首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A strain of Pseudomonas aeruginosa producing 2-bromobenzoic acid, designated 2-BBZA, was isolated by enrichment culture from municipal sewage. It degraded all four 2-halobenzoates as well as certain 3-halo- and dihalobenzoates, though none of the 4-halobenzoates supported growth of this organism. 3-Hydroxybenzoate and 3-chlorocatechol were respective inhibitors of salicylate and catechol oxidation: when each was added separately to resting cells incubated with 2-bromobenzoate, salicylate and catechol were found. Oxygen uptake data suggest that the same dehalogenase may be involved in the oxidation of 2-bromo-, 2-chloro-, and 2-iodobenzoates.  相似文献   

2.
We report the isolation of Pseudomonas cepacia MB2, believed to be the first microorganism to utilize 2-methylbenzoic acid as the sole carbon source. Its growth range included all mono- and dimethylbenzoates (with the exception of 2,5- and 2,6-dimethylbenzoates) and 3-chloro-2-methylbenzoate (but not 4- or 5-chloro-2-methylbenzoate) but not chlorobenzoates lacking a methyl group. 2-Chlorobenzoate, 3-chlorobenzoate, and 2,3-, 2,4-, and 3,4-dichlorobenzoates inhibited growth of MB2 on 2-methylbenzoate as a result of cometabolism to the corresponding chlorinated catechols which blocked the key enzyme catechol 2,3-dioxygenase. A metapyrocatechase-negative mutant, MB2-G5, showed accumulation of dimethylcatechols from 2,3- and 3,4-dimethylbenzoates, and phenols were detected in resting-cell transformation extracts bearing the same substitution pattern as the original substrate, presumably following thermal degradation of the intermediate dihydrodiol. 2-Methylphenol was also found in extracts of the mutant cells with 2-methylbenzoate. These observations suggested a major route of methylbenzoate metabolism to be dioxygenation to a carboxy-hydrodiol which then forms a catechol derivative. In addition, the methyl group of 2-methylbenzoate was oxidized to isobenzofuranone (by cells of MB2-G5) and to phthalate (by cells of a separate mutant that could not utilize phthalate, MB2-D2). This pathway also generated a chlorinated isobenzofuranone from 3-chloro-2-methylbenzoate.  相似文献   

3.
We report the isolation of Pseudomonas cepacia MB2, believed to be the first microorganism to utilize 2-methylbenzoic acid as the sole carbon source. Its growth range included all mono- and dimethylbenzoates (with the exception of 2,5- and 2,6-dimethylbenzoates) and 3-chloro-2-methylbenzoate (but not 4- or 5-chloro-2-methylbenzoate) but not chlorobenzoates lacking a methyl group. 2-Chlorobenzoate, 3-chlorobenzoate, and 2,3-, 2,4-, and 3,4-dichlorobenzoates inhibited growth of MB2 on 2-methylbenzoate as a result of cometabolism to the corresponding chlorinated catechols which blocked the key enzyme catechol 2,3-dioxygenase. A metapyrocatechase-negative mutant, MB2-G5, showed accumulation of dimethylcatechols from 2,3- and 3,4-dimethylbenzoates, and phenols were detected in resting-cell transformation extracts bearing the same substitution pattern as the original substrate, presumably following thermal degradation of the intermediate dihydrodiol. 2-Methylphenol was also found in extracts of the mutant cells with 2-methylbenzoate. These observations suggested a major route of methylbenzoate metabolism to be dioxygenation to a carboxy-hydrodiol which then forms a catechol derivative. In addition, the methyl group of 2-methylbenzoate was oxidized to isobenzofuranone (by cells of MB2-G5) and to phthalate (by cells of a separate mutant that could not utilize phthalate, MB2-D2). This pathway also generated a chlorinated isobenzofuranone from 3-chloro-2-methylbenzoate.  相似文献   

4.
Pyrimidine ribonucleoside degradation in the human pathogen Pseudomonas aeruginosa ATCC 15692 was investigated. Either uracil, cytosine, 5-methylcytosine, thymine, uridine or cytidine supported P. aeruginosa growth as a nitrogen source when glucose served as the carbon source. Using thin-layer chromatographic analysis, the enzymes nucleoside hydrolase and cytosine deaninase were shown to be active in ATCC 15692. Compared to (NH4)2SO4-grown cells, nucleoside hydrolase activity in ATCC 15692 approximately doubled after growth on 5-methylcytosine as a nitrogen source while its cytosine deaminase activity increased several-fold after growth on the pyrimidine bases and ribonucleosides examined as nitrogen sources. Regulation at the level of protein synthesis by 5-methylcytosine was indicated for nucleoside hydrolase and cytosine deaminase in P. aeruginosa.  相似文献   

