首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the mammalian testis germline stem cells keep producing many sperms, while there is no direct evidence for the presence of germline stem cells in the ovary. It is widely accepted in mammals that the mature oocytes are supplied from a pool of primordial follicles in the adult ovary. In other vertebrates, such as fish, however, there has been no investigation on the mechanism underlying the high egg-producing ability. In this review, we introduce the recently identified ovarian germline stem cells and the surrounding unique structure in teleost fish, medaka (Oryzias latipes) [Nakamura S et al. Science. 2010; 328: 1561-1563]. We also discuss about the expression and function of sox9 that characterizes this unique structure.  相似文献   

3.
MAM domain containing glycosilphosphatidilinositol anchor 1 (MDGA1) is an IgCAM protein present in many vertebrate species including humans. In mammals, MDGA1 is expressed by a subset of neurons in the developing brain and thought to function in neural cell migration. We identified a fish ortholog of mdga1 by a gene‐trap screen utilizing the Frog Prince transposon in medaka (Japanese killifish, Oryzias latipes). The gene‐trap vector was inserted into an intronic region of mdga1 to form a chimeric protein with green fluorescent protein, allowing us to monitor mdga1 expression in vivo. Expression of medaka mdga1 was seen in various types of embryonic brain neurons, and specifically in neurons migrating toward their target sites, supporting the proposed function of MDGA1. We also isolated the closely related mdga2 gene, whose expression partially overlapped with that of mdga1. Despite the fact that the gene‐trap event eliminated most of the functional domains of the Mdga1 protein, homozygous embryos developed normally without any morphological abnormality, suggesting a functional redundancy of Mdga1 with other related proteins. High sequential homology of MDGA proteins between medaka and other vertebrate species suggests an essential role of the MDGA gene family in brain development among the vertebrate phylum. genesis 47:505–513, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
To determine whether gravity influences the plane of bilateral symmetry in medaka embryos, zygotes were placed with their animal-vegetal axis orientated vertically and with their vegetal pole elevated. Then, at regular intervals during the first cell cycle, the zygotes were tilted 90° for about 10 min and subsequently returned to their original orientation. In embryos tilted during the first half of the first cell cycle, the embryonic shield formed on the side that had been lowermost when the zygote was tilted. In embryos that were tilted twice, first in one direction and then in the opposite direction, the embryonic shield formed on the side that was lowermost the first time. When zygotes were centrifuged at 5 g , the embryonic shield formed on the outwardly radial (centrifugal) side of the embryo. The orientation of the array of parallel microtubules in the vegetal pole region was also influenced by tilting or centrifuging zygotes. No correlation was found between the positions of the polar body and the micropyle and the plane of bilateral symmetry. It was concluded that gravity influences both the plane of bilateral symmetry and the orientation of microtubules in the vegetal pole region of medaka embryos.  相似文献   

5.
Estrogens play fundamental roles in regulating reproductive activities and they act through estrogen receptor (ESR) in all vertebrates. Most vertebrates have two ESR subtypes (ESR1 and ESR2), whereas teleost fish have at least three (Esr1, Esr2a and Esr2b). Intricate functionalization has been suggested among the Esr subtypes, but to date, distinct roles of Esr have been characterized in only a limited number of species. Study of loss‐of‐function in animal models is a powerful tool for application to understanding vertebrate reproductive biology. In the current study, we established esr1 knockout (KO) medaka using a TALEN approach and examined the effects of Esr1 ablation. Unexpectedly, esr1 KO medaka did not show any significant defects in their gonadal development or in their sexual characteristics. Neither male or female esr1 KO medaka exhibited any significant changes in sexual differentiation or reproductive activity compared with wild type controls. Interestingly, however, estrogen‐induced vitellogenin gene expression, an estrogen‐responsive biomarker in fish, was limited in the liver of esr1 KO males. Our findings, in contrast to mammals, indicate that Esr1 is dispensable for normal development and reproduction in medaka. We thus provide an evidence for estrogen receptor functionalization between mammals and fish. Our findings will also benefit interpretation of studies into the toxicological effects of estrogenic chemicals in fish.  相似文献   

