首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant polygalacturonase-inhibiting proteins (PGIPs) belong to the leucine-rich repeat (LRR) family and are known to prevent pathogen invasion by inhibiting the plant cell wall degrading enzyme, polygalacturonase. Our study reveals that these multigene-encoded defence proteins found in flowering plants only exhibit identical domain architecture with 10 tandemly-arranged LRRs. This implies that variations of PGIP inhibitory properties are not associated with the number of the repeats but with subtle changes in the sequence content of the repeats. The first and eighth repeat contain more mutations compared to the strict conservation of the plant-specific LRRs or any repeat at other positions. Each of these repeats forms a separate cluster in the phylogenetic tree, both within and across plant families, thus suggesting uniqueness with respect to their position. A study of the genes encoding PGIPs, shows the existence of two categories (i) single exon and hence no intron; and (ii) two exons with an intron in between. Analyses of the intron phase and correlation of the exon-intron structure with the compact structural modules in PGIPs support insertion of introns in the pre-existing single exon genes and thus the intron late model. Lack of conservation of phase across families and formation of individual clusters for each family in the phylogenetic tree drawn with the intron sequences illustrate the event of insertion that took place separately in each of these families.  相似文献   

2.
Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi   总被引:10,自引:0,他引:10  
Polygalacturonase-inhibiting proteins (PGIPs) are ubiquitous plant cell wall proteins that are directed against fungal polygalacturonases (PGs), which are important pathogenicity factors. The inhibiting activity of PGIPs directly reduces the aggressive potential of PGs. In addition, it causes PGs to form more long-chain oligogalacturonides that are able to induce defense responses, thereby indirectly contributing to the plant defense. Recent evidence demonstrates that PGIPs are efficient defense proteins and limit fungal invasion. PGIPs and the products of many plant resistance genes share a leucine-rich repeat (LRR) structure, which provides specific recognition of pathogen-derived molecules. The high level of polymorphism of both PGIPs and polygalacturonases is an invaluable tool for deciphering the structure, function and evolution of plant LRR proteins and their ligands. Furthermore, information about PGIP structure and evolution paves the way to the development of efficient strategies for crop protection.  相似文献   

3.
Mitochondrial ribosomes of Trypanosoma brucei are composed of 9S and 12S rRNAs, eubacterial‐type ribosomal proteins, polypeptides lacking discernible motifs and approximately 20 pentatricopeptide repeat (PPR) RNA binding proteins. Several PPRs also populate the polyadenylation complex; among these, KPAF1 and KPAF2 function as general mRNA 3′ adenylation/uridylation factors. The A/U‐tail enables mRNA binding to the small ribosomal subunit and is essential for translation. The presence of A/U‐tail also correlates with requirement for translation of certain mRNAs in mammalian and insect parasite stages. Here, we inquired whether additional PPRs activate translation of individual mRNAs. Proteomic analysis identified KRIPP1 and KRIPP8 as components of the small ribosomal subunit in mammalian and insect forms, but also revealed their association with the polyadenylation complex in the latter. RNAi knockdowns demonstrated essential functions of KRIPP1 and KRIPP8 in the actively respiring insect stage, but not in the mammalian stage. In the KRIPP1 knockdown, A/U‐tailed mRNA encoding cytochrome c oxidase subunit 1 declined concomitantly with the de novo synthesis of this subunit whereas polyadenylation and translation of cyb mRNA were unaffected. In contrast, the KRIPP8 knockdown inhibited A/U‐tailing and translation of both CO1 and cyb mRNAs. Our findings indicate that ribosome‐associated PPRs may selectively activate mRNAs for translation.  相似文献   

4.
5.
Four sets of p53-binding proteins are discussed in this review. These are the E2F family, the ASPP family, Y-box-binding protein YB1, and the prolyl isomerase Pin1. Each appears to play a role in the decision by p53 to induce an arrest of cell proliferation or apoptosis and they may also be independent markers of cancer. Their activities appear to be linked with the cell cycle and they may also interact with each other. In this review, the properties of each protein class are discussed as well as how they affect p53 functions. A model is proposed as to how their activities might be coordinated.  相似文献   

6.
7.
During ripening of fleshy fruits, changes in tissue consistency are largely due to the functioning of the enzyme polygalacturonase (PG) digesting polygalacturonan in cell-wall pectin. Polygalacturonase-inhibiting proteins (PGIP) have been found in plants as proteins interacting with PG, which is secreted by pathogenic microorganisms. PGIP are glycoproteins comprising sequences enriched in leucine repeats. Since PG is one of the main factors of pathogenicity, it is supposed that PGIP are involved in processes hampering plant disease development. PGIP presence in the apoplast of essentially all plant tissues implies their involvement in biochemical processes occurring in the cell walls. This review considers PGIP role in plant fleshy fruits, where the cell-wall composition and structure are of importance for fruit ripening, storage, and resistance to diseases.  相似文献   

