首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytoplasmic pH (pHi) was evaluated duringNa+-glucose cotransport in Caco-2 intestinal epithelialcell monolayers. The pHi increased by 0.069 ± 0.002 within 150 s after initiation of Na+-glucosecotransport. This increase occurred in parallel with glucose uptake andrequired expression of the intestinal Na+-glucosecotransporter SGLT1. S-3226, a preferential inhibitor ofNa+/H+ exchanger (NHE) isoform 3 (NHE3),prevented cytoplasmic alkalinization after initiation ofNa+-glucose cotransport with an ED50 of 0.35 µM, consistent with inhibition of NHE3, but not NHE1 or NHE2. Incontrast, HOE-694, a poor NHE3 inhibitor, failed to significantlyinhibit pHi increases at <500 µM.Na+-glucose cotransport was also associated with activationof p38 mitogen-activated protein (MAP) kinase, and the p38 MAP kinase inhibitors PD-169316 and SB-202190 prevented pHi increasesby 100 ± 0.1 and 86 ± 0.1%, respectively. Conversely,activation of p38 MAP kinase with anisomycin induced NHE3-dependentcytoplasmic alkalinization in the absence of Na+-glucosecotransport. These data show that NHE3-dependent cytoplasmic alkalinization occurs after initiation of SGLT1-mediatedNa+-glucose cotransport and that the mechanism of this NHE3activation requires p38 MAP kinase activity. This coordinatedregulation of glucose (SGLT1) and Na+ (NHE3) absorptiveprocesses may represent a functional activation of absorptiveenterocytes by luminal nutrients.

  相似文献   

2.
We analyzed the signaling pathways initiated by endothelin receptors ETA and ETB in intestinal circular and longitudinal smooth muscle cells. The response to endothelin-1 (ET-1) consisted of two phases in both cell types. The initial, transient phase of contraction and phosphorylation of 20-kDa myosin light chain (MLC20) was mediated additively by ETA and ETB receptors and initiated by Gq-, Ca2+/calmodulin-dependent activation of MLC kinase. In contrast, the sustained phase was mediated selectively by ETA receptors via a pathway involving sequential activation of G13, RhoA, and Rho kinase, resulting in phosphorylation of MYPT1 at Thr696 and phosphorylation of MLC20. Although PKC was activated, CPI-17 was not phosphorylated and hence did not contribute to inhibition of MLC phosphatase. The absence of CPI-17 phosphorylation by PKC reflected active dephosphorylation of CPI-17 by protein phosphatase 2A (PP2A). PP2A was activated via a pathway involving ETB-dependent stimulation of p38 MAPK activity. CPI-17 phosphorylation was unmasked in the presence of the ETB antagonist BQ-788, but not the ETA antagonist BQ-123, and in the presence of a low concentration of okadaic acid, which selectively inactivates PP2A. The resultant phosphorylation of CPI-17 was blocked by bisindolylmaleimide, providing direct confirmation that it was PKC dependent. We conclude that the two phases of the intestinal smooth muscle response to ET-1 involve distinct receptors, G proteins, and signaling pathways. The sustained response is mediated via selective ETA-dependent phosphorylation of MYPT1. In contrast, ETB initiates an inhibitory pathway involving p38 MAPK-dependent activation of PP2A that causes dephosphorylation of CPI-17. endothelin receptor type A; endothelin receptor type B; myosin phosphatase targeting subunit  相似文献   

3.
Elevated plasma levels of cytokines such as endothelin-1 (ET-1) have been shown to be associated with sickle cell disease (SCD). However, the role of ET-1 in the pathophysiology of SCD is not entirely clear. I now show that treatment of SAD mice, a transgenic mouse model of SCD, with BQ-788 (0.33 mg·kg–1·day–1 intraperitoneally for 14 days), an ET-1 receptor B (ETB) antagonist, induced a significant decrease in Gardos channel activity (1.7 ± 0.1 to 1.0 ± 0.4 mmol·1013 cell–1·h–1, n = 3, P = 0.019) and reduced the erythrocyte density profile by decreasing the mean density (D50; n = 4, P = 0.012). These effects were not observed in mice treated with BQ-123, an ET-1 receptor A (ETA) antagonist. A mixture of both antagonists induced a similar change in density profile as with BQ-788 alone that was associated with an increase in mean cellular volume and a decrease in corpuscular hemoglobin concentration mean. I also observed in vitro effects of ET-1 on human sickle erythrocyte dehydration that was blocked by BQ-788 and a mixture of ETB/ETA antagonists but not by ETA antagonist alone. These results show that erythrocyte hydration status in vivo is mediated via activation of the ETB receptor, leading to Gardos channel modulation in SCD. cellular dehydration; Gardos channel; transgenic sickle mice  相似文献   

