首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chondrocytes have been shown to produce superoxide and hydrogen peroxide, suggesting possible formation of hydroxyl radical in these cells. In this study, we used electron spin resonance/spin trapping technique to detect hydroxyl radicals in chondrocytes. We found that hydroxyl radicals could be detected as α-hydroxyethyl spin trapped adduct of 4-pyridyl 1-oxide N-tert-butylnitrone (4-POBN) in chondrocytes stimulated with phorbol 12-myristate 13-acetate in the presence of ferrous ion. The formation of hydroxyl radical appears to be mediated by the transition metal-catalyzed Haber-Weiss reaction since no hydroxyl radical was detected in the absence of exogenous iron. The hydroxyl radical formation was inhibited by catalase but not by superoxide dismutase, suggesting that the hydrogen peroxide is the precursor. Cytokines, IL-1 and TNF enhanced the hydroxyl radical formation in phorbol 12-myristate 13-acetate treated chondrocytes. Interestingly, hydroxyl radical could be detected in unstimulated fresh human and rabbit cartilage tissue pieces in the presence of iron. These results suggest that the formation of hydroxyl radical in cartilage could play a role in cartilage matrix degradation.  相似文献   

2.
The goal of our study was to investigate the mechanism by which changes in extracellular pH influence lipid peroxidation processes. Ferrous iron can react with hydroperoxides, via a Fenton-type reaction, to initiate free radical chain processes. Iron is more soluble at lower pH values, therefore we hypothesized that decreasing the environmental pH would lead to increased iron-mediated lipid peroxidation. We used Photofrin, a photosensitizer that produces singlet oxygen, to introduce lipid hydroperoxides into leukemia cells (HL-60, K-562, and L1210). Singlet oxygen reacts with the PUFA of cells producing lipid hydroperoxides. Using EPR spin trapping with POBN, free radical formation from HL-60 cells was only detected when Photofrin, light, and ferrous iron were present. Free radical formation increased with increasing iron concentration; in the absence of extracellular iron, radical formation was below the limit of detection and lipid hydroperoxides accumulated in the membrane. In the presence of iron, lipid-derived radical formation in cells is pH dependent; the lower the extracellular pH (7.5-5.5), the higher the free radical flux; the lower the pH, the greater the membrane permeability induced in K-562 cells, as determined by trypan blue dye exclusion. These data demonstrate that lipid peroxidation processes, mediated by iron, are enhanced with decreasing extracellular pH. Thus, acidic pH not only releases iron from "safe" sites, but this iron will also be more damaging.  相似文献   

3.
J M Gutteridge 《FEBS letters》1984,172(2):245-249
Iron salts stimulate lipid peroxidation by decomposing lipid peroxides to produce alkoxyl and peroxyl radicals which initiate further oxidation. In aqueous solution ferrous salts produce OH. radicals, a reactive species able to abstract hydrogen atoms from unsaturated fatty acids, and so can initiate lipid peroxidation. When iron salts are added to lipids, containing variable amounts of lipid peroxide, the former reaction is favoured and OH. radicals contribute little to the observed rate of peroxidation. When iron is complexed with EDTA, however, lipid peroxide decomposition is prevented, but the complex reacts with hydrogen peroxide to form OH. radicals which are seen to initiate lipid peroxidation. Superoxide radicals appear to play an important part in reducing the iron complex.  相似文献   

