首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
L-type Ca2+ currents in ventricular myocytes from neonatal and adult rats   总被引:1,自引:0,他引:1  
Postnatal changes in the slow Ca2+ current (I(Ca)(L)) were investigated in freshly isolated ventricular myocytes from neonatal (1-7 days old) and adult (2-4 months old) rats, using whole-cell voltage clamp and single-channel recordings. The membrane capacitance (mean+/-SEM) averaged 23.2+/-0.5 pF in neonates (n = 163) and 140+/-4.1 pF in adults (n = 143). I(Ca)(L) was measured as the peak inward current at a test potential of +10 mV (or +20 mV) by applying a 300-ms pulse from a holding potential of -40 mV; 1.8 mM Ca2+ was used as charge carrier. The basal ICa(L) density was 6.7+/-0.2 pA/pF in neonatal and 7.8+/-0.2 pA/pF in adult cells (p < 0.05). The time course of inactivation of the fast component (at +10 ms) was significantly longer in the neonatal (10.7+/-1.4 ms) than in the adult (6.6+/-0.4 ms) cells (p < 0.05). Ryanodine (10+/-M) significantly increased this value to 18.0+/-1.9 in neonate (n = 8) and to 17.7+/-2.0 in adult (n = 9). For steady-state inactivation, the half-inactivation potential (Vh) was not changed in either group. For steady-state activation, Vh was 5.1 mV in the neonatal (n = 6) and -7.9 mV in the adult cells (n = 7). Single-channel recordings revealed that long openings (mode-2 behavior) were occasionally observed in the neonatal cells (11 events from 1080 traces/11 cells), but not in the adult cells (400 traces/4 cells). Slope conductance was 24 pS in both the neonatal and adult cells. Results in rat ventricular myocytes suggest the following: (i) the peak Ca2+ current density is already well developed in the neonatal period (being about 85% of the adult value); (ii) the fast component of inactivation is slower in neonates than in adults; and (iii) naturally occurring long openings are occasionally observed in the neonatal stage but not in the adult. Thus, the L-type Ca2+ channels of the neonate were slightly lower in density, were inactivated more slowly, and occasionally exhibited mode-2 behavior as compared with those of the adult.  相似文献   

2.
We previously reported thatlysoplasmenylcholine (LPlasC) altered the action potential (AP) andinduced afterdepolarizations in rabbit ventricular myocytes. In thisstudy, we investigated how LPlasC alters excitation-contractioncoupling using edge-motion detection, fura-PE3 fluorescent indicator,and perforated and whole cell patch-clamp techniques. LPlasC increasedcontraction, myofilament Ca2+ sensitivity, systolic anddiastolic free Ca2+ levels, and the magnitude ofCa2+ transients concomitant with increases in the maximumrates of shortening and relaxation of contraction and the rising anddeclining phases of Ca2+ transients. In some cells, LPlasCinduced arrhythmias in a pattern consistent with early and delayedaftercontractions. LPlasC also augmented the caffeine-inducedCa2+ transient with a reduction in the decay rate.Furthermore, LPlasC enhanced L-type Ca2+ channel current(ICa,L) and outward currents. LPlasC-induced alterations in contraction and ICa,L wereparalleled by its effect on the AP. Thus these results suggest thatLPlasC elicits distinct, potent positive inotropic, lusitropic, andarrhythmogenic effects, resulting from increases in Ca2+influx, Ca2+ sensitivity, sarcoplasmic reticular (SR)Ca2+ release and uptake, SR Ca2+ content, andprobably reduction in sarcolemmal Na+/Ca2+ exchange.

