首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of 6R-5,6,7,8-tetrahydro-L-biopterin (6R-BH4), the in vivo cofactor for tryptophan hydroxylase, on the synthesis, release, and metabolism of serotonin were studied in superfused slices from rat hippocampus. 6R-BH4 did not alter the spontaneous release of [3H]serotonin but it did significantly increase release when slices were depolarized with 30 mM KCl. Under the same incubation conditions, 6R-BH4 altered neither the synthesis (basal or tryptophan-stimulated) nor the metabolism of serotonin in hippocampal slices. The synthetic pteridine 6-methyl-5,6,7,8-tetrahydropterin also augmented release under depolarizing conditions whereas biopterin, the oxidized form of 6R-BH4, did not. The 6S isomer of BH4, which is relatively inactive as a cofactor for tryptophan hydroxylase, was equipotent with 6R-BH4 in stimulating serotonin release. 6R-BH4 did not inhibit serotonin uptake nor did it function as a serotonin autoreceptor antagonist to increase release. A direct serotonin releasing effect of 6R-BH4, like that produced by p-chloroamphetamine, could also be ruled out. At suboptimal concentrations of extracellular calcium, the KCl-induced release of 3H was significantly reduced, yet the increase in release caused by BH4 remained the same in magnitude. It is concluded that 6R-BH4 increases the depolarization-induced release of serotonin through an interaction with the release mechanism itself, possibly by enhancing calcium influx or by increasing the sensitivity of the release mechanism to calcium. The effects of 6R-BH4 on serotonin release are independent from its function as the cofactor for tryptophan hydroxylase.  相似文献   

2.
Phenylalanine hydroxylase (PAH) is a tetrahydrobiopterin-dependent enzyme that catalyzes the hydroxylation of L-phenylalanine (L-Phe) to L-tyrosine using dioxygen as an additional substrate. The requirement of PAH for a cofactor is absolute, but several cofactor analogs are able to substitute the natural cofactor in catalysis. However, it is only the natural cofactor 6R-tetrahydrobiopterin (6R-BH(4)) that induces a negative regulatory effect on the enzyme. In order to get further insights on the molecular basis for this specificity, we studied the structure of the cofactor-enzyme complex and the conformational changes induced by cofactor binding by molecular dynamics simulations. Simulations were carried out on the enzyme alone and complexed with 6R-BH(4) and with two cofactor analogs, 6S-BH(4) and 6-methyl-tetrahydropterin (6M-PH(4)). In the resting unbound enzyme Tyr377 in the catalytic domain is hydrogen bonded to both Ser23 and Glu21 of the autoregulatory N-terminal sequence. This hydrogen bonding network is disturbed by the binding of BH(4), which interacts with Ser23. By doing so, 6R-BH(4) facilitates an interaction between Glu21 and the active site iron, further pulling the N-terminal into the active site of PAH and blocking the L-Phe binding site. Thus, in the 6R-BH(4) complexed enzyme, the N-terminal functions as an intrinsic amino acid regulatory sequence (IARS). Neither 6M-PH(4) nor 6S-BH(4) can interact favorably with Ser23, and do not induce an inhibitory effect on PAH. These simulations thus explain the previous findings that the two hydroxyl groups in the side chain of the 6R epimer of BH(4) are essential for the inhibitory regulatory effect on PAH.  相似文献   

