首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that micromolar concentrations of GDP stimulate the GTP-mediated phosphorylation of p36, the subunit of succinyl-CoA synthetase (SCS), in lysates prepared fromDictyostelium discoideum. In this study, we report that this phenomenon represents an enhanced catalytic capacity of SCS to form the phosphoenzyme intermediate. Low concentrations of GDP stimulate phosphoenzyme formation by either GTP, or succinyl-CoA and Pi. Under these conditions GDP enhances the apparent rate of phosphoenzyme formation but does not significantly alter the fraction of phosphorylated enzyme. This effect is retained during purification of the protein and is also observed with purified pig heart SCS, indicating that GDP directly alters the enzyme to enhance its rate of phosphorylation. Under these conditions, GDP does not function at the catalytic site, implying an allosteric regulation of SCS.Abbreviations used SCS succinyl-CoA synthetase - P i inorganic phosphate - NDP nucleotide diphosphate - NTP nucleotide triphosphate - PFK phosphofructokinase A-form; ADP-forming SCS; G-form; GDP-forming SCS  相似文献   

2.
A new approach for assessing of catalytic cooperativity may occur between subunits has been applied to succinyl-CoA synthetase. This is based on the extent of oxygen exchange between medium [18O]Pi and succinate per molecule of ATP cleaved during steady state succinyl-CoA synthesis. Suitable traps are used to remove succinyl-CoA and ADP as soon as they are released to the medium. With the Escherichia coli enzyme, which has an alpha 2 beta 2 structure, a pronounced increase in oxygen exchange per ATP cleaved occurs as ATP concentration is lowered. In contrast, when the CoA concentration is varied, the oxygen exchange per molecule of product formed remains constant. Also, with the pig heart enzyme, which is shown to retain its alpha beta structure during catalysis and thus has only one catalytic site, no modulation of oxygen exchange by ATP concentration is observed. These experimental findings show that the binding of an ATP either promotes the dissociation of bound succinyl-CoA or decreases its participation in exchange. Measurement of the distribution of [18O]Pi species found as exchange occurs shows that only one catalytic sequence is involved in exchange at various ATP concentrations. These observations along with other controls and results eliminate most other explanations of the ATP modulation of the exchange and suggest that binding of ATP at one catalytic site promotes catalytic site promotes catalytic events at an alternate catalytic site.  相似文献   

3.
Adenylate kinase (AdK) and apyrase were employed as helper enzymes to remove ADP in infrared spectroscopic experiments that study the sarcoplasmic reticulum Ca(2+)-ATPase. The infrared absorbance changes of their enzymatic reactions were characterized and used to monitor enzyme activity. AdK transforms ADP to ATP and AMP, whereas apyrase consumes ATP and ADP to generate AMP and inorganic phosphate. The benefits of using them as helper enzymes are severalfold: i), both remove ADP generated after ATP hydrolysis by ATPase, which enables repeat of ATP-release experiments several times with the same sample without interference by ADP; ii), AdK helps maintain the presence of ATP for a longer time by regenerating 50% of the initial ATP; iii), apyrase generates free P(i), which can help stabilize the ADP-insensitive phosphoenzyme (E2P); and iv), apyrase can be used to monitor ADP dissociation from transient enzyme intermediates with relatively high affinity to ADP, as shown here for ADP dissociation from the ADP-sensitive phosphoenzyme intermediate (Ca(2)E1P). The respective infrared spectra indicate that ADP dissociation relaxes the closed conformation immediately after phosphorylation partially back toward the open conformation of Ca(2)E1 but does not trigger the transition to E2P. The helper enzyme approach can be extended to study other nucleotide-dependent proteins.  相似文献   

