首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the distribution of acetylated alpha-tubulin using immunofluorescence microscopy in fibroblastic cells of rat brain meninges. Meningeal fibroblasts showed heterogeneous staining patterns with a monoclonal antibody against acetylated alpha-tubulin ranging from staining of primary cilia or microtubule-organising centers (MTOCs) alone to extensive microtubule networks. Staining with a broad spectrum anti-alpha-tubulin monoclonal indicated that all cells possessed cytoplasmic microtubule networks. From double-labeling experiments using an antibody against acetylated alpha-tubulin (6-11B-1) and antibodies against either tyrosinated or detyrosinated alpha-tubulin, it was found that acetylated alpha-tubulin and tyrosinated alpha-tubulin were often segregated to different microtubules. The microtubules containing acetylated but not tyrosinated alpha-tubulin were cold stable. Therefore, it appeared that in general meningeal cells possessed two subset of microtubules: One subset contained detyrosinated and acetylated alpha-tubulin and was cold stable, and the other contained tyrosinated alpha-tubulin and was cold labile. These results are consistent with the idea that acetylation and detyrosination of alpha-tubulin are involved in the specification of stable microtubules.  相似文献   

2.
The comparative distribution of tyrosinated, detyrosinated, and acetylated alpha-tubulins was examined in neurites of rat dorsal root ganglion neurones in culture using immunofluorescence microscopy. Phase contrast observations of single neurones revealed that the neurites were actively motile, and rhodamine phalloidin staining of actin filaments showed the extent of lamellopodia and microspike projections from the growth cones. From double-labelling experiments using antibodies against tyrosinated, detryrosinated, or acetylated alpha-tubulin, it was found that the three different isoforms were differentially localised in neurites and growth cones. Detyrosinated and acetylated forms of alpha-tubulin were in the main restricted to the neurites extending no further than the base of the growth cones. Tyrosinated alpha-tubulin was, however, distributed throughout the body of the growth cone and into the base of some microspikes. Following treatment with taxol to promote microtubule assembly, detyrosinated and acetylated alpha-tubulins were found to be colocalised with tyrosinated alpha-tubulins throughout the growth cones of all cells examined. These results would be consistent with axonal transport of tyrosinated alpha-tubulin followed by assembly in the growth cone and subsequent detyrosination and acetylation. In addition the presence of unmodified alpha-tubulin in the growth cone may be necessary for the provision of labile microtubules for growth cone motility and extension.  相似文献   

3.
We have previously identified a major modification of neuronal alpha-tubulin which consists of the posttranslational addition of a varying number of glutamyl units on the gamma-carboxyl group of glutamate residue 445. This modification, called polyglutamylation, was initially found associated with detyrosinated alpha-tubulin [Eddé, B., Rossier, J., Le Caer, J.P., Desbruyères, E., Gros, F., & Denoulet, P. (1990) Science 247, 83-85]. In this report we show that a lateral chain of glutamyl units can also be present on tyrosinated alpha-tubulin. Incubation of cultured mouse brain neurons with radioactive tyrosine, in the presence of cycloheximide, resulted in a posttranslational labeling of six alpha-tubulin isoelectric variants. Because both tyrosination and polyglutamylation occur in the C-terminal region of alpha-tubulin, the structure of this region was investigated. [3H]tyrosinated tubulin was mixed with a large excess of unlabeled mouse brain tubulin and digested with thermolysin. Five peptides, detected by their radioactivity, were purified by high-performance liquid chromatography. Amino acid sequencing and mass spectrometry showed that one of these peptides corresponds to the native C-terminal part of alpha-tubulin 440VEGEGEEEGEEY451 and that the remainders bear a varying number of glutamyl units linked to glutamate residue 445, which explains the observed heterogeneity of tyrosinated alpha-tubulin. A quantitative analysis showed that the different tyrosinated forms of alpha-tubulin represent a minor (13%) fraction of the total alpha-tubulin present in the brain and that most (80%) of these tyrosinated forms are polyglutamylated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Actin cytoskeleton reorganization initiated by testosterone conjugates through activation of membrane androgen receptors (mAR) has recently been reported in colon tumor cells. This mAR-induced actin reorganization was recognized as a critical initial event, controlling apoptosis and inhibiting cell migration. The present study addressed the molecular signaling regulating the rapid actin remodeling initiated upon testosterone-induced mAR activation in Caco2 colon tumor cells. We report early phosphorylation of the Focal Adhesion Kinase (FAK), followed by substantial early phosphorylation of mammalian target of rapamycin (mTOR), S6 kinase (p70S6K) and the actin regulating p21-activated kinase (PAK1). Pharmacological inhibition of FAK-sensitive phosphatidylinositide-3-kinase (PI-3K), a known element of mAR-signaling, fully abrogated the testosterone-induced actin reorganization and the activation of mTOR, p70S6K and PAK1. Similarly, inhibition of mTOR blocked p70S6K and PAK1 phosphorylation and actin remodeling. Pretreatment of the cells with the intracellular androgen receptor (iAR) antagonist flutamide or silencing iAR through siRNA did not influence mTOR phosphorylation and actin reorganization, indicating specific mAR-induced testosterone effects that are independent of iAR signaling. In conclusion, we demonstrate for the first time a new mAR-governed pathway involving FAK/PI-3K and mTOR/p70S6K/PAK1-cascade that regulates early actin reorganization in colon cancer cells.  相似文献   