3.
5,6,7,8-Tetrahydrobiopterin (BH(4)) is an essential cofactor of nitric oxide synthases (NOSs). Oxidation of BH(4), in the setting of diabetes and other chronic vasoinflammatory conditions, can cause cofactor insufficiency and uncoupling of endothelial NOS (eNOS), manifest by a switch from nitric oxide (NO) to superoxide production. Here we tested the hypothesis that eNOS uncoupling is not simply a consequence of BH(4) insufficiency, but rather results from a diminished ratio of BH(4) vs. its catalytically incompetent oxidation product, 7,8-dihydrobiopterin (BH(2)). In support of this hypothesis, [(3)H]BH(4) binding studies revealed that BH(4) and BH(2) bind eNOS with equal affinity (K(d) approximately 80 nM) and BH(2) can rapidly and efficiently replace BH(4) in preformed eNOS-BH(4) complexes. Whereas the total biopterin pool of murine endothelial cells (ECs) was unaffected by 48-h exposure to diabetic glucose levels (30 mM), BH(2) levels increased from undetectable to 40% of total biopterin. This BH(2) accumulation was associated with diminished calcium ionophore-evoked NO activity and accelerated superoxide production. Since superoxide production was suppressed by NOS inhibitor treatment, eNOS was implicated as a principal superoxide source. Importantly, BH(4) supplementation of ECs (in low and high glucose-containing media) revealed that calcium ionophore-evoked NO bioactivity correlates with intracellular BH(4):BH(2) and not absolute intracellular levels of BH(4). Reciprocally, superoxide production was found to negatively correlate with intracellular BH(4):BH(2). Hyperglycemia-associated BH(4) oxidation and NO insufficiency was recapitulated in vivo, in the Zucker diabetic fatty rat model of type 2 diabetes. Together, these findings implicate diminished intracellular BH(4):BH(2), rather than BH(4) depletion per se, as the molecular trigger for NO insufficiency in diabetes.  相似文献   

4.
Endothelial NO synthase (eNOS) is the predominant enzyme responsible for vascular NO synthesis. A functional eNOS transfers electrons from NADPH to its heme center, where L-arginine is oxidized to L-citrulline and NO. Common conditions predisposing to atherosclerosis, such as hypertension, hypercholesterolemia, diabetes mellitus and smoking, are associated with enhanced production of reactive oxygen species (ROS) and reduced amounts of bioactive NO in the vessel wall. NADPH oxidases represent major sources of ROS in cardiovascular pathophysiology. NADPH oxidase-derived superoxide avidly interacts with eNOS-derived NO to form peroxynitrite (ONOO(-)), which oxidizes the essential NOS cofactor (6R-)5,6,7,8-tetrahydrobiopterin (BH(4)). As a consequence, oxygen reduction uncouples from NO synthesis, thereby rendering NOS to a superoxide-producing pro-atherosclerotic enzyme. Supplementation with BH(4) corrects eNOS dysfunction in several animal models and in patients. Administration of high local doses of the antioxidant L-ascorbic acid (vitamin C) improves endothelial function, whereas large-scale clinical trials do not support a strong role for oral vitamin C and/or E in reducing cardiovascular disease. Statins, angiotensin-converting enzyme inhibitors and AT1 receptor blockers have the potential of reducing vascular oxidative stress. Finally, novel approaches are being tested to block pathways leading to oxidative stress (e.g. protein kinase C) or to upregulate antioxidant enzymes.  相似文献   

5.
Tetrahydrobiopterin: biochemistry and pathophysiology   总被引:2,自引:0,他引:2  
BH4 (6R-L-erythro-5,6,7,8-tetrahydrobiopterin) is an essential cofactor of a set of enzymes that are of central metabolic importance, including four aromatic amino acid hydroxylases, alkylglycerol mono-oxygenase and three NOS (NO synthase) isoenzymes. Consequently, BH4 is present in probably every cell or tissue of higher organisms and plays a key role in a number of biological processes and pathological states associated with monoamine neurotransmitter formation, cardiovascular and endothelial dysfunction, the immune response and pain sensitivity. BH4 is formed de novo from GTP via a sequence of three enzymatic steps carried out by GTP cyclohydrolase I, 6-pyruvoyltetrahydropterin synthase and sepiapterin reductase. An alternative or salvage pathway involves dihydrofolate reductase and may play an essential role in peripheral tissues. Cofactor regeneration requires pterin-4a-carbinolamine dehydratase and dihydropteridine reductase, except for NOSs, in which the BH4 cofactor undergoes a one-electron redox cycle without the need for additional regeneration enzymes. With regard to the regulation of cofactor biosynthesis, the major controlling point is GTP cyclohydrolase I. BH4 biosynthesis is controlled in mammals by hormones and cytokines. BH4 deficiency due to autosomal recessive mutations in all enzymes, except for sepiapterin reductase, has been described as a cause of hyperphenylalaninaemia. A major contributor to vascular dysfunction associated with hypertension, ischaemic reperfusion injury, diabetes and others, appears to be an effect of oxidized BH4, which leads to an increased formation of oxygen-derived radicals instead of NO by decoupled NOS. Furthermore, several neurological diseases have been suggested to be a consequence of restricted cofactor availability, and oral cofactor replacement therapy to stabilize mutant phenylalanine hydroxylase in the BH4-responsive type of hyperphenylalaninaemia has an advantageous effect on pathological phenylalanine levels in patients.  相似文献   