4.
We comparedthe Ca2+ channels activated by endothelin-1 (ET-1) inChinese hamster ovary (CHO) cells stably expressing endothelin type A(ETA) or endothelin type B (ETB) receptorsusing the Ca2+ channel blockers LOE-908 and SK&F-96365. Inboth CHO-ETA and CHO-ETB, ET-1 at 0.1 nMactivated the Ca2+-permeable nonselective cation channel-1(NSCC-1), which was sensitive to LOE-908 and resistant to SK&F-96365.ET-1 at 1 nM activated NSCC-2 in addition to NSCC-1; NSCC-2 wassensitive to both LOE-908 and SK&F-96365. ET-1 at 10 nM activated thesame channels as 1 nM ET-1 in both cell types, but inCHO-ETA, it additionally activated the store-operatedCa2+ channel (SOCC), which was resistant to LOE-908 andsensitive to SK&F-96365. Up to 1 nM ET-1, the level of the formation of inositol phosphates (IPs) was low and similar in both cell types, but,at 10 nM ET-1, it was far greater in CHO-ETA than inCHO-ETB. These results show that, in CHO-ETAand CHO-ETB, ET-1 up to 10 nM activated the sameCa2+ entry channels: 0.1 nM ET-1 activated NSCC-1, andET-1  1 nM activated NSCC-1 and NSCC-2. Notably, inCHO-ETA, 10 nM ET-1 activated SOCCs because of the higherformation of IPs.

  相似文献   

5.
Initiation of intestinal Na+-glucose cotransport results intransient cell swelling and sustained increases in tight junction permeability. Since Na+/H+ exchange has beenimplicated in volume regulation after physiological cell swelling, wehypothesized that Na+/H+ exchange might also berequired for Na+-glucose cotransport-dependent tightjunction regulation. In Caco-2 monolayers with activeNa+-glucose cotransport, inhibition ofNa+/H+ exchange with 200 µM5-(N,N-dimethyl)- amiloride induced 36 ± 2% increases in transepithelial resistance (TER). Evaluation using multiple Na+/H+ exchange inhibitors showed thatinhibition of the Na+/H+ exchanger 3 (NHE3)isoform was most closely related to TER increases. TER increases due toNHE3 inhibition were related to cytoplasmic acidification becausecytoplasmic alkalinization with 5 mM NH4Cl prevented bothcytoplasmic acidification and TER increases. However, NHE3 inhibitiondid not affect TER when Na+-glucose cotransport wasinhibited. Myosin II regulatory light chain (MLC) phosphorylationdecreased up to 43 ± 5% after inhibition ofNa+/H+ exchange, similar to previous studiesthat associate decreased MLC phosphorylation with increased TER afterinhibition of Na+-glucose cotransport. However, NHE3inhibitors did not diminish Na+-glucose cotransport. Thesedata demonstrate that inhibition of NHE3 results in decreased MLCphosphorylation and increased TER and suggest that NHE3 may participatein the signaling pathway of Na+-glucosecotransport-dependent tight junction regulation.