5.
We have explored the composition and stability properties of individual microtubules (MTs) in the axons of cultured sympathetic neurons. Using morphometric means to quantify the MT mass remaining in axons after various times in 2 micrograms/ml nocodazole, we observed that approximately 48% of the MT mass in the axon is labile, depolymerizing with a t1/2 of approximately 5 min, whereas the remaining 52% of the MT mass is stable, depolymerizing with a t1/2 of approximately 240 min. Immunofluorescence analyses show that the labile MTs in the axon are rich in tyrosinated alpha-tubulin, whereas the stable MTs contain little or no tyrosinated alpha-tubulin and are instead rich in posttranslationally detyrosinated and acetylated alpha-tubulin. These results were confirmed quantitatively by immunoelectron microscopic analyses of the distribution of tyrosinated alpha-tubulin among axonal MTs. Individual MT profiles were typically either uniformly labeled for tyrosinated alpha-tubulin all along their length, or were completely unlabeled. Roughly 48% of the MT mass was tyrosinated, approximately 52% was detyrosinated, and approximately 85% of the tyrosinated MTs were depleted within 15 min of nocodazole treatment. Thus, the proportion of MT profiles that were either tyrosinated or detyrosinated corresponded precisely with the proportion of MTs that were either labile or stable respectively. We also observed MT profiles that were densely labeled for tyrosinated alpha-tubulin at one end but completely unlabeled at the other end. In all of these latter cases, the tyrosinated, and therefore labile domain, was situated at the plus end of the MT, whereas the detyrosinated, and therefore stable domain was situated at the minus end of the MT, and in each case there was an abrupt transition between the two domains. Based on the frequency with which these latter MT profiles were observed, we estimate that minimally 40% of the MTs in the axon are composite, consisting of a stable detyrosinated domain in direct continuity with a labile tyrosinated domain. The extreme drug sensitivity of the labile domains suggests that they are very dynamic, turning over rapidly within the axon. The direct continuity between the labile and stable domains indicates that labile MTs assemble directly from stable MTs. We propose that stable MTs act as MT nucleating structures that spatially regulate MT dynamics in the axon.  相似文献   

6.
The distribution of acetylated alpha-tubulin in rat cerebellum was examined and compared with that of total alpha-tubulin and tyrosinated alpha-tubulin. From immunoperoxidase-stained vibratome sections of rat cerebellum it was found that acetylated alpha-tubulin, detectable with monoclonal 6-11B-1, was preferentially enriched in axons compared with dendrites. Parallel fiber axons, in particular, were labeled with 6-11B-1 yet unstained by an antibody recognizing tyrosinated alpha-tubulin, indicating that parallel fibers contain alpha-tubulin that is acetylated and detyrosinated. Axonal microtubules are known to be highly stable and the distribution of acetylated alpha-tubulin in other classes of stable microtubules suggests that acetylation and possibly detyrosination may play a role in the maintenance of stable populations of microtubules.  相似文献   