6.
Allostery of tyrosine hydroxylase was found by kinetical studies of partially purified tyrosine hydroxylase from clonal rat pheochromocytoma PC12h cells. Positive cooperativity toward the cofactors, (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin [(6R)BH4] and (6S)-L-erythro-5,6,7,8-tetrahydrobiopterin [(6S)BH4], was observed. It is indicated that biopterin might be the regulatory factor of the enzyme polymers, which changes the affinity for the cofactor itself. Moreover, the stereochemical structure of (6R)BH4, the naturally-occurring cofactor, took an important role on the kinetical properties of the enzyme in concern with L-tyrosine.  相似文献   

7.
Early determinants of H2O2-induced endothelial dysfunction   总被引:4,自引:0,他引:4  
Reactive oxygen species (ROS) can stimulate nitric oxide (NO(*)) production from the endothelium by transient activation of endothelial nitric oxide synthase (eNOS). With continued or repeated exposure, NO(*) production is reduced, however. We investigated the early determinants of this decrease in NO(*) production. Following an initial H(2)O(2) exposure, endothelial cells responded by increasing NO(*) production measured electrochemically. NO(*) concentrations peaked by 10 min with a slow reduction over 30 min. The decrease in NO(*) at 30 min was associated with a 2.7-fold increase in O(2)(*-) production (p < 0.05) and a 14-fold reduction of the eNOS cofactor, tetrahydrobiopterin (BH(4), p < 0.05). Used as a probe for endothelial dysfunction, the integrated NO(*) production over 30 min upon repeated H(2)O(2) exposure was attenuated by 2.1-fold (p = 0.03). Endothelial dysfunction could be prevented by BH(4) cofactor supplementation, by scavenging O(2)(*-) or peroxynitrite (ONOO(-)), or by inhibiting the NADPH oxidase. Hydroxyl radical (()OH) scavenging did not have an effect. In summary, early H(2)O(2)-induced endothelial dysfunction was associated with a decreased BH(4) level and increased O(2)(*-) production. Dysfunction required O(2)(*-), ONOO(-), or a functional NADPH oxidase. Repeated activation of the NADPH oxidase by ROS may act as a feed forward system to promote endothelial dysfunction.  相似文献   

8.
(6R)-L-erythro-5,6,7,8-Tetrahydrobiopterin (BH4) is an essential cofactor for tyrosine hydroxylase (TH), tryptophan hydroxylase, phenylalanine hydroxylase, and nitric-oxide synthase. These enzymes synthesize neurotransmitters, e.g. catecholamines, serotonin, and nitric oxide (NO). We established mice unable to synthesize BH4 by disruption of the 6-pyruvoyltetrahydropterin synthase gene, the encoded protein of which catalyzes the second step of BH4 biosynthesis. Homozygous mice were born at the almost expected Mendelian ratio, but died within 48 h after birth. In the brain of homozygous mutant neonates, levels of biopterin, catecholamines, and serotonin were extremely low. The number of TH molecules was highly dependent on the intracellular concentration of BH4 at nerve terminals. Alteration of the TH protein level by modulation of the BH4 content is a novel regulatory mechanism. Our data showing that catecholaminergic, serotonergic, and NO systems were differently affected by BH4 starvation suggest the possible involvement of BH4 synthesis in the etiology of monoamine-based neurological and neuropsychiatric disorders.  相似文献   

9.
Although endothelial dysfunction deteriorates diabetic angiopathy, the mechanisms are obscure. We revealed that high glucose augmented eNOS through stimulation of eNOS mRNA in cultured BAECs. NO was decreased and O2- was increased simultaneously. NOS inhibitor, inhibited O2- release, so did NADPH oxidase inhibitor. The effects were synergistic. Both intracellular BH4 level and GTPCH1 activity were decreased by high glucose, in line with decrease of GTPCH1 mRNA. HMG-CoA reductase inhibitor, atorvastatin increased GTPCH1 mRNA and activity, and BH4 level. Conclusively, high glucose leads to eNOS dysfunction by inhibiting BH4 synthesis and atorvastatin stimulate BH4 synthesis directly, and it may work as atherogenic process.  相似文献   

