首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Genomic deletions of the Drosophila melanogaster Hsp70 genes   总被引:1,自引:0,他引:1  
Gong WJ  Golic KG 《Genetics》2004,168(3):1467-1476
Homologous recombination can produce directed mutations in the genomes of a number of model organisms, including Drosophila melanogaster. One of the most useful applications has been to delete target genes to generate null alleles. In Drosophila, specific gene deletions have not yet been produced by this method. To test whether such deletions could be produced by homologous recombination in D. melanogaster we set out to delete the Hsp70 genes. Six nearly identical copies of this gene, encoding the major heat-shock protein in Drosophila, are found at two separate but closely linked loci. This arrangement has thwarted standard genetic approaches to generate an Hsp70-null fly, making this an ideal test of gene targeting. In this study, ends-out targeting was used to generate specific deletions of all Hsp70 genes, including one deletion that spanned approximately 47 kb. The Hsp70-null flies are viable and fertile. The results show that genomic deletions of varied sizes can be readily generated by homologous recombination in Drosophila.  相似文献   

2.
S. P. Roberts  M. E. Feder 《Oecologia》1999,121(3):323-329
We demonstrate that natural heat stress on wild larval Drosophila melanogaster results in severe developmental defects in >10% of eclosing adults, and that increased copy number of the gene encoding the major inducible heat shock protein of D. melanogaster, Hsp70, is sufficient to reduce the incidence of such abnormalities. Specifically, non-adult D. melanogaster inhabiting necrotic fruit experienced severe, often lethal heat stress in natural settings. Adult flies eclosing from wild larvae that had survived natural heat stress exhibited severe developmental anomalies of wing and abdominal morphology, which should dramatically affect fitness. The frequency of developmental abnormalities varied along two independent natural thermal gradients, exceeding 10% in adults eclosing from larvae developing in warm, sunlit fruit. When exposed to natural heat stress, D. melanogaster larvae with the wild-type number of hsp70 genes (n=10) developed abnormal wings significantly more frequently than a transgenic sister strain with 22 copies of the hsp70 gene. Received: 19 April 1999 / Accepted: 16 July 1999  相似文献   

3.
Acclimation to environmental change can impose costs to organisms. One potential cost is the change in cell metabolism that follows a physiological response, e.g., high expression of heat shock proteins may alter specific activity of important enzymes. We examined the significance of this cost in a pair of Drosophila melanogaster lines transformed with additional copies of a gene that encodes the heat shock protein, Hsp70. Heat shock induces Hsp70 expression in all lines, but lines with extra copies produce much more Hsp70 than do excision control strains. The consequence of this supranormal Hsp70 expression is to reduce specific activity of both enzymes analyzed, adult alcohol dehydrogenase (ADH), which is heat sensitive, and lactate dehydrogenase, which is not. Strain differences were most pronounced under those conditions where Hsp70 expression was maximized, and not where the heat stress denatured proteins. That result supported the idea that Hsp70 expression is constrained evolutionarily by its tendency to bind nascent peptides when overabundant within the cell.  相似文献   

4.
5.
1. Inducible heat-shock proteins are synthesized when temperatures are increased to levels substantially above normal. The functional role of these proteins is well known at the cellular level. Today increasing interest has been directed towards the importance of heat-shock proteins for resistance of whole organisms to high-temperature stress and other environmental stressors.
2. Here the functional relationship between the heat-shock protein, Hsp70, and thermal resistance in adult Drosophila melanogaster was examined by comparing thermal resistance, i.e. survival at 39 °C for 85 min, and levels of Hsp70 at various times elapsed (2, 4, 8, 16, 32 and 64 h) after thermotolerance was induced by short-term acclimation/heat hardening at 37 °C for 55 min.
3. Levels of Hsp70 in both males and females were highest 2 h after heat hardening and declined with longer times elapsed. The rate of decrease initially was very fast but diminished with increasing time. After 32 h the level of Hsp70 approached the level in flies that were not hardened. Levels of Hsp70 in males exceeded that of females during the entire period.
4. Survival of both sexes increased with increasing time after heat hardening and reached an optimum between 8 and 32 h. Thereafter resistance decreased with longer times elapsed. Survival of females generally exceeded that of males except after 16 and 64 h.
5. Regression analysis applied to the data on Hsp70 levels revealed that the model describing these data could not explain the data for survival. Also, higher levels of Hsp70 in males compared with females were not associated with greater survival in males. However, statistical analysis on paired measurements of Hsp70 and survival revealed a positive association between Hsp70 level and survival at each time elapsed after induction of thermotolerance.  相似文献   