  相似文献   

6.
Astrocytes represent a major target for endothelins (ETs), afamily of peptides that have potent and multiple effects on signal transduction pathways and can be released by several cell types in thebrain. In the present study we have investigated the involvement ofdifferent ET receptor subtypes on intercellular dye diffusion, intracellular Ca2+homeostasis, and intercellularCa2+ signaling in cultured ratastrocytes from hippocampus and striatum. Depending on the ETconcentration and the receptor involved, ET-1- and ET-3-inducedintracellular Ca2+ increases withdifferent response patterns. Both ET-1 and ET-3 are powerful inhibitorsof gap junctional permeability and intercellular Ca2+ signaling. The nonselectiveET receptor agonist sarafotoxin S6b and theETB receptor-selective agonist IRL1620 mimicked these inhibitions. The ET-3 effects were only marginallyaffected by an ETA receptorantagonist but completely blocked by anETB receptor antagonist. However,the ET-1-induced inhibition of gap junctional dye transfer andintercellular Ca2+ signaling wasonly marginally blocked by ETA orETB receptor-selective antagonistsbut fully prevented when these antagonists were applied together. TheET-induced inhibition of gap junction permeability and intercellularCa2+ signaling indicates thatimportant changes in the function of astroglial communication mightoccur when the level of ETs in the brain is increased.

  相似文献   

7.
We have previously shown that the ratNa+-K+-ATPase1-isoform is phosphorylated atSer-943 by protein kinase A (PKA) and at Ser-23 by protein kinase C(PKC), which in both cases results in inhibition of enzyme activity. Wenow present evidence that suggests that the phosphorylation of Ser-943by PKA modulates the response ofNa+-K+-ATPaseto PKC. RatNa+-K+-ATPase1 or a mutant in which Ser-943was changed to Ala-943 was stably expressed in COS cells. Theinhibition of enzyme activity measured in response to treatment withthe phorbol ester, phorbol 12,13-dibutyrate (PDBu;106 M), was significantlyreduced in the cells expressing the Ala-943 mutant compared with thatobserved in cells expressing wild-type enzyme. In contrast, for cellsexpressingNa+-K+-ATPase1 in which Ser-943 was mutatedto Asp-943, the effect of PDBu was slightly enhanced. The PDBu-inducedinhibition was not mediated by activation of the adenosine3',5'-cyclic monophosphate/PKA system and was not achievedvia direct phosphorylation of Ser-943. Sp-5,6-DCl-cBIMPS, a specificPKA activator, increased the phosphorylation of Ser-943, and this wasassociated with an enhanced response to PDBu. Thus the effect of PKC onratNa+-K+-ATPase1 is determined not only by theactivity of PKC but also by the state of phosphorylation of Ser-943.

  相似文献   

8.
Oxidative stress during pathological conditionssuch as ischemia-reperfusion is known to promote the formationof hypochlorous acid (HOCl) in the heart and to result in depression ofcardiac sarcolemmal (SL)Na+-K+-ATPaseactivity. In this study, we examined the direct effects of HOCl on SLNa+-K+-ATPasefrom porcine heart. HOCl decreased SLNa+-K+-ATPaseactivity in a concentration- and time-dependent manner. Characterization ofNa+-K+-ATPaseactivity in the presence of different concentrations of MgATP revealeda decrease in the maximal velocity(Vmax) value, without a change in affinity for MgATP on treatment of SL membranes with 0.1 mM HOCl. TheVmax value ofNa+-K+-ATPase,when determined in the presence of different concentrations ofNa+, was also decreased, butaffinity for Na+ was increasedwhen treated with HOCl. Formation of acylphosphate by SLNa+-K+-ATPasewas not affected by HOCl. Scatchard plot analysis of[3H]ouabain bindingdata indicated no significant change in the affinity or maximum bindingcapacity value for ouabain binding following treatment of SL membraneswith HOCl. Western blot analysis ofNa+-K+-ATPasesubunits in HOCl-treated SL membranes showed a decrease (34 ± 9%of control) in the 1-subunitwithout any change in the 1- or2-subunits. These data suggestthat the HOCl-induced decrease in SLNa+-K+-ATPaseactivity may be due to a depression in the1-subunit of the enzyme.