10.
In the vasculature, nitric oxide (NO) is generated by endothelial NO synthase (eNOS) in a calcium/calmodulin-dependent reaction. In the absence of the requisite eNOS cofactor tetrahydrobiopterin (BH(4)), NADPH oxidation is uncoupled from NO generation, leading to the production of superoxide. Although this phenomenon is apparent with purified enzyme, cellular studies suggest that formation of the BH(4) oxidation product, dihydrobiopterin, is the molecular trigger for eNOS uncoupling rather than BH(4) depletion alone. In the current study, we investigated the effects of both BH(4) depletion and oxidation on eNOS-derived superoxide production in endothelial cells in an attempt to elucidate the molecular mechanisms regulating eNOS oxidase activity. Results demonstrated that pharmacological depletion of endothelial BH(4) does not result in eNOS oxidase activity, whereas BH(4) oxidation gave rise to significant eNOS-oxidase activity. These findings suggest that the endothelium possesses regulatory mechanisms, which prevent eNOS oxidase activity from pterin-free eNOS. Using a combination of gene silencing and pharmacological approaches, we demonstrate that eNOS-caveolin-1 association is increased under conditions of reduced pterin bioavailability and that this sequestration serves to suppress eNOS uncoupling. Using small interfering RNA approaches, we demonstrate that caveolin-1 gene silencing increases eNOS oxidase activity to 85% of that observed under conditions of BH(4) oxidation. Moreover, when caveolin-1 silencing was combined with a pharmacological inhibitor of AKT, BH(4) depletion increased eNOS-derived superoxide to 165% of that observed with BH(4) oxidation. This study identifies a critical role of caveolin-1 in the regulation of eNOS uncoupling and provides new insight into the mechanisms through which disease-associated changes in caveolin-1 expression may contribute to endothelial dysfunction.  相似文献   

11.
Long-term exposure to ascorbate is known to enhance endothelial nitric oxide synthase (eNOS) activity by stabilizing the eNOS cofactor tetrahydrobiopterin (BH4). We investigated acute effects of ascorbate on eNOS function in primary (HUVEC) and immortalized human endothelial cells (EA.hy926), aiming to provide a molecular explanation for the rapid vasodilatation seen in vivo upon administration of ascorbate. Enzymatic activity of eNOS and intracellular BH4 levels were assessed by means of an arginine-citrulline conversion assay and HPLC analysis, respectively. Over a period of 4h, ascorbate steadily increased eNOS activity, although endothelial BH4 levels remained unchanged compared to untreated control cells. Immunoblot analyses revealed that as early as 5 min after treatment ascorbate dose-dependently increased phosphorylation at eNOS-Ser1177 and concomitantly decreased phosphorylation at eNOS-Thr495, a phosphorylation pattern indicative of increased eNOS activity. By employing pharmacological inhibitors, siRNA-mediated knockdown approaches, and overexpression of the catalytic subunit of protein phosphatase 2A (PP2A), we show that this effect was at least partly owing to reduction of PP2A activity and subsequent activation of AMP-activated kinase. In this report, we unravel a novel mechanism for how ascorbate rapidly activates eNOS independent of its effects on BH4 stabilization.  相似文献   

12.
Enzymatically active mouse tyrosine hydroxylase (TH) was successfully expressed at a high level in Escherichia coli using a T7 RNA polymerase directed expression system. The specific activity of mouse TH in E. coli cell lysate was 7.5 nmol/mg protein/min. Kinetic characteristics of recombinant TH were examined. Km for tyrosine and (6R)-tetrahydrobiopterin (6R-BH4) cofactor were determined to be 7.2 microM (420 microM 6R-BH4), 19 microM [( 6R-BH4] less than 55 microM, 20 microM tyrosine) and 54 microM [( 6R-BH4] greater than 55 microM, 20 microM tyrosine), respectively. These were in good agreement with previously reported values for this enzyme.  相似文献   