7.
2-Methoxyestradiol (2ME) is a cytotoxic drug that interacts with tubulin and alters microtubule dynamics. It has been reported that testosterone (T) has a neuroprotective effect against oxidative stress and induces differentiation in mouse C1300 neuroblastoma cells. Here, we investigated the ability of T to attenuate the cytotoxic effects of 2ME and to induce cell differentiation in an immortalized rat glial cell line, known as C6. C6 cells were exposed for 5 days to 5 μM 2ME, 50 nM T, or both. We evaluated the morphological changes, growth rate, vitality, catalase activity, and glial fibrillary acidic protein (GFAP) immunoreactivity in control and treated C6 cells. Western blot analyses were used to quantify expression of tyrosinated tubulin (Tyr-Tub), acetylated tubulin (Acet-Tub), total α-tubulin (TOT-Tub), and GFAP. After 2ME exposure, the cells displayed a globular, shrunken shape, and retraction or absence of cytoplasmic processes; moreover, 2ME treatment significantly decreased cell growth, cell viability, catalase activity, and expression of both Tyr-Tub and Acet-Tub. However, when T was added, the cells exhibited a glial-like shape, elongated cell processes, and enhanced cell growth, cell vitality, catalase activity, and GFAP immunoreactivity. Densitometric values of Tyr-Tub, Acet-Tub, and GFAP increased significantly when T was present, while Tot-Tub values were unaltered. These results indicate that, in C6 cells, T: (i) attenuated the morpho-functional changes caused by 2ME exposure; (ii) induced glial differentiation; and (iii) exerted a direct action on the microtubule system.  相似文献   

8.
The expression of the tyrosinated isoform of alpha-tubulin was monitored in rat frontal cortex, in order to investigate the neuronal plasticity changes occurring either in a mirror focus or in a deafferented area. A mirror focus was triggered by epidural implantation of a cobalt gelatin disk in the contralateral left somatosensory area (group one). A deafferented area was obtained by surgical removal of the left frontal cortex (group two). All animals including controls underwent EcoG recordings immediately before killing (45, 60, 90 days post surgery). The right frontal cortex was removed from all the animals and processed with Western blot method. EcoG recordings revealed a paroxysmal activity in epileptic rats, whereas in rats with frontal deafferentation and controls, EcoG activity was normal. A significant increase in tyrosinated alpha-tubulin expression was detected both in the mirror focus (group one) and the "non-epileptic" deafferented frontal cortex (group two) in comparison with controls (group three). The transcallosal deafferentation, which is involved in both epileptogenic and non-epileptogenic lesions, is supposed to play a role in the mechanism responsible for the plasticity responses recorded in the cortical areas studied.  相似文献   