6.
The medaka, Oryzias latipes, like other fish, have two distinct aromatase genes, the ovarian (cyp19a1) and brain (cyp19a2) forms. We previously reported that Ad4BP/SF-1, a member of the NR5A subfamily, plays an important role in the regulation of cyp19a1 expression in medaka ovarian follicles during vitellogenesis. In the present study, we investigated whether liver receptor homologue-1 (LRH-1), another NR5A subfamily member, is involved in the regulation of cyp19a2 expression in the medaka brain. In situ hybridization analysis revealed that LRH-1 was expressed in the hypothalamus, where it colocalized with aromatase (cyp19a2). We then showed by transient transfection assays that LRH-1 was able to increase expression of a cyp19a2 reporter gene in various mammalian cell lines, and that mutation of a putative LRH-1 binding site within the cyp19a2 promoter abolished this effect. Taken together, these findings suggest that LRH-1 plays a role in regulating cyp19a2 expression in the medaka brain. This is the first to demonstrate in vitro the activation of brain aromatase by LRH-1 in the vertebrate brain.  相似文献   

7.
The general morphology and surface ultrastructure of the gills of adult and larvae medaka (Oryzias latipes) were studied in freshwater and seawater using scanning electron microscopy. The gills of all examined fish were structurally similar to those of other teleosts and consisted of four pairs of arches supporting (i) filaments bearing lamellae and (ii) rakers containing taste buds. Three cell types, specifically pavement cells, mitochondria‐rich cells (MRCs), and mucous cells, constituted the surface layer of the gill epithelium. Several distinctive characteristics of medaka gills were noted, including the presence of regularly distributed outgrowth on the lamellae, enlarged filament tips, the absence of microridges in most pavement cells in the filament and lamellae and the presence of MRCs in the arch at the filament base. A rapid mode of development was recorded in the gills of larval fish. At hatching, the larvae already had four arches with rudimentary filaments, rakers, and taste buds. The rudimentary lamellae appeared within 2 days after hatching. These results suggest the early involvement of larval gills in respiratory and osmoregulation activities. The responses of the macrostructures and microstructures of gills to seawater acclimation were similar in larvae and adult fish and included modification of the apical surface of MRCs, confirming the importance of these cells in osmoregulation. The potential roles of these peculiarities of the macrostructures and microstructures of medaka gills in the major functions of this organ, such as respiration and osmoregulation, are discussed.  相似文献   

8.

Background

Among the four major bilaterian clades, Deuterostomia, Acoelomorpha, Ecdysozoa, and Lophotrochozoa, the latter shows an astonishing diversity of bodyplans. While the largest lophotrochozoan assemblage, the Spiralia, which at least comprises Annelida, Mollusca, Entoprocta, Platyhelminthes, and Nemertea, show a spiral cleavage pattern, Ectoprocta, Brachiopoda and Phoronida (the Lophophorata) cleave radially. Despite a vast amount of recent molecular phylogenetic analyses, the interrelationships of lophotrochozoan phyla remain largely unresolved. Thereby, Entoprocta play a key role, because they have frequently been assigned to the Ectoprocta, despite their differently cleaving embryos. However, developmental data on entoprocts employing modern methods are virtually non-existent and the data available rely exclusively on sketch drawings, thus calling for thorough re-investigation.

Results

By applying fluorescence staining in combination with confocal microscopy and 3D-imaging techniques, we analyzed early embryonic development of a basal loxosomatid entoproct. We found that cleavage is asynchronous, equal, and spiral. An apical rosette, typical for most spiralian embryos, is formed. We also identified two cross-like cellular arrangements that bear similarities to both, a "molluscan-like" as well as an "annelid-like" cross, respectively.