13.
Tetrahydrobiopterin (BH4) is a required cofactor for the synthesis of NO by endothelial nitric oxide synthase (eNOS), and endothelial BH4 bioavailability is a critical factor in regulating the balance between NO and superoxide production (eNOS coupling). Biosynthesis of BH4 is determined by the activity of GTP-cyclohydrolase I (GTPCH). However, BH4 levels may also be influenced by oxidation, forming 7,8-dihydrobiopterin (BH2), which promotes eNOS uncoupling. Conversely, dihydrofolate reductase (DHFR) can regenerate BH4 from BH2, but whether DHFR is functionally important in maintaining eNOS coupling remains unclear. To investigate the mechanism by which DHFR might regulate eNOS coupling in vivo, we treated wild-type, BH4-deficient (hph-1), and GTPCH-overexpressing (GCH-Tg) mice with methotrexate (MTX), to inhibit BH4 recycling by DHFR. MTX treatment resulted in a striking elevation in BH2 and a decreased BH4:BH2 ratio in the aortas of wild-type mice. These effects were magnified in hph-1 but diminished in GCH-Tg mice. Attenuated eNOS activity was observed in MTX-treated hph-1 but not wild-type or GCH-Tg mouse lung, suggesting that inhibition of DHFR in BH4-deficient states leads to eNOS uncoupling. Taken together, these data reveal a key role for DHFR in regulating the BH4 vs BH2 ratio and eNOS coupling under conditions of low total biopterin availability in vivo.  相似文献   

14.
We have previously reported that intracerebroventricular administration of 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (6R-BH4), a cofactor for tyrosine hydroxylase, enhances biosynthesis of 3,4-dihydroxyphenylethylamine (dopamine) in the rat brain. In the present study, we have more precisely examined the effects of 6R-BH4 on dopamine release in vivo from the rat striatum using brain microdialysis. The amount of dopamine collected in striatal dialysates was determined using HPLC with electrochemical detection after purification with an alumina batch method. When the striatum was dialyzed with Ringer solution containing various concentrations of 6R-BH4 (0.25, 0.5, and 1.0 mM), dopamine levels in striatal dialysates increased in a concentration-dependent manner. Biopterin had little effect on dopamine levels in dialysates. The 6R-BH4-induced increase in dopamine levels in dialysates was abolished after pretreatment with tetrodotoxin (50 microM) added to the perfusion fluid, but after pretreatment with nomifensine (100 mg/kg, intraperitoneal injection), an inhibitor of dopamine uptake mechanism, a larger increase was observed. After inhibition of tyrosine hydroxylase by pretreatment with alpha-methyl-p-tyrosine (250 mg/kg, intraperitoneal injection), most of the increase persisted. These results suggest that 6R-BH4 has a dopamine-releasing action, which is not dependent on biosynthesis of dopamine.  相似文献   