5.
A new intermediate was identified in the 2-tridecanone pathway of Pseudomonas multivorans, formerly designated pseudomonad 4G-9. This intermediate, undecyl acetate, was isolated directly from growing cultures of the organism; the structure of the intermediate was determined by infrared spectroscopy and by gas-liquid chromatographic identification of its hydrolytic products. An amended pathway is presented that accounts for the conversion of 2-tridecanone to provide carbon and energy for growth. It was shown that all early intermediates in the pathway arise biologically and sequentially from their precursors. Studies with P. aeruginosa showed that this organism also degrades 2-tridecanone by the pathway characteristic of P. multivorans. Biochemical mechanisms of the pathway are discussed. Discovery of undecyl acetate confirms our earlier contention that the primary attack on methyl ketones by bacteria can be by subterminal oxidation.  相似文献   

6.
7.
An atypical strain of Pseudomonas aeruginosa capable of synthesizing three phenazine pigments was isolated. Cultural conditions, under which the strain forms either chlororaphin, oxychlororaphin, or pyocyanine, are described. This broad spectrum of pigment production, as well as some other characteristics, sets this strain apart from previously described chlororaphin producers.  相似文献   

8.
Degradation of 4-chlorophenylacetic acid by a Pseudomonas species.   总被引:3,自引:3,他引:3       下载免费PDF全文
Pseudomonas sp. strain CBS3 was able to utilize 4-chlorophenylacetic acid as the sole source of carbon and energy. When this strain was grown with 4-chlorophenylacetic acid, homoprotocatechuic acid was found to be an intermediate which was further metabolized by the meta-cleavage pathway. Furthermore, three isomers of chlorohydroxyphenylacetic acid, two of them identified as 3-chloro-4-hydroxyphenylacetic acid and 4-chloro-3-hydroxyphenylacetic acid, were isolated from the culture medium. 4-Hydroxyphenylacetic acid was catabolized in a different manner by the glutathione-dependent homogentisate pathway. Degradation enzymes of both of these pathways were inducible.  相似文献   

9.
Degradation of IgA proteins by Pseudomonas aeruginosa elastase   总被引:6,自引:0,他引:6  
Human colostral IgA and myeloma proteins of both IgA1 and IgA2 subclasses were susceptible to cleavage by Pseudomonas aeruginosa elastase. Detailed analysis of the cleavage products of IgA myeloma proteins revealed complete degradation of Fab with no evidence of intact Fab fragments as intermediate cleavage products. In contrast, both IgA1 and IgA2 proteins were resistant to cleavage by alkaline protease from P. aeruginosa. The susceptibility of human IgA proteins to elastase suggests a mechanism by which P. aeruginosa might evade the potentially protective function of IgA by producing this enzyme.  相似文献   

10.
This paper describes the metabolism, transport and growth inhibition effects of 2-aminoethylarsonic acid (AEA) and 3-aminopropylarsonic acid (APrA). The former compound supported growth of Pseudomonas aeruginosa, as sole nitrogen source. The two arsonates inhibited the growth of this bacterium when 2-aminoethylphosphonic acid (AEP) but not alanine or NH4Cl, was supplied as the only other nitrogen source. The analogy between AEA and the natural compound AEP led us to examine the in vitro and in vivo interaction of AEA with the enzymes of AEP metabolism. The uptake system for AEP (Km 6 microM) was found to be competitively inhibited by AEA and APrA (Ki 18 microM for each). AEP-aminotransferase was found to act on AEA with a Km of 4 mM (3.85 mM for AEP). Alanine and 2-arsonoacetaldehyde was generated concomitantly, in a stoichiometric reaction. In vivo, AEA was catabolized by the AEP-aminotransferase since it was able to first induce this enzyme, then to be an efficient substrate. The lower growth observed may have been due to the slowness with which the permease and the aminotransferase were induced, and hence to a poor supply of alanine by transamination.  相似文献   