4.
In Archaea, acetate formation and ATP synthesis from acetyl-CoA is catalyzed by an unusual ADP-forming acetyl-CoA synthetase (ACD) (acetyl-CoA + ADP + P(i) acetate + ATP + HS-CoA) catalyzing the formation of acetate from acetyl-CoA and concomitant ATP synthesis by the mechanism of substrate level phosphorylation. ACD belongs to the protein superfamily of nucleoside diphosphate-forming acyl-CoA synthetases, which also include succinyl-CoA synthetases (SCSs). ACD differs from SCS in domain organization of subunits and in the presence of a second highly conserved histidine residue in the beta-subunit, which is absent in SCS. The influence of these differences on structure and reaction mechanism of ACD was studied with heterotetrameric ACD (alpha(2)beta(2)) from the hyperthermophilic archaeon Pyrococcus furiosus in comparison with heterotetrameric SCS. A structural model of P. furiosus ACD was constructed suggesting a novel spatial arrangement of the subunits different from SCS, however, maintaining a similar catalytic site. Furthermore, kinetic and molecular properties and enzyme phosphorylation as well as the ability to catalyze arsenolysis of acetyl-CoA were studied in wild type ACD and several mutant enzymes. The data indicate that the formation of enzyme-bound acetyl phosphate and enzyme phosphorylation at His-257alpha, respectively, proceed in analogy to SCS. In contrast to SCS, in ACD the phosphoryl group is transferred from the His-257alpha to ADP via transient phosphorylation of a second conserved histidine residue in the beta-subunit, His-71beta. It is proposed that ACD reaction follows a novel four-step mechanism including transient phosphorylation of two active site histidine residues:  相似文献   

5.
The ATP/ADP exchange is shown to be a partial reaction of the (H+ +K+)-ATPase by the absence of measurable nucleoside diphosphokinase activity and the insensitivity of the reaction to P1, P5-di(adenosine-5') pentaphosphate, a myokinase inhibitor. The exchange demonstrates an absolute requirement for Mg2+ and is optimal at an ADP/ATP ratio of 2. The high ATP concentration (K0.5=116 microM) required for maximal exchange is interpreted as evidence for the involvement of a low affinity form of nucleotide site. The ATP/ADP exchange is regarded as evidence for an ADP-sensitive form of the phosphoenzyme. In native enzyme, pre-steady state kinetics show that the formation of the phosphoenzyme is partially sensitive to ADP while modification of the enzyme by pretreatment with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) in the absence of Mg2+ results in a steady-state phosphoenzyme population, a component of which is ADP sensitive. The ATP/ADP exchange reaction can be either stimulated or inhibited by the presence of K+ as a function of pH and Mg2+.  相似文献   

6.
Adenosine 5'-O-(3-thio)triphosphate (ATP gamma S) has been shown to be a potent inhibitor of Escherichia coli succinyl-CoA synthetase. This inhibition was competitive with respect to ATP and GTP (Ki values of 0.8 and 0.7 microM, respectively) and mixed with respect to CoA and succinate. ATP gamma S previously had been shown to be a weak substrate of the enzyme, probably because of the relatively sluggish reactivity of the thiophosphoryl enzyme intermediate (Wolodko, W. T., Brownie, E. R., O'Connor, M. D., and Bridger, W. A. (1983) J. Biol. Chem. 258, 14116-14119). In our work, reaction of thiophosphoryl enzyme with ADP was greatly stimulated by succinyl-CoA, an observation that is consistent with the concept of alternating-sites cooperativity. Thiophosphoryl group release did not appear to be accompanied by "other-site" phosphorylation, in contrast to ATP stimulation of thiophosphoryl group release in the presence of succinate and CoA (Wolodko et al., see above). In addition, ADP did not appear to be required in the latter reaction.  相似文献   