4.
Ferritin and superoxide-dependent lipid peroxidation   总被引:23,自引:0,他引:23  
Ferritin was found to promote the peroxidation of phospholipid liposomes, as evidenced by malondialdehyde formation, when incubated with xanthine oxidase, xanthine, and ADP. Activity was inhibited by superoxide dismutase but markedly stimulated by the addition of catalase. Xanthine oxidase-dependent iron release from ferritin, measured spectrophotometrically using the ferrous iron chelator 2,2'-dipyridyl, was also inhibited by superoxide dismutase, suggesting that superoxide can mediate the reductive release of iron from ferritin. Potassium superoxide in crown ether also promoted superoxide dismutase-inhibitable release of iron from ferritin. Catalase had little effect on the rate of iron release from ferritin; thus hydrogen peroxide appears to inhibit lipid peroxidation by preventing the formation of an initiating species rather than by inhibiting iron release from ferritin. EPR spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide was used to observe free radical production in this system. Addition of ferritin to the xanthine oxidase system resulted in loss of the superoxide spin trap adduct suggesting an interaction between superoxide and ferritin. The resultant spectrum was that of a hydroxyl radical spin trap adduct which was abolished by the addition of catalase. These data suggest that ferritin may function in vivo as a source of iron for promotion of superoxide-dependent lipid peroxidation. Stimulation of lipid peroxidation but inhibition of hydroxyl radical formation by catalase suggests that, in this system, initiation is not via an iron-catalyzed Haber-Weiss reaction.  相似文献   

5.
Dietary enrichment with docosahexaenoic acid (DHA) has numerous beneficial effects on health. However, the intake of high doses of polyunsaturated fatty acids can promote lipid peroxidation and the subsequent propagation of oxygen radicals. The purpose of this study was to evaluate the effect of DHA on lipid peroxidation and tight junction structure and permeability in Caco-2 cell cultures. Moreover, the effects of taurine, a functional ingredient with antioxidant properties, were also tested. Differentiated Caco-2 cell monolayers were maintained in DHA-supplemented conditions with or without added taurine. Incubation with 100 microM DHA increased lipid peroxidation and paracellular permeability, in parallel with a redistribution of the tight junction proteins occludin and ZO-1. Taurine partially prevented all of these effects. The participation of reactive oxygen and nitrogen species in increased paracellular permeability was also examined using various agents that modify the formation of superoxide radical, hydrogen peroxide, nitric oxide, and peroxynitrite. We conclude that hydrogen peroxide and peroxynitrite may be involved in the DHA-induced increase in paracellular permeability and that the protective role of taurine may be in part related to its capacity to counteract the effects of hydrogen peroxide.  相似文献   

6.
Electron spin resonance spin-trapping techniques were used to investigate the in vitro and in vivo formation of free radicals during 3-methylindole (3MI) metabolism by goat lung. Utilizing the spin trap phenyl-t-butylnitrone, a nitrogen-centered free radical was detected 3 min after the addition of 3MI to an in vitro incubation system containing goat lung microsomes in the presence of NADPH and O2. The spectrum of the spin adduct was identical to that observed when 3MI was irradiated with ultraviolet light. A carbon-centered radical was also observed which increased in concentration with increasing incubation time. Microsomal incubations containing ferrous sulfate in the absence of 3MI to initiate lipid peroxidation produced the same carbon-centered free radical as obtained by spin-trapping. Malondialdehyde, and end product of lipid peroxidation, was also found to increase in concentration with increasing incubation time of 3MI. The concept that 3MI causes lipid peroxidation in the lung was supported by the in vivo study in which a carbon-centered radical was spin-trapped by phenyl-t-butylnitrone in lungs of intact goats infused with 3MI. This carbon-centered radical had hyperfine splitting constants identical to those carbon-centered free radicals trapped in in vitro incubations of 3MI. These data demonstrate that microsomal metabolism of 3MI produces a nitrogen-centered radical from 3MI which initiates lipid peroxidation in vitro and in vivo causing the formation of carbon-centered radicals from microsomal membranes.  相似文献   