  相似文献   

9.
We recently reported that Na+/H+ exchanger isoform 1 (NHE1) activity in astrocytes is stimulated and leads to intracellular Na+ loading after oxygen and glucose deprivation (OGD). However, the underlying mechanisms for this stimulation of NHE1 activity and its impact on astrocyte function are unknown. In the present study, we investigated the role of the ERK1/2 pathway in NHE1 activation. NHE1 activity was elevated by 75% in NHE1+/+ astrocytes after 2-h OGD and 1-h reoxygenation (REOX). The OGD/REOX-mediated stimulation of NHE1 was partially blocked by 30 µM PD-98059. Increased expression of phosphorylated ERK1/2 was detected in NHE1+/+ astrocytes after OGD/REOX. Moreover, stimulation of NHE1 activity disrupted not only Na+ but also Ca2+ homeostasis via reverse-mode operation of Na+/Ca2+ exchange. OGD/REOX led to a 103% increase in intracellular Ca2+ concentration ([Ca2+]i) in NHE1+/+ astrocytes in the presence of thapsigargin. Inhibition of NHE1 activity with the NHE1 inhibitor HOE-642 decreased OGD/REOX-induced elevation of [Ca2+]i by 73%. To further investigate changes of Ca2+ signaling, bradykinin-mediated Ca2+ release was evaluated. Bradykinin-mediated intracellular Ca2+ transient in NHE1+/+ astrocytes was increased by 84% after OGD/REOX. However, in NHE1–/– astrocytes or NHE1+/+ astrocytes treated with HOE-642, the bradykinin-induced Ca2+ release was increased by only 34%. Inhibition of the reverse mode of Na+/Ca2+ exchange abolished OGD/REOX-mediated Ca2+ rise. Together, our data suggest that ERK1/2 is involved in activation of NHE1 in astrocytes after in vitro ischemia. NHE1-mediated Na+ accumulation subsequently alters Ca2+ homeostasis via Na+/Ca2+ exchange. intracellular pH; cortical astrocytes; sodium/calcium exchange; intracellular sodium ion  相似文献   

10.
Endothelin-1 decreases glutamate uptake in primary cultured rat astrocytes   总被引:1,自引:0,他引:1  
Endothelin-1 (ET-1) is a potent vasoconstrictorpeptide that is also known to induce a wide spectrum of biologicalresponses in nonvascular tissue. In this study, we found that ET-1 (100 nM) inhibited the glutamate uptake in cultured astrocytes expressing the glutamate/aspartate transporter (GLAST); astrocytes did not expressthe glutamate transporter-1 (GLT-1). The Vmaxand the Km of the glutamate uptake were reducedby 57% and 47%, respectively. Application of the ETA andETB receptor antagonists BQ-123 and BQ-788 partly inhibitedthe ET-1-evoked decrease in the glutamate uptake, whereas thenonspecific ET receptor antagonist bosentan completely inhibited thisdecrease. Incubation of the cultures with pertussis toxin abolished theeffect of ET-1 on the uptake. The ET-1-induced decrease in theglutamate uptake was independent of extracellular free Ca2+concentration, whereas the intracellular Ca2+ antagoniststhapsigargin and 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester abolished the effect of ET-1 on the glutamate uptake. Incubation with the protein kinase C (PKC) antagonist staurosporine, but not withthe fatty acid-binding protein bovine serum albumin, prevented theET-1-induced decrease in the glutamate uptake. These results suggestthat ET-1 impairs the high-affinity glutamate uptake in culturedastrocytes through a G protein-coupled mechanism, involving PKC andchanges in intracellular Ca2+.