  相似文献   

3.
Ontogeny of Ca2+-induced Ca2+ release in rabbit ventricular myocytes   总被引:2,自引:0,他引:2  
It is commonly accepted that L-type Ca(2+) channel-mediated Ca(2+)-induced Ca(2+) release (CICR) is the dominant mode of excitation-contraction (E-C) coupling in the adult mammalian heart and that there is no appreciable CICR in neonates. However, we have observed that cell contraction in the neonatal heart was significantly decreased after sarcoplasmic reticulum (SR) Ca(2+) depletion with caffeine. Therefore, the present study investigated the developmental changes of CICR in rabbit ventricular myocytes at 3, 10, 20, and 56 days of age. We found that the inhibitory effect of the L-type Ca(2+) current (I(Ca)) inhibitor nifedipine (Nif; 15 microM) caused an increasingly larger reduction of Ca(2+) transients on depolarization in older age groups [from approximately 15% in 3-day-old (3d) myocytes to approximately 90% in 56-day-old (56d) myocytes]. The remaining Ca(2+) transient in the presence of Nif in younger age groups was eliminated by the inhibition of Na(+)/Ca(2+) exchanger (NCX) with the subsequent addition of 10 microM KB-R7943 (KB-R). Furthermore, Ca(2+) transients were significantly reduced in magnitude after the depletion of SR Ca(2+) with caffeine in all age groups, although the effect was significantly greater in the older age groups (from approximately 40% in 3d myocytes up to approximately 70% in 56d myocytes). This SR Ca(2+)-sensitive Ca(2+) transient in the earliest developmental stage was insensitive to Nif but was sensitive to the subsequent addition of KB-R, indicating the presence of NCX-mediated CICR that decreased significantly with age (from approximately 37% in 3d myocytes to approximately 0.5% in 56d myocytes). In contrast, the I(Ca)-mediated CICR increased significantly with age (from approximately 10% in 3d myocytes to approximately 70% in 56d myocytes). The CICR gain as estimated by the integral of the CICR Ca(2+) transient divided by the integral of its Ca(2+) transient trigger was smaller when mediated by NCX ( approximately 1.0 for 3d myocytes) than when mediated by I(Ca) ( approximately 3.0 for 56d myocytes). We conclude that the lower-efficiency NCX-mediated CICR is a predominant mode of CICR in the earliest developmental stages that gradually decreases as the more efficient L-type Ca(2+) channel-mediated CICR increases in prominence with ontogeny.  相似文献   

4.
These experiments were performed to determine the effects ofreducing Ca2+ influx(Cain) onK+ currents(IK) inmyocytes from rat small mesenteric arteries by1) adding externalCd2+ or2) lowering externalCa2+ to 0.2 mM. When measured froma holding potential (HP) of 20 mV(IK20),decreasing Cain decreasedIK at voltageswhere it was active (>0 mV). When measured from a HP of 60 mV(IK60),decreasing Cain increasedIK at voltagesbetween 30 and +20 mV but decreased IK at voltagesabove +40 mV. Difference currents(IK) weredetermined by digital subtraction of currents recorded under controlconditions from those obtained whenCain was decreased. At testvoltages up to 0 mV,IK60 exhibitedkinetics similar to controlIK60, with rapidactivation to a peak followed by slow inactivation. At 0 mV, peakIK60 averaged75 ± 13 pA (n = 8) withCd2+ and 120 ± 20 pA(n = 9) with lowCa2+ concentration. At testvoltages from 0 to +60 mV,IK60 always had an early positive peak phase, but its apparent "inactivation" increased with voltage and its steady value became negative above +20mV. At +60 mV, the initial peakIK60 averaged115 ± 18 pA with Cd2+ and 187 ± 34 pA with low Ca2+. With 10 mM pipette BAPTA, Cd2+ produced asmall inhibition ofIK20 but stillincreased IK60 between 30 and +10 mV. InCa2+-free external solution,Cd2+ only decreased bothIK20 andIK60. In thepresence of iberiotoxin (100 nM) to inhibitCa2+-activatedK+ channels(KCa),Cd2+ increasedIK60 at allvoltages positive to 30 mV while BAY K 8644 (1 µM) decreasedIK60. Theseresults suggest that Cain, through L-type Ca2+ channels and perhapsother pathways, increases KCa(i.e., IK20) and decreases voltage-dependent K+currents in this tissue. This effect could contribute to membrane depolarization and force maintenance.