7.
Phosphorylation of red cell membranes at ambient temperatures with micromolar [32P]ATP in the presence of Na ions produced phosphoenzyme that was dephosphorylated rapidly upon the addition of ADP or K ions. However, as first observed by Blostein (1968, J. Biol. Chem., 243:1957), the phosphoenzyme formed at 0 degrees C under otherwise identical conditions was insensitive to the addition of K ions but was dephosphorylated rapidly by ADP. This suggested that the conformational transition from ADP-sensitive, K-insensitive Na pump phosphoenzyme (E1 approximately P) to K-sensitive, ADP-insensitive phosphoenzyme (E2P) is blocked at 0 degrees C. Since the ATP:ADP exchange reaction is a partial reaction of the overall enzyme cycle dependent upon the steady state level of E1 approximately P that is regulated by [Na], we examined the effects of temperature on the curve relating [Na] to ouabain-sensitive ATP:ADP exchange. The characteristic triphasic curve seen at higher temperatures when [Na] was between 0.5 and 100 mM was not obtained at 0 degrees C. Simple saturation was observed instead with a K0.5 for Na of approximately 1 mM. The effect of increasing temperature on the ATP:ADP exchange at fixed (150 mM) Na was compared with the effect of increasing temperature on (Na + K)-ATPase activity of the same membrane preparation. It was observed that (a) at 0 degrees C, there was significant ouabain-sensitive ATP:ADP exchange activity, (b) at 0 degrees C, ouabain-sensitive (Na + K)-ATPase activity was virtually absent, and (c) in the temperature range 5-37 degrees C, there was an approximately 300-fold increase in (Na + K)-ATPase activity with only a 9-fold increase in the ATP:ADP exchange. These observations are in keeping with the suggestion that the E1 approximately P----E2P transition of the Na pump in human red cell membranes is blocked at 0 degrees C. Previous work has shown that the inhibitory effect of Na ions and the low-affinity stimulation by Na of the rate of ATP:ADP exchange occur at the extracellular surface of the Na pump. The absence of both of these effects at 0 degrees C, where E1 approximately P is maximal, supports the idea that external Na acts through sites on the E2P form of the phosphoenzyme.  相似文献   

8.
R J Coll  A J Murphy 《Biochemistry》1991,30(6):1456-1461
The CaATPase of sarcoplasmic reticulum was reacted with [gamma-32P]ATP to form the covalent phosphoenzyme intermediate. Noncompetitive inhibition by reactive red-120 and chelation of calcium allowed us to monitor single-turnover kinetics of the phosphoenzyme reacting with water or added ADP at 0 degrees C. When ADP was added and the amount of product, [gamma-32P]ATP, formed was measured, we found that added cold ATP did not interfere with the phosphoenzyme reacting with ADP. We conclude that ATP cannot bind where ADP binds, the phosphorylated active site. This implies that when ATP at high concentrations causes an acceleration of phosphoenzyme hydrolysis, it must do so by binding to an allosteric site. Considering the monoexponential nature of product formation we observed, simple one-nucleotide-site models cannot account for the above result.  相似文献   

9.
Two isoforms of succinyl-CoA synthetase exist in mammals, one specific for ATP and the other for GTP. The GTP-specific form of pig succinyl-CoA synthetase has been crystallized in the presence of GTP and the structure determined to 2.1 A resolution. GTP is bound in the ATP-grasp domain, where interactions of the guanine base with a glutamine residue (Gln-20beta) and with backbone atoms provide the specificity. The gamma-phosphate interacts with the side chain of an arginine residue (Arg-54beta) and with backbone amide nitrogen atoms, leading to tight interactions between the gamma-phosphate and the protein. This contrasts with the structures of ATP bound to other members of the family of ATP-grasp proteins where the gamma-phosphate is exposed, free to react with the other substrate. To test if GDP would interact with GTP-specific succinyl-CoA synthetase in the same way that ADP interacts with other members of the family of ATP-grasp proteins, the structure of GDP bound to GTP-specific succinyl-CoA synthetase was also determined. A comparison of the conformations of GTP and GDP shows that the bases adopt the same position but that changes in conformation of the ribose moieties and the alpha- and beta-phosphates allow the gamma-phosphate to interact with the arginine residue and amide nitrogen atoms in GTP, while the beta-phosphate interacts with these residues in GDP. The complex of GTP with succinyl-CoA synthetase shows that the enzyme is able to protect GTP from hydrolysis when the active-site histidine residue is not in position to be phosphorylated.  相似文献   