7.
《Free radical research》2013,47(1-2):37-45
Vanadyl reacts with hydrogen peroxide forming hydroxyl radicals in a Fenton-like reaction. The hydroxyl radicals were spin trapped and identified using 5.5-dimethyl-I-pyrroline-N-oxide (DMPO). The quantity of hydroxyl radicals spin trapped during the reaction between vanadyl and hydrogen peroxide are equal to half of the hydroxyl radicals spin trapped during the reaction between ferrous ions and hydrogen peroxide. Experiments in the presence of formate show that this hydroxyl radical scavenger effectively competes with DMPO preventing the formation of the DMPO-OH adduct. However. in experiments using ethanol as the hydroxyl radical scavenger it was not possible to completely prevent the formation of DMPO-OH. The formation of this additional DMPO-OH in the presence of ethanol does not depend on the concentration of dissolved oxygen, but does depend on the concentration of hydrogen peroxide added to the vanadyl solution. The results suggest that the additional DMPO-OH formed in the presence of ethanol originates from a vanadium (V) intermediate. This intermediate may oxidize DMPO leading to the formation of DMPO-0; which rapidly decomposes forming DMPO-OH.  相似文献   

8.
Vanadyl reacts with hydrogen peroxide forming hydroxyl radicals in a Fenton-like reaction. The hydroxyl radicals were spin trapped and identified using 5.5-dimethyl-I-pyrroline-N-oxide (DMPO). The quantity of hydroxyl radicals spin trapped during the reaction between vanadyl and hydrogen peroxide are equal to half of the hydroxyl radicals spin trapped during the reaction between ferrous ions and hydrogen peroxide. Experiments in the presence of formate show that this hydroxyl radical scavenger effectively competes with DMPO preventing the formation of the DMPO-OH adduct. However. in experiments using ethanol as the hydroxyl radical scavenger it was not possible to completely prevent the formation of DMPO-OH. The formation of this additional DMPO-OH in the presence of ethanol does not depend on the concentration of dissolved oxygen, but does depend on the concentration of hydrogen peroxide added to the vanadyl solution. The results suggest that the additional DMPO-OH formed in the presence of ethanol originates from a vanadium (V) intermediate. This intermediate may oxidize DMPO leading to the formation of DMPO-0; which rapidly decomposes forming DMPO-OH.  相似文献   

9.
The copper-containing protein caeruloplasmin is an important biological extracellular protein. By catalysing the oxidation of ferrous ions to the ferric state (ferroxidase activity) it can inhibit lipid peroxidation and the Fenton reaction. This activity is readily destroyed by heat-denaturation. When a ferric-EDTA complex is added to hydrogen peroxide, OH X radicals are formed in a reaction inhibitable by superoxide dismutase (SOD). This reaction is also inhibited by caeruloplasmin both before and after heat-denaturation, suggesting a non-catalytic scavenging role for the protein. A combination of ferroxidase and radical scavenging activities in fluids containing iron complexes and hydrogen peroxide, but no SOD or catalase, would make caeruloplasmin an important extracellular antioxidant.  相似文献   

10.
Comparison of iron-catalyzed DNA and lipid oxidation   总被引:4,自引:0,他引:4  
Lipid and DNA oxidation catalyzed by iron(II) were compared in HEPES and phosphate buffers. Lipid peroxidation was examined in a sensitive liposome system constructed with a fluorescent probe that allowed us to examine the effects of both low and high iron concentrations. With liposomes made from synthetic 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine or from rat liver microsomal lipid, lipid peroxidation increased with iron concentration up to the range of 10--20 microM iron(II), but then rates decreased with further increases in iron concentration. This may be due to the limited amount of lipid peroxides available in liposomes for oxidation of iron(II) to generate equimolar iron(III), which is thought to be important for the initation of lipid peroxidation. Addition of hydrogen peroxide to incubations with 1--10 microM iron(II) decreased rates of lipid peroxidation, whereas addition of hydrogen peroxide to incubations with higher iron concentrations increased rates of lipid peroxidation. Thus, in this liposome system, sufficient peroxide from either within the lipid or from exogenous sources must be present to generate equimolar iron(II) and iron(III). With iron-catalyzed DNA oxidation, hydrogen peroxide always stimulated product formation. Phosphate buffer, which chelates iron but still allows for generation of hydroxyl radicals, inhibited lipid peroxidation but not DNA oxidation. HEPES buffer, which scavenges hydroxyl radicals, inhibited DNA oxidation, whereas lipid peroxidation was unaffected since presumably iron(II) and iron(III) were still available for reaction with liposomes in HEPES buffer.  相似文献   