15.
Tetrahyrobiopterin (BH4) is a required cofactor for the synthesis of nitric oxide by endothelial nitric-oxide synthase (eNOS), and BH4 bioavailability within the endothelium is a critical factor in regulating the balance between NO and superoxide production by eNOS (eNOS coupling). BH4 levels are determined by the activity of GTP cyclohydrolase I (GTPCH), the rate-limiting enzyme in de novo BH4 biosynthesis. However, BH4 levels may also be influenced by oxidation, forming 7,8-dihydrobiopterin (BH2), which promotes eNOS uncoupling. Conversely, dihydrofolate reductase (DHFR) can regenerate BH4 from BH2, but the functional importance of DHFR in maintaining eNOS coupling remains unclear. We investigated the role of DHFR in regulating BH4 versus BH2 levels in endothelial cells and in cell lines expressing eNOS combined with tet-regulated GTPCH expression in order to compare the effects of low or high levels of de novo BH4 biosynthesis. Pharmacological inhibition of DHFR activity by methotrexate or genetic knockdown of DHFR protein by RNA interference reduced intracellular BH4 and increased BH2 levels resulting in enzymatic uncoupling of eNOS, as indicated by increased eNOS-dependent superoxide but reduced NO production. In contrast to the decreased BH4:BH2 ratio induced by DHFR knockdown, GTPCH knockdown greatly reduced total biopterin levels but with no change in BH4:BH2 ratio. In cells expressing eNOS with low biopterin levels, DHFR inhibition or knockdown further diminished the BH4:BH2 ratio and exacerbated eNOS uncoupling. Taken together, these data reveal a key role for DHFR in eNOS coupling by maintaining the BH4:BH2 ratio, particularly in conditions of low total biopterin availability.In vascular disease states such as atherosclerosis and diabetes, endothelial nitric oxide (NO) bioactivity is reduced, and oxidative stress is increased, resulting in endothelial dysfunction. It has become apparent that enzymatic “coupling” of endothelial NO synthase by its cofactor tetrahydrobiopterin (BH4)2 plays a key role in maintaining endothelial function. Indeed, the balance between NO and superoxide production by eNOS appears to be determined by the availability of BH4 versus the abundance of 7,8-dihydrobiopterin (BH2, that is inactive for NOS cofactor function and may compete with BH4 for NOS binding (1). Intracellular biopterin levels are regulated principally by the activity of the de novo biosynthetic pathway (Fig. 1). Guanosine triphosphate cyclohydrolase I (GTPCH; EC 3.5.4.16) catalyzes the formation of dihydroneopterin triphosphate from GTP, and BH4 is generated by two further steps through 6-pyruvoyltetrahydropterin synthase and sepiapterin reductase. GTPCH appears to be the rate-limiting enzyme in BH4 biosynthesis, and overexpression of GTPCH is sufficient to augment BH4 levels in cultured endothelial cells (2). Electron paramagnetic resonance spectroscopy studies have shown that BH4 both stabilizes and donates electrons to the ferrous-dioxygen complex in the oxygenase domain, as the initiating step of l-arginine oxidation (35). In this reaction BH4 forms the protonated trihydrobiopterin cation radical, which is subsequently reduced by electron transfer from NOS flavins. When BH4 availability is limiting, electron transfer from NOS flavins becomes uncoupled from l-arginine oxidation, eNOS generates superoxide rather than NO, BH4 becomes oxidized to catalytically incompetent BH2, and a futile feed-forward cascade of BH4 destruction proceeds (1). Recent studies reveal that BH4 and BH2 bind eNOS with equal affinity and that BH2 can efficiently replace eNOS-bound BH4, resulting in eNOS uncoupling (6). Indeed, we have previously shown that the relative abundance of eNOS versus BH4 together with the intracellular BH4:BH2 ratio, rather than absolute concentrations of BH4, are the key determinants of eNOS uncoupling (7), a hypothesis supported by a recent publication where BH2 levels are elevated after exposure of bovine aortic endothelial cells to DHFR-specific siRNA (8). Thus, mechanisms that regulate the BH4:BH2 ratio independently of overall biopterin levels may play an equally important role in regulating eNOS coupling as the well established role of GTCPH, which regulates de novo BH4 biosynthesis. In addition to key roles in folate metabolism, dihydrofolate reductase (DHFR; EC 1.5.1.3) can reduce BH2, thus regenerating BH4 (9, 10). It is, therefore, likely that net BH4 bioavailability within the endothelium reflects the balance between de novo BH4 synthesis, loss of BH4 by oxidation to BH2, and the regeneration of BH4 by DHFR. In human liver extracts DHFR has been shown to reduce BH2 back to BH4 as part of the salvage pathway for biopterin synthesis (11). However, the role of this pathway and the extent to which it regulates intracellular BH4 levels in vivo remains unknown. Recent work by Chalupsky and Cai (2) investigated the functionality of endothelial DHFR in cultured bovine aortic endothelial cells. Exposure to angiotensin II down-regulated DHFR expression, decreased BH4 levels, and increased eNOS uncoupling, which was restored by overexpression of DHFR (2). A recent study also suggests that perturbation of BH4 metabolism differentially affects eNOS phosphorylation sites. Knockdown of DHFR by siRNA inhibits vascular endothelial growth factor-induced dephosphorylation of eNOS at Ser-116, an effect that is completely recovered by the addition of exogenous BH4 (8). However, the requirement for DHFR in regulating intracellular BH4 homeostasis and the quantitative relationships that relate BH4 de novo synthesis versus BH4 recycling to eNOS coupling remain uncertain. Accordingly, we sought to address these questions using both pharmacologic and genetic manipulation of DHFR activity and related these interventions to effects on eNOS coupling. We manipulated DHFR in both endothelial cells and in novel cell lines that stably express an eNOS-GFP fusion protein and where expression of human GTPCH can be regulated by doxycycline in order to test the effects of variations in intracellular BH4 biosynthesis (7). We report that although GTPCH is the key regulator of the total amount of intracellular biopterins, DHFR is critical to eNOS function by determining BH4:BH2 ratio and, thus, in maintaining eNOS coupling. In particular, DHFR is important in preventing “self-propagated” eNOS uncoupling in conditions of low total biopterin levels, when eNOS-dependent oxidation of BH4 that would further exacerbate eNOS uncoupling can be rescued by DHFR.Open in a separate windowFIGURE 1.Schematic representation of the BH4 recycling pathway and eNOS coupling. BH4 is synthesized from GTP via a series of reactions involving GTPCH, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase (SR) and DHFR. DHFR activity can be inhibited by MTX. GFRP, GTP cyclohydrolase feedback regulatory protein. PTPS, 6-pyruvoyl-tetrahydropterin synthase.  相似文献   