9.
A lot of evidence testifies that aromatase is expressed in the central nervous system where it has been detected not only in hypothalamic and limbic regions but also in the cerebral cortex and spinal cord. In physiological conditions, aromatase is expressed exclusively by neurons, where it has been mainly found in cell bodies, processes and synaptic terminals. Moreover, primary cultured cortical astrocytes from female rats are more resistant to oxidant cell death than those from males, suggesting a protective role of estradiol. The aim of this study was to evaluate changes in aromatase expression in response to 3-nitro-L-tyrosine, a marker of oxidative stress, in primary neuronal cell cultures from brains of 60-day old sheep fetuses. Cells were identified as neurons by using class III β-tubulin, a marker of neuronal cells. Two morphological types were consistently recognizable: i) bipolar cells with an oval cell body; ii) multipolar cells whose processes formed a wide net with those of adjacent cells. In situ hybridization technique performed on 60-day old fetal neurons revealed that in baseline conditions aromatase gene expression occurs. Importantly, cells exposed to 360 µM 3-nitro-L-tyrosine were fewer and showed more globular shape and shorter cytoplasmic processes in comparison to control cells. The immunocytochemical study with anti-aromatase antibody revealed that cells exposed to 360 µM 3-nitro-L-tyrosine were significantly more immunoreactive than control cells. Thus, it can be postulated that the oxidant effects of the amino acid analogue 3-nitro-L-tyrosine could be counterbalanced by an increase in aromatase expression that in turn can lead to the formation of neuroprotective estradiol via aromatization of testosterone.Key words: 3-nitro-L-tyrosine, aromatase, oxidative injury, neuroprotection, neuronal cell cultures, sheep.The brain is an important site of steroid synthesis in vertebrates (Baulieu, 1997). Neuroendocrine tissue is capable of converting androgens into estrogens by the enzyme P450 aromatase (Naftolin et al., 1971). Estradiol, through its specific receptors, promotes many crucial regulatory effects on various processes, such as viability and survival of neurons in rat primary cultures (Chowen et al., 1992), neural differentiation and plasticity as well as sexual behavior. Aromatase modulates synaptic plasticity in the hippocampus and other brain regions related to cognition.The enzyme may also influence synaptic development and plasticity in other non-reproductive regions of the central nervous system. For instance, Purkinje cells in aromatase-knockout mice show decreased dendritic growth and impairment of formation of dendritic spines and synapses (Sasahara et al., 2007). In addition, numerous studies have shown expression, activity and distribution of aromatase in the central nervous system of rats (Shinoda et al., 1994) and humans (Yague et al., 2006). In the brain, aromatase is predominantly expressed in hypothalamic and limbic regions, but also other structures such as the cerebral cortex, midbrain and spinal cord reveal aromatase activity and immunoreactivity.It has been demonstrated that aromatase is neuroprotective in the central nervous system. For instance, treatment with the neurotoxin kainic acid resulted in significant neuronal loss in the hippocampus of rats treated with the aromatase inhibitor fadrozole (Azcoitia et al., 2001). Under baseline conditions, aromatase is expressed in the central nervous system of mammals exclusively by neurons, where it has been mainly found in cell bodies, processes and synaptic terminals (Naftolin et al., 1996). Since aromatase is expressed in several cellular compartments, it can be supposed that it leads to the formation of estrogen that acts not only through the classical receptors but also by direct and rapid effects at neuronal membranes (Roselli, 2007).Aromatase-expressing astrocytes have been observed in rats after stressful conditions such as serum deprivation or ischemia (Azcoitia et al., 2003, Roselli, 2007). The increased expression of aromatase in injured brain areas suggests that the enzyme may be involved in the protection of nervous tissue by increasing levels of local estrogens. Moreover, primary cultured cortical astrocytes from female rats are more resistant to oxidant cell death than males, suggesting estradiol has a protective role (Liu et al., 2007). In particular, these Authors demonstrated that astrocytes isolated from neonatal cortex exhibit marked sex differences in the sensitivity to oxygen-glucose deprivation and oxidant cell death since female cells exhibited enhanced aromatization and estradiol formation.The present investigation describes for the first time changes in aromatase expression in response to 3-nitro-L-tyrosine - a marker of oxidative stress - in primary neuronal cultures from fetal sheep brain.  相似文献   

10.
Age-related changes in microtubules in the guinea pig organ of Corti   总被引:2,自引:0,他引:2  
Biochemical and immunocytochemical analyses have been used to provide new insights into age-related changes in the sensory and supporting cells of the guinea pig organ of Corti. Quantitative densitometry of immunoblots showed that, while levels of alpha-tubulin remained relatively constant in guinea pigs from 3 weeks to 18 months old, there were progressive shifts in some tubulin isoforms. Levels of tyrosinated tubulin increased with age, nontyrosinatable tubulin (delta2-tubulin) showed a compensatory decrease, but detyrosinated tubulin did not change; acetylated, polyglutamylated, and glycylated tubulin levels also decreased. Immunolabeled tissue sections showed that cell type-specific distribution of tubulin seen in young guinea pigs (tyrosinated in the microtubules of the sensory cells, and post-translationally modified isoforms in the supporting cells) did not change as animals aged. However, there were age-related decreases in labeling for alpha-tubulin and all post-translationally modified isoforms. Biochemical and immunocytochemical results both support an age-related decrease in the number and/or length of microtubules as well as an increase in the pool of soluble tyrosinated and detyrosinated tubulin. They further suggest that microtubules containing nontyrosinatable tubulin from older animals are the sites for further modification of tubulin by acetylation, polyglutamylation, and glycylation. Changes in tubulin isoform levels and stability of microtubules in the organ of Corti may alter its micromechanical properties; the resulting changes in conduction of sound-induced vibration would provide one mechanism for age-related hearing loss.  相似文献   