10.
Inesi G  Lewis D  Ma H  Prasad A  Toyoshima C 《Biochemistry》2006,45(46):13769-13778
We relate solution behavior to the crystal structure of the Ca2+ ATPase (SERCA). We find that nucleotide binding occurs with high affinity through interaction of the adenosine moiety with the N domain, even in the absence of Ca2+ and Mg2+, or to the closed conformation stabilized by thapsigargin (TG). Why then is Ca2+ crucial for ATP utilization? The influence of adenosine 5'-(beta,gamma-methylene) triphosphate (AMPPCP), Ca2+, and Mg2+ on proteolytic digestion patterns, interpreted in the light of known crystal structures, indicates that a Ca2+-dependent conformation of the ATPase headpiece is required for a further transition induced by nucleotide binding. This includes opening of the headpiece, which in turn allows inclination of the "A" domain and bending of the "P" domain. Thereby, the phosphate chain of bound ATP acquires an extended configuration allowing the gamma-phosphate to reach Asp351 to form a complex including Mg2+. We demonstrate by Asp351 mutation that this "productive" conformation of the substrate-enzyme complex is unstable because of electrostatic repulsion at the phosphorylation site. However, this conformation is subsequently stabilized by covalent engagement of the -phosphate yielding the phosphoenzyme intermediate. We also demonstrate that the ADP product remains bound with high affinity to the transition state complex but dissociates with lower affinity as the phosphoenzyme undergoes a further conformational change (i.e., E1-P to E2-P transition). Finally, we measured low-affinity ATP binding to stable phosphoenzyme analogues, demonstrating that the E1-P to E2-P transition and the enzyme turnover are accelerated by ATP binding to the phosphoenzyme in exchange for ADP.  相似文献   

11.
The F1F0 proton-translocating ATPase/synthase is the primary generator of ATP in most organisms growing aerobically. Kinetic assays of ATP synthesis have been conducted using enzymes from mitochondria and chloroplasts. However, limited data on ATP synthesis by the model Escherichia coli enzyme are available, mostly because of the lack of an efficient and reproducible assay. We have developed an optimized assay and have collected synthase kinetic data over a substrate concentration range of 2 orders of magnitude for both ADP and Pi from the synthase enzyme of E. coli. Negative and positive cooperativity of substrate binding and positive catalytic cooperativity were all observed. ATP synthesis displayed biphasic kinetics for ADP indicating that 1) the enzyme is capable of catalyzing efficient ATP synthesis when only two of three catalytic sites are occupied by ADP; and 2) occupation of the third site further activates the rate of catalysis.  相似文献   

12.
Ribonucleotide reductase (RNR) is a key enzyme for the synthesis of the four DNA building blocks. Class Ia RNRs contain two subunits, denoted R1 (alpha) and R2 (beta). These enzymes are regulated via two nucleotide-binding allosteric sites on the R1 subunit, termed the specificity and overall activity sites. The specificity site binds ATP, dATP, dTTP, or dGTP and determines the substrate to be reduced, whereas the overall activity site binds dATP (inhibitor) or ATP. By using gas-phase electrophoretic mobility macromolecule analysis and enzyme assays, we found that the Escherichia coli class Ia RNR formed an inhibited alpha(4)beta(4) complex in the presence of dATP and an active alpha(2)beta(2) complex in the presence of ATP (main substrate: CDP), dTTP (substrate: GDP) or dGTP (substrate: ADP). The R1-R2 interaction was 30-50 times stronger in the alpha(4)beta(4) complex than in the alpha(2)beta(2) complex, which was in equilibrium with free alpha(2) and beta(2) subunits. Studies of a known E. coli R1 mutant (H59A) showed that deficient dATP inhibition correlated with reduced ability to form alpha(4)beta(4) complexes. ATP could also induce the formation of a generally inhibited alpha(4)beta(4) complex in the E. coli RNR but only when used in combination with high concentrations of the specificity site effectors, dTTP/dGTP. Both allosteric sites are therefore important for alpha(4)beta(4) formation and overall activity regulation. The E. coli RNR differs from the mammalian enzyme, which is stimulated by ATP also in combination with dGTP/dTTP and forms active and inactive alpha(6)beta(2) complexes.  相似文献   