  相似文献   

5.
Isolation of Ca2+-tolerant myocytes from adult rat heart   总被引:1,自引:0,他引:1  
A procedure for the isolation of myocytes from adult rat hearts is described. It is based on successive treatments with Ca2+-free medium, disaggregating enzymes (collagenase and hyaluronidase) and mechanical agitation. Several recent isolation methods were compared and their best features were combined, together with some original modifications. A good yield of high purity myocytes with excellent morphological and functional integrity was obtained. The cells are tolerant to physiological concentrations of Ca2+. Cellular levels of ATP, Na+, and K+ are close to those in intact hearts and glucose oxidation rates and succinate exclusion are also close to normal. These characteristics are maintained for periods over 1 h.  相似文献   

6.
Cardiac alternans, defined beat-to-beat alternations in contraction, action potential (AP) morphology or cytosolic Ca transient (CaT) amplitude, is a high risk indicator for cardiac arrhythmias. We investigated mechanisms of cardiac alternans in single rabbit ventricular myocytes. CaTs were monitored simultaneously with membrane currents or APs recorded with the patch clamp technique. A strong correlation between beat-to-beat alternations of AP morphology and CaT alternans was observed. During CaT alternans application of voltage clamp protocols in form of pre-recorded APs revealed a prominent Ca2+-dependent membrane current consisting of a large outward component coinciding with AP phases 1 and 2, followed by an inward current during AP repolarization. Approximately 85% of the initial outward current was blocked by Cl? channel blocker DIDS or lowering external Cl? concentration identifying it as a Ca2+-activated Cl? current (ICaCC). The data suggest that ICaCC plays a critical role in shaping beat-to-beat alternations in AP morphology during alternans.  相似文献   

7.
During the cardiac action potential, Ca2+ entry through dyhidropyridine receptor L-type Ca2+ channels (DHPRs) activates ryanodine receptors (RyRs) Ca2+-release channels, resulting in massive Ca2+ mobilization from the sarcoplasmic reticulum (SR). This global Ca2+ release arises from spatiotemporal summation of many localized elementary Ca2+-release events, Ca2+ sparks. We tested whether DHPRs modulate Ca2+sparks in a Ca2+ entry-independent manner. Negative modulation by DHPR of RyRs via physical interactions is accepted in resting skeletal muscle but remains controversial in the heart. Ca2+ sparks were studied in cat cardiac myocytes permeabilized with saponin or internally perfused via a patch pipette. Bathing and pipette solutions contained low Ca2+ (100 nM). Under these conditions, Ca2+ sparks were detected with a stable frequency of 3–5 sparks·s–1·100 µm–1. The DHPR blockers nifedipine, nimodipine, FS-2, and calciseptine decreased spark frequency, whereas the DHPR agonists Bay-K8644 and FPL-64176 increased it. None of these agents altered the spatiotemporal characteristics of Ca2+ sparks. The DHPR modulators were also without effect on SR Ca2+ load (caffeine-induced Ca2+ transients) or sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity (Ca2+ loading rates of isolated SR microsomes) and did not change cardiac RyR channel gating (planar lipid bilayer experiments). In summary, DHPR modulators affected spark frequency in the absence of DHPR-mediated Ca2+ entry. This action could not be attributed to a direct action of DHPR modulators on SERCA or RyRs. Our results suggest that the activity of RyR Ca2+-release units in ventricular myocytes is modulated by Ca2+ entry-independent conformational changes in neighboring DHPRs. exitation-contraction coupling; ryanodine receptor; sarco(endo)plasmic reticulum Ca2+-ATPase; dihydropyridine receptor; sarcoplasmic reticulum  相似文献   

8.
9.
Li C  Meng Q  Yu X  Jing X  Xu P  Luo D 《PloS one》2012,7(4):e36165

Background

It has been found that gap junction-associated intracellular Ca2+ [Ca2+]i disturbance contributes to the arrhythmogenesis and hyperconstriction in diseased heart. However, whether functional gaps are also involved in the regulation of normal Ca2+ signaling, in particular the basal [Ca2+]i activities, is unclear.

Methods and Results

Global and local Ca2+ signaling and gap permeability were monitored in cultured neonatal rat ventricular myocytes (NRVMs) and freshly isolated mouse ventricular myocytes by Fluo4/AM and Lucifer yellow (LY), respectively. The results showed that inhibition of gap communication by heptanol, Gap 27 and flufenamic acid or interference of connexin 43 (Cx43) with siRNA led to a significant suppression of LY uptake and, importantly, attenuations of global Ca2+ transients and local Ca2+ sparks in monolayer NRVMs and Ca2+ sparks in adult ventricular myocytes. In contrast, overexpression of rat-Cx43 in NRVMs induced enhancements in the above measurements, and so did in HEK293 cells expressing rat Cx43. Additionally, membrane-permeable inositol 1,4,5-trisphosphate (IP3 butyryloxymethyl ester) and phenylephrine, an agonist of adrenergic receptor, could relieve the inhibited Ca2+ signal and LY uptake by gap uncouplers, whereas blockade of IP3 receptor with xestospongin C or 2-aminoethoxydiphenylborate mimicked the effects of gap inhibitors. More importantly, all these gap-associated effects on Ca2+ signaling were also found in single NRVMs that only have hemichannels instead of gap junctions. Further immunostaining/immunoblotting single myocytes with antibody against Cx43 demonstrated apparent increases in membrane labeling of Cx43 and non-junctional Cx43 in overexpressed cells, suggesting functional hemichannels exist and also contribute to the Ca2+ signaling regulation in cardiomyocytes.