11.
Degradation of 2-chloroallylalcohol by a Pseudomonas sp.   总被引:1,自引:1,他引:0       下载免费PDF全文
Three Pseudomonas strains capable of utilizing 2-chloroallylalcohol (2-chloropropenol) as the sole carbon source for growth were isolated from soil. The fastest growth was observed with strain JD2, with a generation time of 3.6 h. Degradation of 2-chloroallylalcohol was accompanied by complete dehalogenation. Chloroallylalcohols that did not support growth were dechlorinated by resting cells; the dechlorination level was highest if an alpha-chlorine substituent was present. Crude extracts of strain JD2 contained inducible alcohol dehydrogenase activity that oxidized mono- and dichloroallylalcohols but not trichloroallylalcohol. The enzyme used phenazine methosulfate as an artificial electron acceptor. Further oxidation yielded 2-chloroacrylic acid. The organism also produced hydrolytic dehalogenases converting 2-chloroacetic acid and 2-chloropropionic acid.  相似文献   

12.
Abstract A Pseudomonas sp. strain WR401 was isolated for growth on 3-, 4-, and 5-methylsalicylate. The organism was capable of growth on o -toluate. The data on enzyme activities in cell-free extracts, DHB dehydrogenase and catechol 2,3-dioxygenase, as well as the cooxidation of the substrate analog 2-chlorobenzoate yielding 3-chlorocatechol indicated a pathway for o -toluate degradation through 6-methyldihydrodihydroxybenzoate, 3-methylcatechol and further through the meta -pathway. In contrast to other toluate dioxygenating enzymes found in m - and p -toluate degrading organisms, strain WR401 was able to dioxygenate a wider range of chlorobenzoates including 2-chlorobenzoate.  相似文献   

13.
A fluorescent pseudomonad (strain CW-96-1) isolated from a deep-sea vent sample grew at 30 degrees C under aerobic conditions in an artificial seawater medium and tolerated cadmium concentrations up to 5 mM. After 140 h, strain CW-96-1 removed > 99% of the cadmium from solution. Energy dispersive microanalysis revealed that the cadmium was removed by precipitation on the cell wall; sulfide production was confirmed by growth on Kligler's agar. Based on 16S ribosomal DNA sequencing and fatty acid analysis, the microorganism is closely related to Pseudomonas aeruginosa.  相似文献   

14.
Pseudomonas sp. strain JS6 grows on chlorobenzene, p-dichlorobenzene, or toluene as a sole source of carbon and energy. It does not grow on p-chlorotoluene (p-CT). Growth on glucose in the presence of p-CT resulted in the accumulation of 4-chloro-2,3-dihydroxy-1-methylbenzene (3-chloro-6-methylcatechol), 4-chloro-2,3-dihydroxy-1-methylcyclohexa-4,6-diene (p-CT dihydrodiol), and 2-methyl-4-carboxymethylenebut-2-en-4-olide (2-methyl dienelactone). Strain JS21, a spontaneous mutant capable of growth on p-CT, was isolated from cultures of strain JS6 after extended exposure to p-CT. In addition to growing on p-CT, JS21 grew on all of the substrates that supported growth of the parent strain, including p-dichlorobenzene, chlorobenzene, benzene, toluene, benzoate, p-hydroxybenzoate, phenol, and ethylbenzene. The pathway for degradation of p-CT by JS21 was investigated by respirometry, isolation of intermediates, and assay of enzymes in cell extracts. p-CT was converted to 3-chloro-6-methylcatechol by dioxygenase and dihydrodiol dehydrogenase enzymes. 3-Chloro-6-methylcatechol underwent ortho ring cleavage catalyzed by a catechol 1,2-dioxygenase to form 2-chloro-5-methyl-cis,cis-muconate, which was converted to 2-methyl dienelactone. A dienelactone hydrolase converted 2-methyl dienelactone to 2-methylmaleylacetic acid. Preliminary results indicate that a change in wild-type induction patterns allows JS21 to grow on p-CT.  相似文献   

