast white (posterior latissimus dorsi), slow red (anterior latissimus dorsi), cardiac and smooth (gizzard). The kinetic behavior of all classes of muscle was consistent with the scheme developed previously for rabbit fast white muscle, but quantitative differences were observed for the rate constants of some of the steps in the hydrolysis cycle. The rate of the hydrolysis step of myosin subfragment-1 was similar for the striated muscles and two to three times smaller for smooth muscle. Two isomerizations of the enzyme occurred in the pathway leading to the formation of the myosin-products intermediate. The rate of dissociation of acto S–1 by ATP was slower for slow muscles and a maximum rate was observed at low temperature. The rate of association of the S-1-products intermediate with actin was equal to the turnover rate of acto S–1 ATPase at low concentrations of actin. The rate of dissociation of ADP from an acto S–1-ADP complex was also much slower for slow muscle. It was shown by Barany (1967) that the maximum turnover rate of actomyosin ATPase (VM) is proportional to the velocity of contraction of the muscle. The only step in the mechanism that is correlated with VM is the apparent second-order rate constant for the formation of a complex of the S-1-product state with actin. The evidence is discussed in terms of a mechanism in which the release of reaction products from actomyosin is the step that is of primary importance in determining the value of VM and the velocity of contraction.  相似文献   

15.
Considerable attention has been directed to the characteristic force-velocity relation discovered by A. V. Hill in the study of muscle kinematics. Models of contractile process were tested on the basis of their compatibility with the Hill equation. However, almost all the isotonic data have been restricted to one length, l0, the maximum length with almost no resting tension; the velocities measured are those initial values when the load begins to move. The force-velocity curve extrapolates to zero velocity for isometric tension, but only for the tension at that one length. Very few efforts have been made to study the profiles of the curves throughout the range of lengths over which shortening takes place. In examining the length region, ll0, for an isotonically contracting muscle, not only is the force-velocity relation valid for the initial reference length, l0, but also for any other length. The analysis in this report indicates that the constants a/P0 and b/l0 remain fixed throughout the length change of afterloaded isotonic shortening in the Rana pipiens sartorius muscles.  相似文献   

16.
1. The rigor which takes place when completely frozen frog sartorius muscle is thawed ("thaw rigor"), is accompanied by a decrease in length of 70 per cent and a loss in weight of 35 per cent, whether the muscle is frozen in the resting or the exhausted condition, or during isometric tetanus. Muscle tetanized to maximal shortening shows a loss in weight of 25 per cent on thawing. 2. A load of 8 gm. is sufficient to prevent the decrease in length on thawing, but after its removal the muscle will shorten almost to the normal extent. 3. Inhibitors such as azide, cyanide, 2:4 dinitrophenol, p-chloromercuribenzoate, Cu, and hydrogen peroxide, when used for periods not exceeding 1 hour, have little effect on the shortening; although in some cases these poisons render the muscle inexcitable. 4. Muscles poisoned with iodoacetic acid and stimulated to exhaustion, or maintained at fixed length in nitrogen, show little or no shortening on thawing. ATP can produce shortening in the muscles in which it has been prevented. 5. The phenomenon is considered to be due to an in situ synaeresis of the actomyosin of the myofibrils. As a result of the disorganisation of the muscle protoplasm produced by the freezing and subsequent thawing, the ATP, which must be bound or localized in the resting muscle, can act on the myofibril in a similar manner to its in vitro effect on the actomyosin thread.  相似文献   

17.
We measured isotonic sliding distance of single skinned fibers from rabbit psoas muscle when known and limited amounts of ATP were made available to the contractile apparatus. The fibers were immersed in paraffin oil at 20 degrees C, and laser pulse photolysis of caged ATP within the fiber initiated the contraction. The amount of ATP released was measured by photolyzing 3H-ATP within fibers, separating the reaction products by high-pressure liquid chromatography, and then counting the effluent peaks by liquid scintillation. The fiber stiffness was monitored to estimate the proportion of thick and thin filament sites interacting during filament sliding. The interaction distance, Di, defined as the sliding distance while a myosin head interacts with actin in the thin filament per ATP molecule hydrolyzed, was estimated from the shortening distance, the number of ATP molecules hydrolyzed by the myosin heads, and the stiffness. Di increased from 11 to 60 nm as the isotonic tension was reduced from 80% to 6% of the isometric tension. Velocity and Di increased with the concentration of ATP available. As isotonic load was increased, the interaction distance decreased linearly with decrease of the shortening velocity and extrapolated to 8 nm at zero velocity. Extrapolation of the relationship between Di and velocity to saturating ATP concentration suggests that Di reaches 100-190 nm at high shortening velocity. The interaction distance corresponds to the sliding distance while cross-bridges are producing positive (working) force plus the distance while they are dragging (producing negative forces). The results indicate that the working and drag distances increase as the velocity increases. Because Di is larger than the size of either the myosin head or the actin monomer, the results suggest that for each ATPase cycle, a myosin head interacts mechanically with several actin monomers either while working or while producing drag.  相似文献   