16.
Tetrahydrobiopterin (BH4) serves as a critical co-factor for the endothelial nitric-oxide synthase (eNOS). A deficiency of BH4 results in eNOS uncoupling, which is associated with increased superoxide and decreased NO* production. BH4 has been suggested to be a target for oxidation by peroxynitrite (ONOO-), and ascorbate has been shown to preserve BH4 levels and enhance endothelial NO* production; however, the mechanisms underlying these processes remain poorly defined. To gain further insight into these interactions, the reaction of ONOO- with BH4 was studied using electron spin resonance and the spin probe 1-hydroxy-3-carboxy-2,2,5-tetramethyl-pyrrolidine. ONOO- reacted with BH4 6-10 times faster than with ascorbate or thiols. The immediate product of the reaction between ONOO- and BH4 was the trihydrobiopterin radical (BH3.), which was reduced back to BH4 by ascorbate, whereas thiols were not efficient in recycling of BH4. Uncoupling of eNOS caused by peroxynitrite was investigated in cultured bovine aortic endothelial cells (BAECs) by measuring superoxide and NO* using spin probe 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine and the NO*-spin trap iron-diethyldithiocarbamate. Bolus ONOO-, the ONOO- donor 3-morpholinosydnonimine, and an inhibitor of BH4 synthesis (2,4-diamino-6-hydroxypyrimidine) uncoupled eNOS, increasing superoxide and decreasing NO* production. Exogenous BH4 supplementation restored endothelial NO* production. Treatment of BAECs with both BH4 and ascorbate prior to ONOO- prevented uncoupling of eNOS by ONOO-. This study demonstrates that endothelial BH4 is a crucial target for oxidation by ONOO- and that the BH4 reaction rate constant exceeds those of thiols or ascorbate. We confirmed that ONOO- uncouples eNOS by oxidation of tetrahydrobiopterin and that ascorbate does not fully protect BH4 from oxidation but recycles BH3. radical back to BH4.  相似文献   

17.
Several enzymatic sources of reactive oxygen species (ROS) were described as potential reasons of eNOS uncoupling in diabetes mellitus. In the present study, we investigated the effects of AT(1)-receptor blockade with chronic telmisartan (25 mg/kg/day, 6.5 weeks) therapy on expression of the BH(4)-synthesizing enzyme GTP-cyclohydrolase I (GCH-I), eNOS uncoupling, and endothelial dysfunction in streptozotocin (STZ, 60 mg/kg iv, 7 weeks)-induced diabetes mellitus (type I). Telmisartan therapy did not modify blood glucose and body weight. Aortas from diabetic animals had vascular dysfunction as revealed by isometric tension studies (acetylcholine and nitroglycerin potency). Vascular and cardiac ROS produced by NADPH oxidase, mitochondria, eNOS, and xanthine oxidase were increased in the diabetic group as was the expression of NADPH oxidase subunits at the protein level. The expression of GCH-I and the phosphorylation of eNOS at Ser1177 was decreased by STZ treatment. Therapy with telmisartan normalized these parameters. The present study demonstrates for the first time that AT(1)-receptor blockade by telmisartan prevents downregulation of the BH(4) synthase GCH-I and thereby eNOS uncoupling in experimental diabetes. In addition, telmisartan inhibits activation of superoxide sources like NADPH oxidase, mitochondria, and xanthine oxidase. These effects may explain the beneficial effects of telmisartan on endothelial dysfunction in diabetes.  相似文献   