6.
The "selfish DNA" theory postulates that transposable elements (TEs) are intragenomic parasites, and that natural selection against deleterious effects associated with their presence is the main force preventing their genomic spread in natural populations. In agreement with this model, TEs in Drosophila melanogaster populations are usually found at low frequencies in most genomic locations. Only a few cases of fixation of TE insertions have been reported, usually in regions of low recombination, where selection is expected to be less effective. Here, we report a population genetics study on the apparent fixation of an S-element in a highly recombining region in two natural populations of D. melanogaster. Three similar fragments of an S-element are inserted into the 5' regions of three members of a heat shock gene family, Hsp70 (Hsp70Aa and Hsp70Ab in polytene chromosome band 87A, and Hsp70Bb in 87C). A PCR-based analysis suggests that the insertions are fixed or at high frequencies in the entire species. A population survey of the levels of nucleotide sequence variation at the insertion site in 87C in two natural populations of D. melanogaster provided evidence for reduced levels of variation in the region, normal levels of recombination, and selection, reflected in a significant departure from neutrality of the variant frequency spectrum. This was particularly strong for the S-element inverted repeats (IRs) and suggests that these are of functional significance for the host.  相似文献   

7.
Heat-shock genes have numerous features that ought to predispose them to insertional mutagenesis via transposition. To elucidate the evolvability of heat-shock genes via transposition, we have exploited a local transposition technique and Drosophila melanogaster strains with EPgy2 insertions near the Hsp70 gene cluster at 87A7 to produce numerous novel EPgy2 insertions into these Hsp70 genes. More than 50% of 45 independent insertions were made into two adjacent nucleotides in the proximal promoter at positions -96 and -97, and no insertions were into a coding or 3'-flanking sequence. All inserted transposons were in inverse orientation to the starting transposon. The frequent insertion into nucleotides -96 and -97 is consistent with the DNase hypersensitivity, absence of nucleosomes, flanking GAGA-factor-binding sites, and nucleotide sequence of this region. These experimental insertions recapitulated many of the phenotypes of natural transposition into Hsp70: reduced mRNA expression, less Hsp70 protein, and decreased inducible thermotolerance. The results suggest that the distinctive features of heat-shock promoters, which underlie the massive and rapid expression of heat-shock genes upon heat shock, also are a source of evolutionary variation on which natural selection can act.  相似文献   

8.
To test whether expression of the inducible heat-shock protein Hsp70 increases under selection for inducible thermotolerance in Drosophila melanogaster, we performed artificial selection on replicate sets of Drosophila lines founded from two independent populations. Selection entailed pretreatment at 36 degrees C to induce thermotolerance and Hsp70 expression, followed by a more severe heat shock, whose temperature varied between sexes and among generations to achieve 50% mortality. Inducible thermotolerance increased slowly and continuously in selected lines and was 37%-50% greater than in controls after 10-11 generations. Lines founded from the two populations differed in their coevolution of Hsp70 expression. In lines founded from Evolution Canyon, Israel, Hsp70 level initially increased and thereafter was unchanged; replicate lines exhibited two temporal patterns of response to selection. In lines founded from Australia, Hsp70 levels increased throughout selection. In both cases, however, the increase in Hsp70 level averaged only 15%, suggesting that pleiotropy in Hsp70 function constrains evolutionary increase in its expression.  相似文献   

9.
10.
11.
12.
Hsp70 genes may influence the expression of wing abnormalities in Drosophila melanogaster but their effects on variability in quantitative characters and developmental instability are unclear. In this study, we focused on one of the six Hsp70 genes, Hsp70Ba, and investigated its effects on within- and among-individual variability in orbital bristle number, sternopleural bristle number, wing size and wing shape under different environmental conditions. To do this, we studied a newly constructed deletion, Df(3R)ED5579, which encompasses Hsp70Ba and nine non-Hsp genes, in the heterozygous condition and another, Hsp70Ba(304), which deletes only Hsp70Ba, in the homozygous condition. We found no significant effect of both deletions on within-individual variation quantified by fluctuating asymmetry (FA) of morphological traits. On the other hand, the Hsp70Ba(304)/Hsp70Ba(304) genotype significantly increased among-individual variation quantified by coefficient of variation (CV) of bristle number and wing size in female, while the Df(3R)ED5579 heterozygote showed no significant effect. The expression level of Hsp70Ba in the deletion heterozygote was 6 to 20 times higher than in control homozygotes, suggesting that the overexpression of Hsp70Ba did not influence developmental stability or canalization significantly. These findings suggest that the absence of expression of Hsp70Ba increases CV of some morphological traits and that HSP70Ba may buffer against environmental perturbations on some quantitative traits.  相似文献   

13.
Isofemale strains of Drosophila melanogaster were established from single inseminated females collected from populations along the east coast of Australia. Strains were tested for resistance to the organophosphorus insecticide diazinon at larval and/or adult stages of the life cycle. Considerable phenotypic variation was observed within and between population samples but there was no association between collection site of a sample and resistance status. Adult and larval resistance levels were uncorrelated. Resistance levels in adults were low (2-fold) and polygenically based. Larval resistance levels, due to single genes (or gene complexes) on chromosomes II and III, were significant (15-fold). Evidence indicates that the gene on chromosome II is Cyp6g1.  相似文献   