  相似文献   

11.
Dupuis, Jocelyn, Carl A. Goresky, and Alain Fournier.Pulmonary clearance of circulating endothelin-1 in dogs in vivo: exclusive role of ETB receptors.J. Appl. Physiol. 81(4):1510-1515, 1996.The pulmonary circulation plays an importantrole in the removal of circulating endothelin-1 (ET-1). Plasma ET-1levels are increased in pulmonary hypertensive states of variousetiologies (e.g., idiopathic, heart failure, and congenital anomalies)in proportion to the severity of pulmonary hypertension. It is possible that reduced pulmonary clearance of this peptide contributes to thehyperendothelinemia of those pathologies. TheETA andETB receptors are abundant in lungtissues: on the vascular endothelium, theETB receptor is predominant andmay contribute to ET-1 extraction through receptor-mediatedendocytosis. We designed experiments to determine and quantify theimportance of the ETA andETB receptors in the pulmonaryextraction of circulating ET-1 in anesthetized dogs. The single-passcumulative tracer ET-1 extraction by the lung was measured with theindicator-dilution technique before and 5 min after intrapulmonaryinjection of the specific ETAantagonist BQ-123 (n = 5, 120-960nmol) and the specific ETBantagonist BQ-788 (n = 6, 1,000 nmol).The inhibitors had no significant effect on pulmonary and systemichemodynamics. Mean cumulative pulmonary ET-1 extraction was notmodified by BQ-123 [control (C): 36 ± 4%, antagonist (A): 34 ± 6%] but was completely abolished by BQ-788 (C: 34 ± 6%, A: 0 ± 2%, P < 0.001). Thepulmonary rate constant (K) for ET-1removal was also unaffected by BQ-123 (C: 0.050 ± 0.0085 s1, A: 0.047 ± 0.012 s1) but significantlydecreased and became close to zero after BQ-788 (C: 0.058 ± 0.014 s1, A: 0.009 ± 0.007 s1,P < 0.001). We conclude that theETB receptor is completely andexclusively responsible for pulmonary ET-1 removal in vivo. Futurestudies are needed to show whether desensitization or downregulation ofthe ETB receptor may contribute tothe increase in circulating ET-1 levels in conditions associated withpulmonary hypertension. This novel pulmonary endothelial cell functionmay play a protective role by modulating circulating ET-1 levels in thesystemic circulation.

  相似文献   

12.
To examine theeffect of hyperosmolality on Na+/H+ exchanger(NHE) activity in mesangial cells (MCs), we used apH-sensitive dye,2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-AM, to measure intracellular pH (pHi) in a single MC from ratglomeruli. All the experiments were performed inCO2/HCO3-free HEPESsolutions. Exposure of MCs to hyperosmotic HEPES solutions (500 mosmol/kgH2O) treated with mannitol caused cellalkalinization. The hyperosmolality-induced cell alkalinization wasinhibited by 100 µM ethylisopropylamiloride, a specific NHEinhibitor, and was dependent on extracellular Na+. Thehyperosmolality shifted the Na+-dependent acid extrusionrate vs. pHi by 0.15-0.3 pH units in thealkaline direction. Removal of extracellular Cl byreplacement with gluconate completely abolished the rate of cellalkalinization induced by hyperosmolality and inhibited the Na+-dependent acid extrusion rate, whereas, under isosmoticconditions, it caused no effect on Na+-dependentpHi recovery rate or Na+-dependent acidextrusion rate. The Cl-dependent cell alkalinizationrate under hyperosmotic conditions was partially inhibited bypretreatment with 5-nitro-2-(3-phenylpropylamino)benzoic acid, DIDS,and colchicine. We conclude: 1) in MCs, hyperosmolality activates NHE to cause cell alkalinization, 2) the acidextrusion rate via NHE is greater under hyperosmotic conditions thanunder isosmotic conditions at a wide range of pHi,3) the NHE activation under hyperosmotic conditions, but notunder isosmotic conditions, requires extracellularCl, and 4) theCl-dependent NHE activation under hyperosmoticconditions partly occurs via Cl channel andmicrotubule-dependent processes.

  相似文献   

13.
Nagase, Takahide, Tomoko Aoki, Teruaki Oka, YoshinosukeFukuchi, and Yasuyoshi Ouchi. ET-1-induced bronchoconstriction ismediated via ETB receptor in mice.J. Appl. Physiol. 83(1): 46-51, 1997.Endothelin (ET)-1 is one of the most potent agonists of airwaysmooth muscle and can act via two different ET receptor subtypes, i.e.,ETA andETB. To determine the effects ofET-1 on in vivo pulmonary function and which ET receptors are involved in murine lungs, we investigated 1)the effects of ET and sarafotoxin S6c (S6c), a selectiveETB agonist, on pulmonary functionand 2) the effects of BQ-123 andBQ-788, specific ETA- andETB-receptor antagonists, onET-1-induced bronchoconstriction. ICR mice were anesthetized and mechanically ventilated (frequency = 2.5 Hz, tidalvolume = 8 ml/kg, positive end-expiratory pressure = 3 cmH2O). Intravenous ET-1, ET-2,and ET-3 increased lung resistance similarly and equipotently, whereasS6c elicited a greater degree of bronchoconstriction. Mice were thenpretreated with saline (Sal), BQ-123 (0.2, 1, and 5 mg/kg), or BQ-788(0.2, 1, and 5 mg/kg) before administration of ET-1(107 mol/kg iv). No dose ofBQ-123 blocked ET-1-induced constriction, whereas pretreatment witheach dose of BQ-788 significantly inhibited ET-1-induced responses.There were significant differences in morphometrically assessed airwayconstriction between Sal and BQ-788 and between BQ-123 and BQ-788,whereas no significant difference was observed between Sal and BQ-123.There were no significant morphometric differences in the airway wallarea among the three groups. These observations suggest that theETB- but notETA-receptor subtype may mediatethe changes in murine pulmonary function in response to ET-1. Inaddition, the ETB-receptorantagonist reduces ET-1-induced airway narrowing by affecting airwaysmooth muscle contraction in mice.