18.
To clarify the therapeutic effects of 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (6R-BH(4)) on the abnormal behaviors induced by neonatal 5,7-dihydroxytryptamine (5,7-DHT, 100 microg; i.c.v.) treatment in immature rats, 6R-BH(4) (10-40 mg/kg) was administered intraperitoneally from 22nd to 28th days or only once on the 28th day. The locomotion activities decreased dramatically in 5,7-DHT-treated rats (p<0.01; as compared to controls) on the 28th day. The reduced locomotion was recovered dose-dependently by repeated administration of 6R-BH(4), whereas it was not altered after a single injection of 6R-BH(4). In addition, repeated administration of 6R-BH(4) significantly facilitated 5-HT turnover ratio (5-HIAA/5-HT) in the striatum, cerebral cortex, and cerebellum. These findings suggest that the behavioral restoration by 6R-BH(4) might be due to the enhancement of 5-HT turnover by accumulated but not a single dose of 6R-BH(4).  相似文献   

19.
Persistent pulmonary hypertension of the newborn (PPHN) is associated with decreased blood vessel density that contributes to increased pulmonary vascular resistance. Previous studies showed that uncoupled endothelial nitric oxide (NO) synthase (eNOS) activity and increased NADPH oxidase activity resulted in marked decreases in NO bioavailability and impaired angiogenesis in PPHN. In the present study, we hypothesize that loss of tetrahydrobiopterin (BH4), a critical cofactor for eNOS, induces uncoupled eNOS activity and impairs angiogenesis in PPHN. Pulmonary artery endothelial cells (PAEC) isolated from fetal lambs with PPHN (HTFL-PAEC) or control lambs (NFL-PAEC) were used to investigate the cellular mechanisms impairing angiogenesis in PPHN. Cellular mechanisms were examined with respect to BH4 levels, GTP-cyclohydrolase-1 (GCH-1) expression, eNOS dimer formation, and eNOS-heat shock protein 90 (hsp90) interactions under basal conditions and after sepiapterin (Sep) supplementation. Cellular levels of BH4, GCH-1 expression, and eNOS dimer formation were decreased in HTFL-PAEC compared with NFL-PAEC. Sep supplementation decreased apoptosis and increased in vitro angiogenesis in HTFL-PAEC and ex vivo pulmonary artery sprouting angiogenesis. Sep also increased cellular BH4 content, NO production, eNOS dimer formation, and eNOS-hsp90 association and decreased the superoxide formation in HTFL-PAEC. These data demonstrate that Sep improves NO production and angiogenic potential of HTFL-PAEC by recoupling eNOS activity. Increasing BH4 levels via Sep supplementation may be an important therapy for improving eNOS function and restoring angiogenesis in PPHN.  相似文献   

20.
Tetrahydrobiopterin (BH4) is a required cofactor for the synthesis of NO by NOS. Bioavailability of BH4 is a critical factor in regulating the balance between NO and superoxide production by endothelial NOS (eNOS coupling). Crystal structures of the mouse inducible NOS oxygenase domain reveal a homologous BH4-binding site located in the dimer interface and a conserved tryptophan residue that engages in hydrogen bonding or aromatic stacking interactions with the BH4 ring. The role of this residue in eNOS coupling remains unexplored. We overexpressed human eNOS W447A and W447F mutants in novel cell lines with tetracycline-regulated expression of human GTP cyclohydrolase I, the rate-limiting enzyme in BH4 synthesis, to determine the importance of BH4 and Trp-447 in eNOS uncoupling. NO production was abolished in eNOS-W447A cells and diminished in cells expressing W447F, despite high BH4 levels. eNOS-derived superoxide production was significantly elevated in W447A and W447F versus wild-type eNOS, and this was sufficient to oxidize BH4 to 7,8-dihydrobiopterin. In uncoupled, BH4-deficient cells, the deleterious effects of W447A mutation were greatly exacerbated, resulting in further attenuation of NO and greatly increased superoxide production. eNOS dimerization was attenuated in W447A eNOS cells and further reduced in BH4-deficient cells, as demonstrated using a novel split Renilla luciferase biosensor. Reduction of cellular BH4 levels resulted in a switch from an eNOS dimer to an eNOS monomer. These data reveal a key role for Trp-447 in determining NO versus superoxide production by eNOS, by effects on BH4-dependent catalysis, and by modulating eNOS dimer formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号