11.
Gonadal hormones can produce striking behavioral and neural plasticity in adult organisms. For example, systemic administration of testosterone to adult female canaries induces the development of male-typical song behavior and results in a striking increase in the size of brain nuclei that are known to be involved with song control. The mechanism whereby androgens produce such neural plasticity is not known, although it has seemed likely that growth-promoting effects of androgens are due to a direct induction of protein synthesis in cells containing hormone receptors (following activation of specific genes by the hormone-receptor complex). In this experiment we have examined the trophic effect of testosterone in the song-control nucleus HVc (caudal nucleus of the ventral hyperstriatum), which has been shown to contain androgen-concentrating cells as well as neurons that are especially responsive to conspecific song. We report here that testosterone administration increases the volume of HVc in hearing adult female canaries only; testosterone-induced growth of HVc is greatly attenuated in birds that are deprived of auditory stimulation via deafening. Thus, testosterone treatment alone is not a sufficient stimulus for neural growth in HVc. This result suggests that testosterone does not stimulate growth solely via a direct action on hormone receptors in HVc, but rather that testosterone and sensory stimulation can act synergistically to produce structural plasticity in the adult brain.  相似文献   

12.
Since we had previously shown that both basic fibroblast growth factor (bFGF) and testosterone stimulate the growth of mouse mammary carcinoma cells (SC-3) in serum-free culture, we tested the effect of bFGF or testosterone on FGF receptor mRNA levels. Northern blot analyses revealed that stimulation with bFGF resulted in a 5-fold increase in FGF receptor mRNA levels at 6-8 h followed by a decline to the unstimulated levels at 24 h. Simultaneous addition of cycloheximide blocked bFGF-induced accumulation of FGF receptor mRNA, although exposure of SC-3 cells to cycloheximide alone caused marginal increase in its basal level. Neither phorbol ester nor forskolin stimulated FGF receptor mRNA expression, but testosterone could raise FGF receptor mRNA levels. To obtain the maximum stimulation, however, testosterone required the longer stimulation period (12 h) than bFGF, suggesting that testosterone-induced FGF receptor mRNA accumulation is mediated through an induction of FGF-like growth factor.  相似文献   

13.
An androgen-responsive cloned cell line (SC-3) derived from Shionogi carcinoma 115 (SC115) has been shown to secrete fibroblast growth factor (FGF)-like peptide in response to androgen, which binds to FGF receptor and promotes the proliferation of SC-3 cells in an autocrine mechanism. Since the androgen-induced autocrine factor has a property to bind heparin, we examined the effects of heparin on the growth of SC-3 cells. Heparin was found to exhibit significant inhibition of testosterone-induced growth in a concentration-dependent manner: Approximately 50% inhibition was found at a concentration of 0.1 micrograms/ml. DNA synthesis of SC-3 cells induced by testosterone was also inhibited strongly by heparin, and less strongly by heparan sulfate and dermatan sulfate. Proliferation of SC-3 cells induced by acidic (a) or basic (b) FGF appeared not to be modulated by heparin. In contrast, heparin efficiently blocked DNA synthesis stimulated with androgen-induced growth factor in the conditioned medium from testosterone-treated cells. These results indicate that heparin inhibits autocrine loop in SC-3 cells induced by androgen. Thus, the autocrine growth factor possesses a different characteristic from aFGF and bFGF in that its bioactivities are negatively modulated by the glycosaminoglycan.  相似文献   

14.
《The Journal of cell biology》1994,127(5):1407-1418
Neurite formation by dissociated chick sympathetic neurons in vitro begins when one of the many filopodia that emanate from the cell body of a neuron is invaded by cytoplasm containing microtubules and other components of axoplasm (Smith, 1994). This study was undertaken to determine whether this process depends on assembly of microtubules. To inhibit microtubule assembly, neurons were grown in medium containing nocodazole or colchicine. In one series of experiments, neurons first were exposed to the microtubule-stabilizing drug, taxol, so that existing microtubules would remain intact while assembly of new microtubules was inhibited. The ability of neurons to form neurites was assessed by time-lapse video microscopy. Neurons subsequently were stained with antibodies against the tyrosinated and acetylated forms of alpha-tubulin and examined by laser confocal microscopy to visualize microtubules. Neurons were able to form short processes despite inhibition of microtubule assembly and they did so in a way that closely resembled process formation in control medium. Processes formed by neurons that had not been pretreated with taxol were devoid of microtubules. However, microtubules were present in processes of taxol- pretreated neurons. These microtubules contained acetylated alpha- tubulin, as is typical of stable microtubules, but not tyrosinated alpha-tubulin, the form present in recently assembled microtubules. These findings show that the initial steps in neurite formation do not depend on microtubule assembly and suggest that microtubules assembled in the cell body can be translocated into developing neurites as they emerge. The results are compatible with models of neurite formation which postulate that cytoplasm from the cell body is transported into filopodia by actomyosin-based motility mechanisms.  相似文献   