Conclusions

A broad comparison of cleavage types and apical cross patterns across Lophotrochozoa shows high plasticity of these character sets and we therefore argue that these developmental traits should be treated and interpreted carefully when used for phylogenetic inferences.  相似文献   

9.
In this study, we verified nuclear transport activity of an artificial nuclear localization signal (aNLS) in medaka fish (Oryzias latipes). We generated a transgenic medaka strain expresses the aNLS tagged enhanced green fluorescent protein (EGFP) driven by a medaka beta‐actin promoter. The aNLS‐EGFP was accumulated in the nuclei of somatic tissues and yolk nuclei of oocytes, but undetectable in the spermatozoa. The fluorescent signal was observed from immediately after fertilization by a maternal contribution. Furthermore, male and female pronuclei were visualized in fertilized eggs, and nuclear dynamics of pronuclear fusion and subsequent cleavage were captured by time‐lapse imaging. In contrast, SV40NLS exhibited no activity of nuclear transport in early embryos. In conclusion, the aNLS possesses a strong nuclear localization activity and is a useful probe for fluorescent observation of the pronuclei and nuclei in early developmental stage of medaka.  相似文献   

10.
We performed an extensive analysis of endodermal development and gut tube morphogenesis in the medaka embryo by histology and in situ hybridization. The markers used in these analyses included sox17, sox32, foxA2, gata-4, -5, -6 and shh. sox17, sox32, foxA2, and gata-5 and -6 are expressed in the early endoderm to the onset of gut tube formation. Sections of medaka embryos hybridized with foxA2, a pan-endodermal marker during gut morphogenesis, demonstrated that gut tube formation is initiated in the anterior portion and that the anterior and mid/posterior gut undergo distinct morphogenetic processes. Tube formation in the anterior endoderm that is fated to the pharynx and esophagus is much delayed and appears to be independent of gut morphogenesis. The overall aspects of medaka gut development are similar to those of zebrafish, except that zebrafish tube formation initiates at both the anterior and posterior portions. Our results therefore describe both molecular and morphological aspects of medaka digestive system development that will be necessary for the characterization of medaka mutants.  相似文献   

11.
Reprogramming of adult somatic cell nuclei to pluripotency has been unsuccessful in non-mammalian animals, primarily because of chromosomal aberrations in nuclear transplants, which are considered to be caused by asynchrony between the cell cycles of the recipient egg and donor nucleus. In order to normalize the chromosomal status, we used diploidized eggs by retention of second polar body release, instead of enucleated eggs, as recipients in nuclear transfer of primary culture cells from the caudal fin of adult green fluorescent protein gene (GFP) transgenic medaka fish (Oryzias latipes). We found that 2.7% of the reconstructed embryos grew into adults that expressed GFP in various tissues in the same pattern as in the donor fish. Moreover, these fish were diploid, fertile and capable of passing the marker gene to the next generation in Mendelian fashion. We hesitate to call these fish 'clones' because we used non-enucleated eggs as recipients; in effect, they may be chimeras consisting of cells derived from diploid recipient nuclei and donor nuclei. In either case, fish adult somatic cell nuclei were reprogrammed to pluripotency and differentiated into a variety of cell types including germ cells via the use of diploidized recipient eggs.  相似文献   

12.
Although sex determination systems in animals are diverse, sex-determining genes have been identified only in mammals and some invertebrates. Recently, DMY (DM domain gene on the Y chromosome) has been found in the sex-determining region on the Y chromosome of the teleost medaka fish, Oryzias latipes. Functional and expression analyses of DMY show it to be the leading candidate for the male-determining master gene of the medaka. Although some work is required to define DMY as the master sex-determining gene, medaka is expected to be a good experimental animal for investigating the precise mechanisms involved in primary sex determination in non-mammalian vertebrates. In this article, the process of identification of DMY and is summarized and the origins of DMY and sexual development of the medaka's gonads are reviewed. In addition, putative functions of DMY are discussed.  相似文献   