11.
The effect of melanin on iron associated decomposition of hydrogen peroxide   总被引:8,自引:0,他引:8  
The effects of melanin on the iron-catalyzed decomposition of hydrogen peroxide to hydroxyl radicals and hydroxyl ions have been studied using electron spin resonance, spin trapping and visible light spectrophotometry. Melanin altered these reactions by several different mechanisms and consequently, depending on conditions, can significantly increase or decrease the yield of reactive products, including hydroxyl radicals. For low concentrations of ferrous ions, melanin decreased the yield of hydroxyl radicals due to binding of ferrous ions by melanin; ferrous ions bound to melanin did not decompose H2O2 efficiently. Melanins increased the rate of hydroxyl radical production if the predominant form of iron was ferric, due to the ability of melanin to reduce ferric to ferrous iron. Hydroxyl radical production in the presence of a strong chelator (e.g. EDTA) and melanin was greater than in the presence of a weak chelator (e.g. ADP) and melanin. Melanin also increased the rate of destruction of the DMPO-OH adduct.  相似文献   

12.
Miura T  Muraoka S  Fujimoto Y 《Life sciences》2002,70(22):2611-2621
Lipid peroxidation was investigated to evaluate the deleterious effect on tissues by phenylbutazone (PB). PB induced lipid peroxidation of microsomes in the presence of horseradish peroxidase and hydrogen peroxide (HRP-H2O2). The lipid peroxidation was completely inhibited by catalase but not by superoxide dismutase. Mannitol and dimethylsulfoxide had no effect. These results indicated no paticipation of superoxide and hydroxyl radical in the lipid peroxidation. Reduced glutathione (GSH) efficiently inhibited the lipid peroxidation. PB radicals emitted electron spin resonance (ESR) signals during the reaction of PB with HRP-H2O2. Microsomes and arachidonic acid strongly diminished the ESR signals, indicating that PB radicals directly react with unsaturated lipids of microsomes to cause thiobarbituric acid reactive substances. GSH sharply diminished the ESR signals of PB radicals, suggesting that GSH scavenges PB radicals to inhibit lipid peroxidation. Also, 2-methyl-2-nitrosopropan strongly inhibited lipid peroxidation. R-Phycoerythrin, a peroxyl radical detector substance, was decomposed by PB with HRP-H2O2. These results suggest that lipid peroxidation of microsomes is induced by PB radicals or peroxyl radicals, or both.  相似文献   

13.
《Free radical research》2013,47(3-6):143-148
Iron plays a central role in oxidative injury, reportedly because it catalyzes superoxide- and hydrogen peroxide-dependent reactions yielding a powerful oxidant such as the hydroxyl radical. Iron is also thought to mediate the cardiotoxic and antitumour effects of adriamycin and related compounds. NADPH-supplemented microsomes reduce adriamycin to a semiquinone radical, which in turn re-oxidizes in the presence of oxygen to form superoxide and hence hydrogen peroxide. During this redox cycling membrane-bound nonheme iron undergoes superoxide dismutase- and catalase-insensitive reductive release. Membrane iron mobilization triggers lipid peroxidation, which is markedly enhanced by simultaneous addition of superoxide dismutase and catalase. The results indicate that : i) lipid peroxidation is mediated by the release of iron, yet the two reactions are governed by different mechanisms; and ii) oxygen radicals are not involved in or may actually inhibit adriamycin-induced lipid peroxidation. Microsomal iron delocalization and lipid peroxidation might represent oxyradical-independent mechanisms of adriamycin toxicity.  相似文献   