18.
The molecular dynamics of energy conversion by the actomyosin system in muscle contraction is studied by comparing two different types of model on the motion of crossbridge on thin filament. The motion is associated with a transition between two stable states in Huxley and Simmons' model while in Shimizu et al.'s model with a transition from an unstable to a stable state. The rate of the transition, which is proportional to the velocity of shortening of muscle in steady state, is calculated by representing the motion of crossbridge by that of a Brownian particle moving on a one-dimensional linear potential. In the case of the Huxley-Simmons model the energy conversion process is essentially a thermal one and the velocity of shortening depends sharply on the number of crossbridges on muscular filament, which is proportional to the overlapping length between thin and thick filaments. On the other hand, in the case of the Shimizu model the energy conversion process is a deterministic one which means that muscle is able to shorten smoothly and that the velocity of shortening is almost independent of the overlapping length. Experimental observations by Gordon et al. are consistent with the latter model.  相似文献   

19.
A theoretical model of a molecular energy transducing unit designed for the production of mechanical work is constructed and its consequences examined and compared with the experimentally determined myothermal and dynamic properties of vertebrate striated muscle. The model rests on a number of independent assumptions which include: the almost instantaneous generation of mechanical force by the occurrence of a radiationless transition between vibronic states of the transducer (crossbridge) at a point of potential energy surface crossing; transmission of this force to the load via the active sites on the thin filament by means of non-bonding repulsive forces, no energy being required for detachment; “detachment” consists of a second radiationless transition at a lower energy point than the first force generating transition, the energy difference appearing largely as work. The method of force generation completely avoids problems such as the “force-rate dilemma” which occur repeatedly in any discussion where state populations are near-Boltzmann and also leads without further arbitrary assumptions to such concepts as “attached but non force-producing states” and strongly position dependent “attachment” and “detachment” rate constants since these can only be appreciable near potential energy surface crossings. The kinetics and energetics of a transducer of this type operating cyclically and converting ATP → ADP + Pi are considered and shown to lead to length-tension and energetic behaviour very similar to that exhibited by vertebrate striated muscle, both for contraction and stretching. The existence of a limiting tension for stretching is predicted by the model as is the decrease of the rate of enthalpy release rate below the isometric value. At the limiting tension the rate of enthalpy release by the transducers is virtually zero, as observed. However, the stretching only inhibits the ATP hydrolysis, the cyclic synthesis from ADP and work being impossible with this model. The response to rapid length step changes automatically contains the asymmetry observed experimentally (with respect to lengthening and shortening) and arbitrary assumptions over and above those giving adequate explanation of the steady-state properties are not required. The asymmetry arises mainly as a consequence of the non-bonded pushing action of the crossbridges. This same assumption predicts the occurrence of an asymmetric thermoelastic ratio for active muscle with respect to stretching and contraction. The quantitative aspects of the model are satisfactory as it simultaneously reconciles the numerical magnitudes of macroscopic quantities such as isometric tension, maximum contraction velocity, limiting tension sustainable on stretching, isometric heat rate and resting heat rate with molecular parameters such as the filament and crossbridge periodicities, molecular vibrational relaxation rates, recurrence times for the radiationless transitions occurring, etc. This is achieved without any parameter optimization and only a very much smaller number of unknown parameters than the number of observed results accounted for. Many of the entities occurring in the model cycle (vibronic states of crossbridges, ATP, etc.) appear to be in one-to-one correspondence with many of the kinetic entities postulated to account for the biochemical kinetic results obtained for the actomyosin ATPase system in vitro. Finally, the rigor state has to be viewed in a different way from the conventional one; on the basis that the present model states which are part of the contraction cycle but sparsely populated during the latter (and hence are of chemical kinetic but not dynamical importance) are heavily populated during the rigor state. The mechanical properties of the rigor state would then be determined by these molecular states which would be very short-lived during the contraction cycle. If this is correct the rigor state could yield much more information about inaccessible parts of the contraction cycle than is presently supposed. The model leads one to expect a rather different response to quick length step changes in the rigor state from that of the active state, in contrast to current interpretations in terms of a large number of attached crossbridges, unable to detach due to the absence of ATP.  相似文献   

20.

Background

During actomyosin interactions, the transduction of energy from ATP hydrolysis to motility seems to occur with the modulation of hydration. Trimethylamine N-oxide (TMAO) perturbs the surface of proteins by altering hydrogen bonding in a manner opposite to that of urea. Hence, we focus on the effects of TMAO on the motility and ATPase activation of actomyosin complexes.

Methods

Actin and heavy meromyosin (HMM) were prepared from rabbit skeletal muscle. Structural changes in HMM were detected using fluorescence and circular dichroism spectroscopy. The sliding velocity of rhodamine-phalloidin-bound actin filaments on HMM was measured using an in vitro motility assay. ATPase activity was measured using a malachite green method.

Results

Although TMAO, unlike urea, stabilized the HMM structure, both the sliding velocity and ATPase activity of acto-HMM were considerably decreased with increasing TMAO concentrations from 0–1.0 M. Whereas urea-induced decreases in the structural stability of HMM were recovered by TMAO, TMAO further decreased the urea-induced decrease in ATPase activation. Urea and TMAO were found to have counteractive effects on motility at concentrations of 0.6 M and 0.2 M, respectively.

Conclusions

The excessive stabilization of the HMM structure by TMAO may suppress its activities; however, the counteractive effects of urea and TMAO on actomyosin motor activity is distinct from their effects on HMM stability.

General significance

The present results provide insight into not only the water-related properties of proteins, but also the physiological significance of TMAO and urea osmolytes in the muscular proteins of water-stressed animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号