  相似文献   

14.
The relevance of nongenomic pathways to regulation of epithelial function by aldosterone is poorly understood. Recently, we demonstrated that aldosterone inhibits transepithelial HCO3 absorption in the renal medullary thick ascending limb (MTAL) through a nongenomic pathway. Here, we examined the transport mechanism(s) responsible for this regulation, focusing on Na+/H+ exchangers (NHE). In the MTAL, apical NHE3 mediates H+ secretion necessary for HCO3 absorption; basolateral NHE1 influences HCO3 absorption by regulating apical NHE3 activity. In microperfused rat MTALs, the addition of 1 nM aldosterone rapidly decreased HCO3 absorption by 30%. This inhibition was unaffected by three maneuvers that inhibit basolateral Na+/H+ exchange and was preserved in MTALs from NHE1 knockout mice, ruling out the involvement of NHE1. In contrast, exposure to aldosterone for 15 min caused a 30% decrease in apical Na+/H+ exchange activity over the intracellular pH range from 6.5 to 7.7, due to a decrease in Vmax. Inhibition of HCO3 absorption by aldosterone was not affected by 0.1 mM lumen Zn2+ or 1 mM lumen DIDS, arguing against the involvement of an apical H+ conductance or apical K+-HCO3 cotransport. These results demonstrate that aldosterone inhibits HCO3 absorption in the MTAL through inhibition of apical NHE3, and identify NHE3 as a target for nongenomic regulation by aldosterone. Aldosterone may influence a broad range of epithelial transport functions important for extracellular fluid volume and acid-base homeostasis through direct regulation of this exchanger. thick ascending limb; acid-base transport; epithelial Na+ transport; kidney  相似文献   

15.
Endothelin type A receptor (ETAR) plays an important role in some cardiovascular disorders where ETAR levels are increased. However, regulatory mechanisms for ETAR levels are unknown. Here, we identified Jun activation domain-binding protein 1 (Jab1) as an ETAR-interacting protein by yeast two-hybrid screening of human heart cDNA library using carboxyl terminal tail (C-tail) of ETAR as a bait. The interaction was confirmed by glutathione S-transferase pull-down assay, co-immunoprecipitation in HEK293T cells expressing ETAR-myc and FLAG-Jab1, and confocal microscopy. Jab1 knockdown increased whole cell and cell surface levels of ETAR and ET-1-induced ERK1/2 phosphorylation in HEK293T cells expressing ETAR, whereas Jab1 overexpression decreased them. Jab1 overexpression accelerated disappearance rate of ETAR after protein synthesis inhibition as an index of a degradation rate. ETAR was constitutively ubiquitinated, and the level of ubiquitination was enhanced by Jab1 overexpression. Long-term ET-1 stimulation markedly accelerated the rate of ETAR degradation and increased the amount of Jab1 bound to ETAR with a maximal level of 500% at 3 h. In the absence of ET-1 stimulation, the level of ETBR was lower than that of ETAR and the degradation rate of ETBR was markedly faster than that of ETAR. Notably, the amount of Jab1 bound to ETBR and ubiquitination level of ETBR were markedly higher than those for ETAR. Taken together, these results suggest that the amount of Jab1 bound to ETR regulates the degradation rate of ETAR and ETBR by modulating ubiquitination of these receptors, leading to changes in ETAR and ETBR levels.  相似文献   