14.
A mixture of ADP, ferrous ions, and hydrogen peroxide (H2O2) generates hydroxyl radicals (OH) that attack the spin trap DMPO (5,5-dimethyl-pyrollidine-N-oxide) to yield the hydroxyl free radical spin-adduct, degrade deoxyribose and benzoate with the release of thiobarbituric acid-reactive material, and hydroxylate benzoate to give fluorescent products. Inhibition studies, with scavengers of the OH radical, suggest that the behavior of iron-ADP in the reaction is complicated by the formation of ternary complexes with certain scavengers and detector molecules. In addition, iron-ADP reacting with H2O2 appears to release a substantial number of OH radicals free into solution. During the generation of OH radicals the ADP molecule was, as expected, damaged by the iron bound to it. Damage to the iron ligand in this way is not normally monitored in reaction systems that use specific detector molecules for OH radical damage. Under certain reaction conditions the ligand may be the major recipient of OH radical damage thereby leading to the incorrect assumption that the iron ligand is a poor Fenton reactant.  相似文献   

15.
We have used the spin trap 5,5-dimethyl-pyrroline-1-oxide (DMPO) and EPR to detect lipid-derived radicals (Ld*) during peroxidation of polyunsaturated fatty acids (PUFA), low-density lipoprotein (LDL), and cells (K-562 and MCF-7). All oxygen-centered radical adducts of DMPO from our oxidizable targets have short lifetimes (<20 min). We hypothesized that the short lifetimes of these spin adducts are due in part to their reaction with radicals formed during lipid peroxidation. We proposed that stopping the lipid peroxidation processes by separating oxidation-mediator from oxidation-substrate with an appropriate extraction would stabilize the spin adducts. To test this hypothesis we used ethyl acetate to extract the lipid-derived radical adducts of DMPO (DMPO/Ld*) from an oxidizing docosahexaenioc acid (DHA) solution; Folch extraction was used for LDL and cell experiments. The lifetimes of DMPO spin adducts post-extraction are much longer (>10 h) than the spin adducts detected without extraction. In iron-mediated DHA oxidation we observed three DMPO adducts in the aqueous phase and two in the organic phase. The aqueous phase contains DMPO/HO* aN approximately aH approximately 14.8 G) and two carbon-centered radical adducts (aN1 approximately 15.8 G, aH1 approximately 22.6 G; aN2 approximately 15.2 G, aH2 approximately 18.9 G). The organic phase contains two long-chain lipid radical adducts (aN approximately 13.5 G, aH approximately 10.2 G; and aN approximately 12.8 G; aH approximately 6.85 G, 1.9 G). We conclude that extraction significantly increases the lifetimes of the spin adducts, allowing detection of a variety of lipid-derived radicals by EPR.  相似文献   

16.
Iron storage proteins, ferritin and haemosiderin, release iron to a range of chelators and reducing agents, including citrate, acetate and ascorbate. Released iron promotes both hydroxyl radical formation in the presence of hydrogen peroxide and lipid peroxidation in liposomes. Ferritin protein is modified in such reactions, both by free radical cleavage and addition reactions with aldehyde products of lipid peroxidation.  相似文献   

17.
Iron can be a detrimental catalyst in biological free radical oxidations. Because of the high physiological ratio of [O2]/[H2O2] (> or = 10(3)), we hypothesize that the Fenton reaction with pre-existing H2O2 is only a minor initiator of free radical oxidations and that the major initiators of biological free radical oxidations are the oxidizing species formed by the reaction of Fe2+ with dioxygen. We have employed electron paramagnetic resonance spin trapping to examine this hypothesis. Free radical oxidation of: 1) chemical (ethanol, dimethyl sulfoxide); 2) biochemical (glucose, glyceraldehyde); and 3) cellular (L1210 murine leukemia cells) targets were examined when subjected to an aerobic Fenton (Fe2+ + H2O2 + O2) or an aerobic (Fe2+ + O2) system. As anticipated, the Fenton reaction initiates radical formation in all the above targets. Without pre-existing H2O2, however, Fe2+ and O2 also induce substantial target radical formation. Under various experimental ratios of [O2]/[H2O2] (1-100 with [O2] approximately 250 microM), we compared the radical yield from the Fenton reaction vs. the radical yield from Fe2+ + O2 reactions. When [O2]/[H2O2] < 10, the Fenton reaction dominates target molecule radical formation; however, production of target-molecule radicals via the Fenton reaction is minor when [O2]/[H2O2] > or = 100. Interestingly, when L1210 cells are the oxidation targets, Fe2+ + O2 is observed to be responsible for formation of nearly all of the cell-derived radicals detected, no matter the ratio of [O2]/[H2O2]. Our data demonstrate that when [O2]/[H2O2] > or = 100, Fe2+ + O2 chemistry is an important route to initiation of detrimental biological free radical oxidations.  相似文献   