13.
When human erythrocyte membranes are phosphorylated with a very low concentration of [gamma-32P]ATP (0.02 muM) at 0 degrees, and then EDTA is added, rapid disappearance of the phosphoenzyme intermediate of Na+ATPase is observed. The initial rapid phase of phosphoenzyme disappearance is, for the most part, not associated with P1 release and its rate constant, kD, is severalfold greater than the ratio of Na+ATPase activity to phosphoenzyme intermediate, v:EP, at steady state. It is concluded that this rapid disappearance of phosphoenzyme is due to resynthesis of ATP via reversal of phosphorylation. In contrast, rapid reversal is not observed when excess nonradioactive ATP is added to reduce E32P formation, provided Mg2+ is present; however, K+ added with the ATP stimulates reversal. Rapid reversal following EDTA addition is unlikely also when higher ATP concentrations (greater than or equal to 10(-6) M) are used to phosphorylate the enzyme since, at higher ATP, kD congruent to v:EP. The results are compatible with the concept that the Na+ATPase enzyme is composed of two or more catalytic subunits, in which ATP at one catalytic site can regulate the reactivity at another site.  相似文献   

14.
The interactions of substrates with succinyl-CoA synthetase were investigated by measuring the enhancement of the longitudinal water proton relaxation rate (PRR) due to Mn(II) to the enzyme substrate complexes. The binding of Mn(II) to the enzyme was investigated by EPR. The effects of phosphorylating the enzyme on its interactions with Mn(II) and substrates were also examined. Mn(II) binds weakly to dephosphosuccinyl-CoA synthetase (E) at approximately four sites with a KD value of 0.14 mM, and the PRR enhancement of the complex, epsilonb, at 24.3 MHZ and 25 degree is 18.8. The phosphoenzyme (E-P) binds Mn(II) more strongly at approximately four sites with a KD value of 0.74 mM, and only a small change in epsilonb to 18.1. Mm ADP binds to E at one or two sites with K2 = 0.5 muM, the values of epsilont for the ternary E-Mn-ADP complex is 17.0. Free ADP binds about 126 times more weakly to the enzyme than does Mn-ADP. PRR titrations indicated that the values of epsilont for the ternary E-Mn-ADP and (E-P)-Mn-ADP complexes are about the same. Mn-ATP binds very weakly or not at all to (E-P)-Mn.Formation of the ternary complexes of CoA with E-Mn or (E-P)-Mn could be followed by small but significant increases in the PRR enhancement. No ternary complex with succinate could be detected since the addition of succinate had no effect on the PRR enhancement. However, a large decrease in enhancement, at least 2-fold, was observed upon addition of both succinate and CoA. An increase in the PRR enhancement was produced by the interaction of succinyl-CoA with the E-Mn complex. Upper limits of the dissociation constants for CoA from the quaternary E-Mn-ADP-succinate-CoA complex and for succinyl-CoA from the quaternary E-Mn-ADP-succinyl-CoA complex are 390 and 560 muM, respectively. The epsilon values for the quaternary and quinary complexes are 6.4 and 3.1, respectively. The successive occupation of substrate binding sites of succinyl-CoA synthetase produces alterations in the molecular dynamics or in the conformation of the active site (or both), which are accompanied by progressive decreases in the values of epsilon. Thus, the physical parameter used in these studies relects the previously observed catalytic properties of the enzyme system inasmuch as the catalytic function of succinyl-CoA synthetase is potentiated by substrate binding, and catalytic avtivity in partial reactions is maximized as binding sites are successively occupied.  相似文献   

15.
1. Conditions for binding of [gamma-32P]ATP to bovine brain Na+,K+-stimulated ATPase were investigated by the indirect technique of measuring the initial rate of 32P-labelling of the active site of the enzyme. 2. At 100 muM [gamma-32P]ATP in the presence of 3 mM MgCl2, approximately the same very high rate of formation of [32P]phosphoenzyme was obtained irrespective of whether [gamma-32P]ATP was added to the enzyme simultaneously with, or 70 ms in advance of the addition of NaCl. A comparatively slow rate of phosphorylation was obtained at 5 muM[gamma-32P]ATP without preincubation. However, on preincubation of the enzyme with 5 muM[gamma-32P]ATP a rate of formation of [32P]phosphoenzyme almost as rapid as at 100 muM[gamma-32P]ATP was observed. 3. A transient [32P]phosphoenzyme was discovered. It appeared in the presence of K+, under conditions which allowed extensive binding of [gamma-32P]-ATP. The amount of [gamma-32P]ATP that could be bound to the enzyme seemed to equal the amount of [32P] phosphorylatable sites. 4. The formation of the transient [32P] phosphoenzyme was inhibited by ADP. The transient [32P] phosphoenzyme was concluded mainly to represent the K+-insensitive and ADP-sensitive E1-32P. 5. When KCl was present in the enzyme solution before the addition of NaCl only a comparatively slow rate of phosphorylation was observed. On preincubation of the enzyme with [gamma-32]ATP an increase in the rate of formation of [32P] phosphoenzyme was obtained, but there was no transient [32P]-phosphoenzyme. The transient [32P]phosphoenzyme was, however, detected when the enzyme solution contained NaCl in addition to KCl and the phosphorylation was started by the addition of [gamma-32P]ATP.  相似文献   