16.
Rho activation in excitatory agonist-stimulated vascular smooth muscle   总被引:7,自引:0,他引:7  
Small GTPase Rho and its downstream effector, Rho kinase, havebeen implicated in agonist-stimulated Ca2+ sensitization of20-kDa myosin light chain (MLC20) phosphorylation andcontraction in smooth muscle. In the present study we demonstrated forthe first time that excitatory receptor agonists induce increases inamounts of an active GTP-bound form of RhoA, GTP-RhoA, in rabbit aorticsmooth muscle. Using a pull-down assay with a recombinant RhoA-bindingprotein, Rhotekin, we found that a thromboxane A2 mimetic,U-46619, which induced a sustained contractile response, induced asustained rise in the amount of GTP-RhoA in a dose-dependent mannerwith an EC50 value similar to that for the contractile response. U-46619-induced RhoA activation was thromboxaneA2 receptor-mediated and reversible. Other agonistsincluding norepinephrine, serotonin, histamine, and endothelin-1 (ET-1)also stimulated RhoA, albeit to lesser extents than U-46619. Incontrast, ANG II and phorbol 12,13-dibutyrate failed to increaseGTP-RhoA. The tyrosine kinase inhibitor genistein substantiallyinhibited RhoA activation by these agonists, except for ET-1. Thusexcitatory agonists induce Rho activation in an agonist-specificmanner, which is thought to contribute to stimulation ofMLC20 phosphorylation Ca2+ sensitivity.

  相似文献   

17.
In isolated sweat glands, bumetanide inhibits sweat secretion. The mRNA encoding bumetanide-sensitive Na+-K+-Cl cotransporter (NKCC) isoform 1 (NKCC1) has been detected in sweat glands; however, the cellular and subcellular protein localization is unknown. Na+/H+ exchanger (NHE) isoform 1 (NHE1) protein has been localized to both the duct and secretory coil of human sweat duct; however, the NHE1 abundance in the duct was not compared with that in the secretory coil. The aim of this study was to test whether mRNA encoding NKCC1, NKCC2, and Na+-coupled acid-base transporters and the corresponding proteins are expressed in rodent sweat glands and, if expressed, to determine the cellular and subcellular localization in rat, mouse, and human eccrine sweat glands. NKCC1 mRNA was demonstrated in rat palmar tissue, including sweat glands, using RT-PCR, whereas NKCC2 mRNA was absent. Also, NHE1 mRNA was demonstrated in rat palmar tissue, whereas NHE2, NHE3, NHE4, electrogenic Na+-HCO3 cotransporter 1 NBCe1, NBCe2, electroneutral Na+-HCO3 cotransporter NBCn1, and Na+-dependent Cl/HCO3 exchanger NCBE mRNA were not detected. The expression of NKCC1 and NHE1 proteins was confirmed in rat palmar skin by immunoblotting, whereas NKCC2, NHE2, and NHE3 proteins were not detected. Immunohistochemistry was performed using sections from rat, mouse, and human palmar tissue. Immunoperoxidase labeling revealed abundant expression of NKCC1 and NHE1 in the basolateral domain of secretory coils of rat, mouse, and human sweat glands and low expression was found in the coiled part of the ducts. In contrast, NKCC1 and NHE1 labeling was absent from rat, mouse, and human epidermis. Immunoelectron microscopy demonstrated abundant NKCC1 and NHE1 labeling of the basolateral plasma membrane of mouse sweat glands, with no labeling of the apical plasma membranes or intracellular structures. The basolateral NKCC1 of the secretory coils of sweat glands would most likely account for the observed bumetanide-sensitive NaCl secretion in the secretory coils, and the basolateral NHE1 is likely to be involved in Na+-coupled acid-base transport. bumetanide; eccrine glands; immunohistochemistry; immunoblotting  相似文献   