13.
Using the teleost Oryzias latipes (medaka), we isolated three embryonic globin cDNAs (em.alpha-0, em.alpha-1, and em.beta-1) from the embryos 5 days after fertilization (at 30 degrees C) and two adult globin cDNAs (ad.alpha-1 and ad.beta-1) from the kidney of the fully-grown adult fish, and predicted their amino acid sequences. Molecular phylogenetic analysis showed that the embryonic globins were highly homologous in amino acid sequence to the embryonic globins previously identified in rainbow trout and zebrafish, and that they formed a monophyletic group among the teleostean globin molecules. They were clearly discriminated from the adult globin of the medaka. RT-PCR analysis showed that the embryonic globin mRNAs were intensely expressed in stage 30 and 38 embryos and in young fish 30 days after hatching. The level of expression decreased drastically after the young fish stage, and was low in fully-grown adult fish. The adult alpha globin mRNA ad.alpha-1 was scarcely expressed in the embryos, and the level of expression gradually increased in young to fully-grown adult fish. Unexpectedly, the adult beta globin mRNA ad.beta-1 was expressed throughout life, from the early embryonic stage to the fully-grown adult stage. This expression profile was quite different from that of the rainbow trout previously investigated. Some globins of the medaka were expressed both in primitive hematopoiesis and in definitive hematopoiesis.  相似文献   

14.
One key challenge for the field of chronobiology is to identify how circadian clock function emerges during early embryonic development. Teleosts such as the zebrafish are ideal models for studying circadian clock ontogeny since the entire process of development occurs ex utero in an optically transparent chorion. Medaka (Oryzias latipes) represents another powerful fish model for exploring early clock function with, like the zebrafish, many tools available for detailed genetic analysis. However, to date there have been no reports documenting circadian clock gene expression during medaka development. Here we have characterized the expression of key clock genes in various developmental stages and in adult tissues of medaka. As previously reported for other fish, light dark cycles are required for the emergence of clock gene expression rhythms in this species. While rhythmic expression of per and cry genes is detected very early during development and seems to be light driven, rhythmic clock and bmal expression appears much later around hatching time. Furthermore, the maturation of clock function seems to correlate with the appearance of rhythmic expression of these positive elements of the clock feedback loop. By accelerating development through elevated temperatures or by artificially removing the chorion, we show an earlier onset of rhythmicity in clock and bmal expression. Thus, differential maturation of key elements of the medaka clock mechanism depends on the developmental stage and the presence of the chorion.  相似文献   

15.
16.
17.
Chromosomal abnormalities such as ploidy mosaicism have constituted a major obstacle to the successful nuclear transfer of adult somatic cell nuclei in lower vertebrates to date. Euploid mosaicism has been reported previously in well-developed amphibian transplants. Here, we investigated ploidy mosaicisms in well-developed transplants of adult somatic cell nuclei in medaka fish (Oryzias latipes). Donor nuclei from primary cultured cells from the adult caudal fin of a transgenic strain carrying the green fluorescent protein gene (GFP) were transferred to recipient nonenucleated eggs of a wild-type strain to produce 662 transplants. While some of the transplants developed beyond the body formation stage and several hatched, all exhibited varying degrees of abnormal morphology, limited growth and subsequent death. Twenty-one transplants, 19 embryos and two larvae, were selected for chromosomal analysis; all were well-developed 6-day-old or later embryonic stages exhibiting slight morphological abnormalities and the same pattern of GFP expression as that of the donor strain. In addition, all exhibited various levels of euploid mosaicism with haploid-diploid, haploid-triploid or haploid-diploid-triploid chromosome sets. No visible chromosomal abnormalities were observed. Thus, euploid mosaicism similar to that observed in amphibians was confirmed in well-developed nuclear transplants of fish.  相似文献   