15.
Pseudomonas sp. strain JS6 grows on chlorobenzene, p-dichlorobenzene, or toluene as a sole source of carbon and energy. It does not grow on p-chlorotoluene (p-CT). Growth on glucose in the presence of p-CT resulted in the accumulation of 4-chloro-2,3-dihydroxy-1-methylbenzene (3-chloro-6-methylcatechol), 4-chloro-2,3-dihydroxy-1-methylcyclohexa-4,6-diene (p-CT dihydrodiol), and 2-methyl-4-carboxymethylenebut-2-en-4-olide (2-methyl dienelactone). Strain JS21, a spontaneous mutant capable of growth on p-CT, was isolated from cultures of strain JS6 after extended exposure to p-CT. In addition to growing on p-CT, JS21 grew on all of the substrates that supported growth of the parent strain, including p-dichlorobenzene, chlorobenzene, benzene, toluene, benzoate, p-hydroxybenzoate, phenol, and ethylbenzene. The pathway for degradation of p-CT by JS21 was investigated by respirometry, isolation of intermediates, and assay of enzymes in cell extracts. p-CT was converted to 3-chloro-6-methylcatechol by dioxygenase and dihydrodiol dehydrogenase enzymes. 3-Chloro-6-methylcatechol underwent ortho ring cleavage catalyzed by a catechol 1,2-dioxygenase to form 2-chloro-5-methyl-cis,cis-muconate, which was converted to 2-methyl dienelactone. A dienelactone hydrolase converted 2-methyl dienelactone to 2-methylmaleylacetic acid. Preliminary results indicate that a change in wild-type induction patterns allows JS21 to grow on p-CT.  相似文献   

16.
Pseudomonas sp. strain HBP1 was found to grow on 2-hydroxy- and 2,2'-dihydroxy-biphenyl as the sole carbon and energy sources. The first step in the degradation of these compounds was catalyzed by an NADH-dependent monooxygenase. The enzyme inserted a hydroxyl group adjacent to the already existing hydroxyl group to form 2,3-dihydroxybiphenyl when acting on 2-hydroxybiphenyl and to form 2,2',3-trihydroxybiphenyl when acting on 2,2'-dihydroxybiphenyl. To be substrates of the monooxygenase, compounds required a 2-hydroxyphenyl-R structure, with R being a hydrophobic group (e.g., methyl, ethyl, propyl, sec-butyl, phenyl, or 2-hydroxyphenyl). Several chlorinated hydroxybiphenyls served as pseudosubstrates by effecting consumption of NADH and oxygen without being hydroxylated. Further degradation of 2,3-dihydroxy- and 2,2',3-trihydroxybiphenyl involved meta cleavage, with subsequent formation of benzoate and salicylate, respectively.  相似文献   

17.
Pseudomonas sp. strain HBP1 was found to grow on 2-hydroxy- and 2,2'-dihydroxy-biphenyl as the sole carbon and energy sources. The first step in the degradation of these compounds was catalyzed by an NADH-dependent monooxygenase. The enzyme inserted a hydroxyl group adjacent to the already existing hydroxyl group to form 2,3-dihydroxybiphenyl when acting on 2-hydroxybiphenyl and to form 2,2',3-trihydroxybiphenyl when acting on 2,2'-dihydroxybiphenyl. To be substrates of the monooxygenase, compounds required a 2-hydroxyphenyl-R structure, with R being a hydrophobic group (e.g., methyl, ethyl, propyl, sec-butyl, phenyl, or 2-hydroxyphenyl). Several chlorinated hydroxybiphenyls served as pseudosubstrates by effecting consumption of NADH and oxygen without being hydroxylated. Further degradation of 2,3-dihydroxy- and 2,2',3-trihydroxybiphenyl involved meta cleavage, with subsequent formation of benzoate and salicylate, respectively.  相似文献   

18.
19.
The growth of Pseudomonas fluorescens 16N2 on naphthalene was accompanied with accumulation of salicylate in the culture medium and induction of gentisate 1,2-dioxygenase and catechol 1,2-dioxygenase. The transformation of anthracene by the cells growing on hexadecane led to the formation of 3-hydroxy-2-naphthoate and salicylate. Pathways for naphthalene and anthracene degradation are proposed.  相似文献   

20.
Pseudomonas aeruginosa strain WatG was unable to utilize either n-hexatriacontane (C36) or n-tetracontane (C40), which are both insoluble in a mineral salts medium (MSM), as a sole carbon source. However, when C36 and C40 were added to MSM containing crude oil, more than 25% of each of the compounds was degraded by this strain after 2 weeks at 30 °C. These results demonstrate that P. aeruginosa strain WatG has the ability to degrade long-chain alkanes up to C40, when they are solubilized by crude oil components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号