8.
9.
10.
11.
12.
13.
ecmB and mrrA are expressed in the cups that cradle Dictyostelium spore heads, and MybE is necessary for their expression in lower but not upper cup cells. A Myb site within the mrrA promoter is necessary for expression in both cups. Thus, multiple Myb proteins are required for ancillary stalk differentiation.  相似文献   

14.
15.
A glycoprotein with an apparent molecular mass of 42 kDa (GP42), detected in the roots of Lupinus albus L. (cv. Rio Maior), was found to increase along the root axis with increasing distance from the apex and to be induced in roots cultured in vitro upon exogenous supply of high IAA (10-3 M ). GP42 is ionically bound to the cell wall, it has a pl>8.3, and it is N -glycosylated. The purification of GP42 was accomplished by affinity chromatography (ConA-Sepharose) followed by cation-exchange chromatography (Mono S). The amino acid sequence of the amino terminal part of the protein shows 70% identity to that of polygalacturonase inhibitor proteins (PGIPs) from other species. GP42 inhibits the polygalacturonase activity from Aspergilltus niger in vitro suggesting that it is a PGIP. The possible relationship between the L. albus PGIP and root development is discussed.  相似文献   

16.
17.
18.
Muscles are composite structures. The protein filaments responsible for force production are bundled within fluid-filled cells, and these cells are wrapped in ordered sleeves of fibrous collagen. Recent models suggest that the mechanical interaction between the intracellular fluid and extracellular collagen is essential to force production in passive skeletal muscle, allowing the material stiffness of extracellular collagen to contribute to passive muscle force at physiologically relevant muscle lengths. Such models lead to the prediction, tested here, that expansion of the fluid compartment within muscles should drive forceful muscle shortening, resulting in the production of mechanical work unassociated with contractile activity. We tested this prediction by experimentally increasing the fluid volumes of isolated bullfrog semimembranosus muscles via osmotically hypotonic bathing solutions. Over time, passive muscles bathed in hypotonic solution widened by 16.44 ± 3.66% (mean ± s.d.) as they took on fluid. Concurrently, muscles shortened by 2.13 ± 0.75% along their line of action, displacing a force-regulated servomotor and doing measurable mechanical work. This behaviour contradicts the expectation for an isotropic biological tissue that would lengthen when internally pressurized, suggesting a functional mechanism analogous to that of engineered pneumatic actuators and highlighting the significance of three-dimensional force transmission in skeletal muscle.  相似文献   

19.
小麦多聚半乳糖醛酸酶抑制蛋白的部分结构   总被引:4,自引:0,他引:4  
为了弄清小麦多聚半乳糖醛酸酶抑制蛋白 (polygalacturonase inhibitingprotein ,PGIP)的作用机制 ,并为其在基因工程中的应用提供依据 ,对其结构进行了研究 .用Edman降解法测得小麦PGIP的N端序列为Lys Pro Leu Leu Thr Lys Ile Thr Lys Gly Ala Ala Ser Thr .用CD谱研究其二级结构 ,发现小麦PGIP天然态含有 4 3 7%的 β折叠和 13 1%的α螺旋 .酸碱和温度变性引起了二级结构改变 .不完全变性阶段 ,二级结构的变化表现为α螺旋无明显变化 ,β折叠遭到破坏 ;活性完全丧失阶段 ,β折叠变化很小 ,α螺旋含量明显减少 .用NR R(非还原 还原 )双向对角线SDS PAGE鉴定出小麦PGIP含有链内二硫键 .用去糖基化法确证了小麦PGIP的糖含量为 2 2 %.小麦PGIP与双子叶植物PGIP相比 ,一级结构差异较大 ,同源性由 36 %变为 9%;二级结构相似 ,都是高 β 折叠的蛋白 ;均具有链内二硫键 ;在糖含量上也相似 .研究结果为进一步弄清小麦PGIP作用机理打下了基础 ,同时对于植物抗赤霉病基因工程具有重要意义 .  相似文献   

20.
The ATP-generating activity of rat myocardial mitochondria and intramitochondrial creatine kinase was examined as a function of the isotopy of the incubation medium magnesium pool. The study was performed using in vitro systems prepared from the hearts of animals injected with 1-methylnicotine amide, which suppresses the NAD (NADP)-dependent reactions in vivo. It was shown that the presence of the 25Mg paramagnetic cations essential by compensates for the intramitochondrial ATP deficiency caused by the 1-methyl-nicotine amide-induced blockade of oxidative phosphorylation. This effect is hardey achievable in systems where the magnesium pool consists of isotopes with a zero nuclear spin (24Mg, 26Mg). The restoration of mitochondrial ATP synthesis involves the participation of creatine kinase since the activity of the latter does not depend on 1-methyl-nicotine amide. In this case, the high efficiency of this restaration seems to be a spin-selective phenomenon which requires predominantly 25Mg2+ cations. A possible meaning of the data for further studies on the mechanisms of enzymatic catalysis regulation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号