18.
Seasonal change in spermatogenesis was examined in the restricted spermatogonium‐type testes of a teleost, Oryzias latipes. Histological observation revealed that the number of each stage of germ cells during most of the non‐reproductive season, from October to January (O–J period) was nearly half of that during the reproductive season, from May to July (M–J period), except for type B spermatogonia (B‐gonia), which was actually equal. As a result, the ratio of primary spermatocytes (P‐cytes) to B‐gonia was remarkably small in the O–J period. Despite the differences between both time periods, the proliferative activity of type A spermatogonia (A‐gonia), B‐gonia, or P‐cytes was at a similar level in both periods. Moreover, in cultured testes treated with bromodeoxyuridine as a cell‐lineage tracer, P‐cytes differentiated to spermatids in 11–15 days in both M–J and O–J periods. These indicate that spermatogenesis is active in each period at a different state. In the spermatogenic testis, A‐gonial proliferation was maintained by human follicle stimulating hormone/luteinizing hormone in culture. Whereas cell death of B‐gonia and/or P‐cytes gradually increased in the M–J period in spite of those cells being constant in population sizes. In transition to the O–J period, A‐gonia and P‐cytes first decreased, which was accompanied by a decrease in proliferative activity of A‐gonia and relative increase of dead cells from B‐gonia and/or P‐cytes against live P‐cytes. These suggest that A‐gonial proliferation and cell death of B‐gonia and/or P‐cytes that is induced coordinately with B‐gonial differentiation are critical for the spermatogenic control.  相似文献   

19.
Given the limitations and side effects of many synthetic drugs, natural products are an important alternative source for drugs and medications for many diseases. Icariin (ICA), one of the main flavonoids from plants of the Epimedium genus, has been shown to ameliorate osteoporosis and improve bone health in preclinical studies. Those studies have used different in vivo models, mostly rodents, but the underlying mechanisms remain unclear. The present study shows, for the first time, that ICA reduces bone damage in a Rankl-induced medaka fish (Oryzias latipes), a non-rodent osteoporosis model. Live imaging was previously performed in this model to characterize antiresorptive and bone-anabolic properties of drugs. Here, a new quantification method (IM) was established based on the length of mineralized neural arches to quantify levels of bone mineralization damage and protection in early post-embryonic fish. This method was validated by quantification of three levels of bone damage in three independent Rankl fish lines, and by the determination of different degrees of severity of osteoporosis-like phenotypes in one Rankl line exposed to variable Rankl induction schemes. IM was also used to quantify the efficacy of alendronate and etidronate, two common anti-osteoporotic bisphosphonates, and revealed comparable bone protective effects for ICA and alendronate in this fish osteoporosis model. This study's data support the value of the medaka fish model for bone research and establish a method to screen for novel osteoprotective compounds.  相似文献   

20.
This study was designed to determine the estrogenic effect of the phytoestrogen genistein on several measures of endocrine function in adult Japanese medaka (Oryzias latipes) relative to 17-beta-estradiol. Adult animals of both sexes were exposed to 75, 750 and 30,000 ng/fish (average fish weight equals 0.26 g) of genistein by i.p. injection, with a positive control group treated with 300 ng/fish of 17-beta-estradiol, while a negative control group received a vehicle-only (corn oil) injection. Content of vitellogenin, the yolk glycoprotein made in the liver in response to estradiol stimulation, was measured using Western blots. Circulating estradiol and testosterone levels were measured using a steroid-enzyme immunosorbant assay. The ability of ovaries and testes to synthesize and release estradiol and testosterone was determined by ex vivo incubation of gonads with 25-hydroxycholesterol. Vitellogenin, while induced by 17-beta-estradiol, was not increased in the liver of individuals treated with genistein. In females, genistein treatment at 750 and 30,000 ng increased the estradiol production of ovaries more than the 17-beta-estradiol treatment. In males, genistein treatment resulted in decreased testosterone production from ex vivo testis and a comparable reduction in circulating testosterone level. The changes in vitellogenin, circulating steroids and ex vivo steroidogenesis in medaka in response to genistein are similar to that of 17-beta-estradiol. However, some endpoints are more sensitive to estradiol treatment (vitellogenin), while others are more sensitive to genistein (male testosterone and ovarian estrogenesis).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号