18.
The peroxidation of liposomes by a haem peroxidase and hydrogen peroxide in the presence of indole-3-acetic acid and derivatives was investigated. It was found that these compounds can accelerate the lipid peroxidation up to 65 fold and this is attributed to the formation of peroxyl radicals that may react with the lipids, possibly by hydrogen abstraction. The peroxyl radicals are formed by peroxidase-catalyzed oxidation of the enhancers to radical cations which undergo cleavage of the carbon-carbon bond on the side-chain to yield CO2 and carbon-centred radicals that rapidly add oxygen. In competition with decarboxylation, the radical cations deprotonate reversibly from the Nl position. Rates of decarboxylation,pKa values and rate of reaction with the peroxidase compound I indicate consistent substituent effects which, however, can not be quantitatively related to the usual Hammett or Brown parameters. Assuming that the rate of decarboxylation of the radical cations taken is a measure of the electron density of the molecule (or radical), it is found that the efficiency of these compounds as enhancers of lipid peroxidation increases with increasing electron density, suggesting that, at least in the model system, the oxidation of the substrates is the limiting step in causing lipid peroxidation.  相似文献   

19.
Abstract: Oxidative damage in the CNS is proposed to play a role in many acute and chronic neurodegenerative disorders. Accordingly, the nitrone spin trap α-phenyl- N - tert -butylnitrone (PBN), which reacts covalently with free radicals, has shown efficacy in a variety of animal models of CNS injury. We have synthesized a number of cyclic variants of PBN and examined their activity as radical traps and protectants against oxidative damage in CNS tissue. By using electron spin resonance spectroscopy, the cyclic nitrones MDL 101,002 and MDL 102,832 were shown to trap radicals in a manner similar to that of PBN. All cyclic nitrones tested prevented hydroxyl radical-dependent degradation of 2-deoxyribose and peroxyl radical-dependent oxidation of synaptosomes more potently than PBN. The radical scavenging properties of the cyclic nitrones contributed to a three- to 25-fold increase in potency relative to PBN against oxidative damage and cytotoxicity in cerebellar granule cell cultures. Similar to the phenolic antioxidant MDL 74,722, the nitrones minimized seizures and delayed the time to death in mice following central injection of ferrous iron. Although iron-induced lipid peroxidation was inhibited by MDL 74,722, the nitrones had no effect on this biochemical end point, indicating that iron-induced mortality does not result solely from lipid peroxidation and suggesting additional neuroprotective properties for the nitrones. These results indicate that cyclic nitrones are more potent radical traps and inhibitors of lipid peroxidation in vitro than PBN, and their ability to delay significantly iron-induced mortality in vivo suggests they may be useful in the treatment of acute and chronic neurodegeneration. Furthermore, the stability of the spin trap adducts of the cyclic nitrones provides a new tool for the study of oxidative tissue injury.  相似文献   

20.
Synovial fluid from rheumatoid patients and normal cerebrospinal fluid contains micromolar concentrations of non-protein-bound iron salts that can promote lipid peroxidation and also the superoxide-dependent formation of hydroxyl radicals from hydrogen peroxide. These iron catalysts of oxygen radical reactions cannot be detected by conventional assays unless interfering high-molecular-weight substances, probably proteins, are removed by ultrafiltration or inactivated by exposure to low pH values. The bleomycin assay for ;catalytic' iron [Gutteridge, Rowley & Halliwell (1981) Biochem. J.199, 263-265] does not suffer from these artifacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号