15.
Neurogenesis proceeds throughout life in the higher vocal center (HVC) of the adult songbird neostriatum. Testosterone induces neuronal addition and endothelial division in HVC. We asked if testosterone-induced angiogenesis might contribute importantly to HVC neuronal recruitment. Testosterone upregulated both VEGF and its endothelial receptor, VEGF-R2/Quek1/KDR, in HVC. This yielded a burst in local HVC angiogenesis. FACS-isolated HVC endothelial cells produced BDNF in a testosterone-dependent manner. In vivo, HVC BDNF rose by the third week after testosterone, lagging by over a week the rise in VEGF and VEGF-R2. In situ hybridization revealed that much of this induced BDNF mRNA was endothelial. In vivo, both angiogenesis and neuronal addition to HVC were substantially diminished by inhibition of VEGF-R2 tyrosine kinase. These findings suggest a causal interaction between testosterone-induced angiogenesis and neurogenesis in the adult forebrain.  相似文献   

16.
We have characterized the epitope of the rat monoclonal antibody YL 1/2 in detail using synthetic peptides and several alpha-tubulin derivatives. The epitope seems to be provided by the linear sequence spanning the carboxy-terminal residues of tyrosinated alpha-tubulin. By competitive ELISA, dipeptides covering the carboxyl end could be antigenically recognized. Three sites were deduced at the dipeptide level: a negatively charged side chain in the penultimate position followed by an aromatic residue which must carry the free carboxylate group. Experiments with longer peptides point to a further negative charge provided by a carboxylate group on the third residue from the end. Thus the tripeptide Glu-Glu-Tyr was only 5-fold less active than the octapeptide spanning the carboxy-terminal alpha-tubulin sequence. The octapeptide itself showed only a 40-fold lower activity than tyrosinated alpha-tubulin. In line with the emerging epitope requirements of YL 1/2, the Escherichia coli rec A protein, the catalytic subunit of the cyclic AMP-dependent muscle protein kinase as well as performic acid-oxidized actin were recognized by YL 1/2 in immunoblots. These results thus define the sequence requirements within a probably linear epitope and give rise to some general questions concerning experiments where monoclonal antibodies are microinjected into cells in order to assess the contribution of a known antigen to cellular physiology.  相似文献   

17.
Steroidal (cyproterone acetate) and non-steroidal (RU23908 and hydroxyflutamide) antiandrogens are able to block testosterone-induced increases in nuclear androgen receptor (AR) in the prostate of 1-day orchidectomized rats, but when given alone, RU23908 and hydroxyflutamide increase nuclear AR (RU23908 greater than hydroxyflutamide) in the same animal model. The increases in nuclear AR induced by antiandrogen alone or with testosterone alone are blocked by cycloheximide 1 h after administration, suggesting that androgen or antiandrogens induce de novo AR synthesis. Concomitant to nuclear AR accumulation, testosterone is able to induce depletion of cytosol and microsomal AR. Blockade of testosterone-induced depletion of microsomal AR, but not of cytosol AR, occurs in the presence of antiandrogens. Cyproterone acetate has a higher relative binding affinity (RBA) for microsomal AR and cytosol AR than RU23908 or hydroxyflutamide. This phenomenon is in good agreement with the degree of inhibition by these compounds of the association rate of androgen for the microsomal AR. This correlation between RBA and inhibition of the initial rate of hormone binding to the receptor is not found for cytosol AR. The results show that antiandrogens are not 'pure' antagonists of androgen action and they are potent agonists in the absence of testosterone. Furthermore, testosterone alone or antiandrogens per se regulate AR levels acutely by protein-synthesis dependent mechanisms of action, in rat ventral prostate.  相似文献   