18.
NHE1, NHE2, andNHE3 are well-characterized cloned members of the mammalianNa+/H+exchanger (NHE) gene family. Given the specialized function and regulation of NHE1, NHE2, and NHE3, we compared basal turnover numbersof NHE1, NHE2, and NHE3 measured in the same cell system: PS120fibroblasts lacking endogenous NHEs. NHE1, NHE2, and NHE3 were epitopetagged with vesicular stomatitis virus glycoprotein (VSVG). Thefollowing characteristics were determined on the same passage of cellstransfected with NHE1V, NHE2V, or NHE3V:1) maximal reaction velocity(Vmax) by22Na+uptake and fluorometery, 2) totalamount of NHE protein by quantitative Western analysis with internalstandards of VSVG-tagged maltose-binding protein, and3) cell surface expression by cellsurface biotinylation. Cell surface expression (percentage of totalNHE) was 88.8 ± 3.5, 64.6 ± 3.3, 20.0 ± 2.6, and 14.0 ± 1.3 for NHE1V, 85- and 75-kDa NHE2V, and NHE3V, respectively. Despitethese divergent cell surface expression levels, turnover numbers forNHE1, NHE2, and NHE3 were similar (80.3 ± 9.6, 92.1 ± 8.6, and99.2 ± 9.1 s1, whenVmax wasdetermined using 22Na uptake at22°C and 742 ± 47, 459 ± 16, and 609 ± 39 s1 whenVmax wasdetermined using fluorometry at 37°C). These data indicate that, inthe same cell system, intrinsic properties that determine turnovernumber are conserved among NHE1, NHE2, and NHE3.

  相似文献   

19.
Although it iswell known that progesterone alters uterine contractility and plays animportant role in maintenance of pregnancy, the biochemical mechanismsby which progesterone alters uterine contractility in human gestationare less clear. In this investigation we sought to identifyprogesterone-induced adaptations in human myometrial smooth musclecells that may alter Ca2+signaling in response to contractile agents. Cells were treated withvehicle or the progesterone analog medroxyprogesterone acetate (MPA)for 5 days, and intracellular freeCa2+ concentration([Ca2+]i)was quantified after treatment with oxytocin (OX) or endothelin (ET)-1.OX- and ET-1-induced increases in[Ca2+]iwere significantly attenuated in cells pretreated with MPA in adose-dependent manner. Progesterone receptor antagonists prevented theattenuated Ca2+ transients inducedby MPA. ETA andETB receptor subtypes were expressed in myometrial cells, and treatment with MPA resulted insignificant downregulation of ETAand ETB receptor binding. MPA didnot alter ionomycin-stimulated increases in[Ca2+]iand had no effect on inositol trisphosphate-dependent or -independent release of Ca2+ from internalCa2+ stores. We conclude thatadaptations of Ca2+ homeostasis inmyometrial cells during pregnancy may include progesterone-inducedmodification of receptor-mediated increases in[Ca2+]i.  相似文献   

20.
In the present study, we hypothesized that endothelin (ET) receptors (ETA and ETB) stimulation, through increased calcium and ROS formation, leads to Nucleotide Oligomerization Domain-Like Receptor Family, Pyrin Domain Containing 3 (NLRP3) activation. Intracavernosal pressure (ICP/MAP) was measured in C57BL/6 (WT) mice. Functional and immunoblotting assays were performed in corpora cavernosa (CC) strips from WT, NLRP3−/− and caspase−/− mice in the presence of ET-1 (100 nM) and vehicle, MCC950, tiron, BAPTA AM, BQ123, or BQ788. ET-1 reduced the ICP/MAP in WT mice, and MCC950 prevented the ET-1 effect. ET-1 decreased CC ACh-, sodium nitroprusside (SNP)-induced relaxation, and increased caspase-1 expression. BQ123 an ETA receptor antagonist reversed the effect. The ETB receptor antagonist BQ788 also reversed ET-1 inhibition of ACh and SNP relaxation. Additionally, tiron, BAPTA AM, and NLRP3 genetic deletion prevented the ET-1-induced loss of ACh and SNP relaxation. Moreover, BQ123 diminished CC caspase-1 expression, while BQ788 increased caspase-1 and IL-1β levels in a concentration-dependent manner (100 nM–10 μM). Furthermore, tiron and BAPTA AM prevented ET-1-induced increase in caspase-1. In addition, BAPTA AM blocked ET-1-induced ROS generation. In conclusion, ET-1-induced erectile dysfunction depends on ETA- and ETB-mediated activation of NLRP3 in mouse CC via Ca2+-dependent ROS generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号