16.
(Na+ + K+)-ATPase from beef brain and pig kidney are slowly inactivated by chromium(III) complexes of nucleotide triphosphates in the absence of added univalent and divalent cations. The inactivation of (Na+ + K+)-ATPase activity was accompanied by a parallel decrease of the associated K+-activated p-nitrophenylphosphatase and a parallel loss of the capacity to form, Na+-dependently, a phosphointermediate from [gamma-32P]ATP. The kinetics of inactivation and of phosphorylation with [gamma-32P]CrATP and [alpha-32P]CrATP are consistent with the assumption of the formation of a dissociable complex of CrATP with the enzyme (E) followed by phosphorylation of the enzyme: formula: (see text). The dissociation constant of the CrATP complex of the pig kidney enzyme at 37 degrees C was 43 microM. The inactivation rate constant (k + 2 = 0.033 min-1) was in the range of the dissociation rate constant kd of ADP from the enzyme of 0.011 min-1. The phosphoenzyme was unreactive towards ADP as well as to K+. No hydrolysis of the native isolated phosphoenzyme was observed within 6 h under a variety of conditions, but high concentrations of Na+ reactivated it slowly. The capacity of the Cr-phosphoenzyme of 121 +/- 18 pmol/unit enzyme is identical with the capacity of the unmodified enzyme to form, Na+-dependently, a phosphointermediate. The Cr-phosphoenzyme behaved after acid denaturation like an acylphosphate towards hydroxylamine, but the native phosphoenzyme was not affected by it. ATP protected the enzyme against the inactivation by CrATP (dissociation constant of the enzyme ATP complex = 2.5 microM) as well as low concentrations of K+. CrATP was a competitive inhibitor of (Na+ + K+)-ATPase. It is concluded that CrATP is slowly hydrolyzed at the ATP-binding site of (Na+ + K+)-ATPase and inactivates the enzyme by forming an almost non-reactive phosphoprotein at the site otherwise needed for the Na+-dependent proteinkinase reaction as the phosphate acceptor site.  相似文献   

17.
The discovery of two distinct succinate thiokinases in mammalian tissues, one (G-STK) specific for GDP/GTP and the other (A-STK) for ADP/ATP, poses the question of their differential metabolic roles. Evidence has suggested that the A-STK functions in the citric acid cycle in the direction of succinyl-CoA breakdown (and ATP formation) whereas one role of the G-STK appears to be the re-cycling of succinate to succinyl-CoA (at the expense of GTP) for the purpose of ketone body activation. A third metabolic participation of succinyl-CoA is in haem biosynthesis. This communication shows that in chemically induced hepatic porphyria, when the demand for succinyl-CoA is increased, it is the level of G-STK only which is elevated, that of A-STK being unaffected. The results implicate G-STK in the provision of succinyl-CoA for haem biosynthesis, a conclusion which is further supported by the observation of a high G-STK/A-STK ratio in bone marrow.  相似文献   