18.
Primary cell cultures derived from an androgen-dependent mouse mammary carcinoma, the Shionogi SC-115 tumor, display characteristic changes in growth, morphology and protein synthesis according to the presence or absence of testosterone. In the presence of testosterone, cell proliferation was increased and cells formed characteristic clones having no contact inhibition. Ultrastructural studies of cells showed close contacts of plasma membranes having little or no gap between cells. Some cells were related by bridges of extracellular matrix. Testosterone-induced synthesis of several intracellular and secreted proteins was observed after [35S]methionine-labeling of cells, SDS-PAGE and autoradiography, as well as the disappearance of a protein in androgen-treated cells. In the absence of testosterone, cells grow as a monolayer, have contact inhibition and flattened morphology. The ultrastructurally observed cell-to-cell contacts were usually less intimate, showing spaces of irregular width between cells. None of the testosterone-induced proteins were observed in the absence of hormone. The antiandrogen cyproterone acetate, which by itself was inactive, completely suppressed the androgen-induced effects on growth, morphology and specific protein synthesis. Glycosylation of membrane proteins, as measured after labeling of cells with [3H]N-acetyl-D-glucosamine, was increased by approximately 30% in the presence of testosterone. A similar observation was made in situ by autoradiography on intact cells. Finally, we found that culture medium conditioned by testosterone-treated Shionogi cells had significant mitogenic activity on L-929 mouse fibroblasts.  相似文献   

19.
l-Mimosine, a plant amino acid, can reversibly block mammalian cells at late G1 phase and has been suggested to affect translation of mRNAs such as p27, the CDK inhibitor. However, the mechanism of this effect is not known. Regulation of translation generally occurs at the initiation step that, in mammalian cells, is a complex process that requires multiple eukaryotic initiation factors (eIFs) and ribosome. The effects of mimosine on initiation factors or regulators consequently will influence translation initiation. P170, a putative subunit of eIF3, has been suggested to be nonessential for eIF3 function to form preinitiation complexes and it may function as a regulator for translation of a subset of mRNAs. In this article, we tested this hypothesis and investigated whether eIF3 p170 mediates mimosine effect on mRNA translation. We found that p170 translation was dramatically reduced by mimosine due to its iron-chelating function. The decreased expression of p170 by mimosine caused diminished de novo synthesis of tyrosinated alpha-tubulin and elevated translation of p27 before cell cycle arrest. These observations suggest that p170 is likely an early response gene to mimosine treatment and a mediator for mimosine effect on mRNA translation. The effect of p170 on the synthesis of tyrosinated alpha-tubulin and p27 in a reciprocal manner also suggests that p170 functions as a regulator for mRNA translation.  相似文献   

20.
To assay the functional significance of the multiple but closely related alpha-tubulin polypeptides that are expressed in mammalian cells, we generated three specific immune sera, each of which uniquely recognizes a distinct alpha-tubulin isotype. All three isotypes are expressed in a tissue-restricted manner: one (M alpha 3/7) only in mature testis, one (M alpha 4) mainly in muscle and brain, and the third (M alpha 6) in several tissues at a very low level. A fourth specific antiserum was also generated that distinguishes between the tyrosinated and nontyrosinated form of a single alpha-tubulin isotype. Because individual tubulin isotypes cannot be purified biochemically, these sera were raised using cloned fusion proteins purified from host Escherichia coli cells. To suppress the immune response to shared epitopes, animals were first rendered tolerant to fusion proteins encoding all but one of the known mammalian alpha-tubulin isotypes. Subsequent challenge with the remaining fusion protein then resulted in the elicitation of an immune response to unique epitopes. Three criteria were used to establish the specificity of the resulting sera: (a) their ability to discriminate among cloned fusion proteins representing all the known mammalian alpha-tubulin isotypes; (b) their ability to uniquely detect alpha-tubulin in whole extracts of tissues; and (c) their capacity to stain microtubules in fixed preparations of cells transfected with sequences encoding the corresponding isotype. The transfection experiments served to demonstrate (a) the coassembly of M alpha 3/7, M alpha 4, and M alpha 6 into both interphase and spindle microtubules in HeLa cells and NIH 3T3 cells, and (b) that the M alpha 4 isotype, which is unique among mammalian alpha-tubulins in that it lacks an encoded carboxy-terminal tyrosine residue, behaves like other alpha-tubulin isotypes with respect to the cycle of tyrosination/detyrosination that occurs in most cultured cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号