14.
15.
We compared transgenic Drosophila larvae varying in hsp70 copy number the consequences of Hsp70 overexpression for growth and development after heat shock. Exposure to a mildy elevated temperature (36°C) induced expression of Hsp70 (and presumably other heat shock proteins) and improved tolerance of more severe heat stress, 38.5–39.5°C. We examined this pattern in two independently derived pairs of extra-copy and excision strains that different primarily in hsp70 copy number (with 22 and 10 copies, respectively). Extra-copy larvae produced more Hsp70 in response to high temperature than did excision larvae, but surpassed the excision strain in survival only immediately after thermal stress. Excision larvae survived to adulthood at higher proportions than did extra-copy larvae and grew more rapidly after thermal stress. Furthermore, multiple pretreatment reduced survival of 1st-instar extra-copy larvae, but did not affect the corresponding excision strain. While extra Hsp70 provides additional protection against the immediate damage from heat stress, abnormally high concentrations can decrease growth, development and survival to adulthood.  相似文献   

16.
Here we studied the response to heat shock in a desert D. melanogasterstrain TT capable of living and propagating at 32°C and the standard Oregon R strain. The TT strain proved to be more resistant to extreme temperatures. On the other hand, the observed high thermotolerance of the strain was not accompanied by a higher level of HSP70 synthesis. Conversely, reliably smaller amounts of HSP70 were synthesized in the TT strain as compared to Oregon R under all shock temperatures except the critical one (39.5°C). Differences in both the structure of HSP70genes and the pattern of all heat shock proteins have been observed between the studied strains. The role of the heat shock system in the adaptation to hyperthermia is discussed.  相似文献   

17.
Spiroplasma endosymbionts are maternally inherited microorganisms which infect many arthropod species. In some Drosophila species, it acts as a reproductive manipulator, spreading in populations by killing the sons of infected mothers. Distinct Drosophila melanogaster populations from Brazil exhibit variable male-killing Spiroplasma prevalences. In this study, we investigated the presence of variability for the male-killing phenotype among Drosophila and/or Spiroplasma strains and verified if it correlates with the endosymbiont prevalence in natural populations. For that, we analyzed the male-killing expression when Spiroplasma strains from different populations were transferred to a standard D. melanogaster line (Canton-S) and when a common Spiroplasma strain was transferred to different wild-caught D. melanogaster lines, both at optimal and challenging temperatures for the bacteria. No variation was observed in the male-killing phenotype induced by different Spiroplasma strains. No phenotypic variability among fly lines was detected at optimal temperature (23 °C), as well. Conversely, significant variation in the male-killing expression was revealed among D. melanogaster lines at 18.5 °C, probably caused by imperfect transmission of the endosymbiont. Distinct lines differed in their average sex ratios as well as in the pattern of male-killing expression as the infected females aged. Greater variation occurred among lines from one locality, although there was no clear correlation between the male-killing intensity and the endosymbiont prevalence in each population. Imperfect transmission or male killing may also occur in the field, thus helping to explain the low or intermediate prevalences reported in nature. We discuss the implications of our results for the dynamics of male-killing Spiroplasma in natural populations.  相似文献   

18.
19.
Because spontaneous mutation is the source of all genetic diversity, measuring mutation rates can reveal how natural selection drives patterns of variation within and between species. We sequenced eight genomes produced by a mutation-accumulation experiment in Drosophila melanogaster. Our analysis reveals that point mutation and small indel rates vary significantly between the two different genetic backgrounds examined. We also find evidence that ∼2% of mutational events affect multiple closely spaced nucleotides. Unlike previous similar experiments, we were able to estimate genome-wide rates of large deletions and tandem duplications. These results suggest that, at least in inbred lines like those examined here, mutational pressures may result in net growth rather than contraction of the Drosophila genome. By comparing our mutation rate estimates to polymorphism data, we are able to estimate the fraction of new mutations that are eliminated by purifying selection. These results suggest that ∼99% of duplications and deletions are deleterious—making them 10 times more likely to be removed by selection than nonsynonymous mutations. Our results illuminate not only the rates of new small- and large-scale mutations, but also the selective forces that they encounter once they arise.  相似文献   

20.
Magnard JL  Vergne P  Dumas C 《Plant physiology》1996,111(4):1085-1096
The expression of heat-shock proteins (HSPs) in isolated maize (Zea mays L.) microspores has been investigated using high-resolution two-dimensional electrophoresis coupled to immunodetection and fluorography of in vivo synthesized proteins. To this end, homogeneous and viable populations of microspores have been purified in sufficient amounts for molecular analysis from plants grown in controlled conditions. Appropriate conditions for thermal stress application have been defined. The analysis revealed that isolated microspores from maize display a classical heat-shock response characterized by the repression of the normal protein synthesis and the expression of a set of HSPs. A high complexity of the response was demonstrated, with numerous different HSPs being resolved in each known major HSP molecular weight class. However, the extent of this heat-shock response is limited in that some of these HSPs do not accumulate at high levels following temperature elevation. Comparative analysis of the heat-shock responses of microspores isolated from five genotypes demonstrated high levels of genetic variability. Furthermore, many HSPs were detected in microspores at control temperature, indicating a possible involvement of these proteins in pollen development at stages close to first pollen mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号