18.
The decomposition of 32P phosphorylated enzyme intermediate formed by incubation of sarcoplasmic reticulum ATPase with [gamma-32P]ATP was studied following dilution of the reaction medium with a large excess of nonradioactive ATP. The phosphoenzyme decomposition includes two kinetic components. The fraction of intermediate undergoing slower decomposition is minimal in the presence of low (microM) Ca2+ and maximal in the presence of high (mM) Ca2+. A large fraction of phosphoenzyme undergoes slow decomposition when the Ca2+ concentration is high inside the vesicles, even if the Ca2+ concentration in the medium outside the vesicles is low. Parallel measurements of ATPase steady state velocity in the same experimental conditions indicate that the apparent rate constant for the slow component of phosphoenzyme decomposition is inadequate to account for the steady state ATPase velocity observed under the same conditions and cannot be the rate-limiting step in a single, obligatory pathway of the catalytic cycle. On the contrary, the steady state enzyme velocity at various Ca2+ concentrations is accounted for by the simultaneous contribution of both phosphoenzyme fractions undergoing fast and slow decomposition. Contrary to its slow rate of decomposition in the forward direction of the cycle, the phosphoenzyme pool formed in the presence of high Ca2+ reacts rapidly with ADP to form ATP in the reverse direction of the cycle. Detailed analysis of these experimental observations is consistent with a branched pathway following phosphoryl transfer from ATP to the enzyme, whereby the phosphoenzyme undergoes an isomeric transition followed by ADP dissociation, or ADP dissociation followed by the isomeric transition. The former path is much faster and is prevalent when the intravesicular Ca2+ concentration is low. When the intravesicular Ca2+ concentration rises, a pool of phosphoenzyme is formed by reverse equilibration through the alternate path. In the absence of ADP this intermediate decays slowly in the forward direction, and in the presence of ADP it decays rapidly in the reverse direction of the cycle.  相似文献   

19.
Inesi G  Zhang Z  Lewis D 《Biophysical journal》2002,83(5):2327-2332
High-affinity and cooperative binding of two Ca(2+) per ATPase (SERCA) occurs within the membrane-bound region of the enzyme. Direct measurements of binding at various Ca(2+) concentrations demonstrate that site-directed mutations within this region interfere selectively with Ca(2+) occupancy of either one or both binding sites and with the cooperative character of the binding isotherms. A transition associated with high affinity and cooperative binding of the second Ca(2+) and the engagement of N796 and E309 are both required to form a phosphoenzyme intermediate with ATP in the forward direction of the cycle and also to form ATP from phosphoenzyme intermediate and ADP in the reverse direction of the cycle. This transition, defined by equilibrium and kinetic characterization of the partial reactions of the enzyme cycle, extends from transmembrane helices to the catalytic site through a long-range linkage and is the mechanistic device for interconversion of binding and phosphorylation potentials.  相似文献   

20.
J R Petithory  W P Jencks 《Biochemistry》1986,25(16):4493-4497
The calcium adenosinetriphosphatase of sarcoplasmic reticulum, preincubated with Ca2+ on the vesicle exterior (cE X Ca2), reacts with 0.3-0.5 mM Mg X ATP to form covalent phosphoenzyme (E approximately P X Ca2) with an observed rate constant of 220 s-1 (pH 7.0, 25 degrees C, 100 mM KCl, 5 mM MgSO4, 23 microM free external Ca2+, intact SR vesicles passively loaded with 20 mM Ca2+). If the phosphoryl-transfer step were rate-limiting, with kf = 220 s-1, the approach to equilibrium in the presence of ADP, to give 50% EP and kf = kr, would follow kobsd = kf + kr = 440 s-1. The reaction of cE X Ca2 with 0.8-1.2 mM ATP plus 0.25 mM ADP proceeds to 50% completion with kobsd = 270 s-1. This result shows that phosphoryl transfer from bound ATP to the enzyme is not the rate-limiting step for phosphoenzyme formation from cE X Ca2. The result is consistent with a rate-limiting conformational change of the cE X Ca2 X ATP intermediate followed by rapid (greater than or equal to 1000 s-1) phosphoryl transfer. Calcium dissociates from cE X Ca2 X ATP with kobsd = 80 s-1 and ATP dissociates with kobsd = 120 s-1 when cE X Ca2 X ATP is formed by the addition of ATP to cE X Ca2. However, when E X Ca2 X ATP is formed in the reverse direction, from the reaction of E approximately P X Ca2 and ADP, Ca2+ dissociates with kobsd = 45 s-1 and ATP dissociates with kobsd = 35 s-1. This shows that different E X Ca2 X ATP intermediates are generated in the forward and reverse directions, which are interconverted by a conformational change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号