Conclusions

These data demonstrate that Cx43-associated gap coupling plays a role in the regulation of resting Ca2+ signaling in normal ventricular myocytes, in which IP3/IP3 receptor coupling is involved. This finding may provide a novel regulatory pathway for mediation of spontaneous global and local Ca2+ activities in cardiomyocytes.  相似文献   

10.
The inotropic and toxic effects of cardiac steroids are thought to result from Na(+)-K(+)-ATPase inhibition, with elevated intracellular Na(+)(Na)causing increased intracellular Ca(2+)(Ca) via Na-Ca exchange. We studied the effects of ouabain on cat ventricular myocytes in Na(+)-free conditions where the exchanger is inhibited. Cell shortening and Ca transients (with fluo 4-AM fluorescence) were measured under voltage clamp during exposure to Na(+)-free solutions [LiCl or N-methyl-D-glucamine (NMDG) replacement]. Ouabain enhanced contractility by 121 +/- 55% at 1 micromol/l (n = 11) and 476 +/- 159% at 3 micromol/l (n = 8) (means +/- SE). Ca transient amplitude was also increased. The inotropic effects of ouabain were retained even after pretreatment with saxitoxin (5 micromol/l) or changing the holding potential to -40 mV (to inactivate Na(+) current). Similar results were obtained with both Li(+) and NMDG replacement and in the absence of external K(+), indicating that ouabain produced positive inotropy in the absence of functional Na-Ca exchange and Na(+)-K(+)-ATPase activity. In contrast, ouabain had no inotropic response in rat ventricular myocytes (10-100 micromol/l). Finally, ouabain reversibly increased Ca(2+) overload toxicity by accelerating the rate of spontaneous aftercontractions (n = 13). These results suggest that the cellular effects of ouabain on the heart may include actions independent of Na(+)-K(+)-ATPase inhibition, Na-Ca exchange, and changes in Na.  相似文献   

11.
The role of the Na+/Ca2+ exchanger (NCX) as the main pathway for Ca2+ extrusion from ventricular myocytes is well established. However, both the role of the Ca2+ entry mode of NCX in regulating local Ca2+ dynamics and the role of the Ca2+ exit mode during the majority of the physiological action potential (AP) are subjects of controversy. The functional significance of NCXs location in T-tubules and potential co-localization with ryanodine receptors was examined using a local Ca2+ control model of low computational cost. Our simulations demonstrate that under physiological conditions local Ca2+ and Na+ gradients are critical in calculating the driving force for NCX and hence in predicting the effect of NCX on AP. Under physiological conditions when 60% of NCXs are located on T-tubules, NCX may be transiently inward within the first 100 ms of an AP and then transiently outward during the AP plateau phase. Thus, during an AP NCX current (INCX) has three reversal points rather than just one. This provides a resolution to experimental observations where Ca2+ entry via NCX during an AP is inconsistent with the time at which INCX is thought to become inward. A more complex than previously believed dynamic regulation of INCX during AP under physiological conditions allows us to interpret apparently contradictory experimental data in a consistent conceptual framework. Our modelling results support the claim that NCX regulates the local control of Ca2+ and provide a powerful tool for future investigations of the control of sarcoplasmic reticulum (SR) Ca2+ release under pathological conditions.  相似文献   

12.
Calcium-tolerant cardiac myocytes were isolated from adult rat ventricles and sarcolemmal glucose transport was assessed by measuring linear initial uptake rates of the nonmetabolized glucose analog 3-O-methyl-D-glucose in the presence and absence of Ca2+ in the incubation medium. (1) Agents which are known to increase internal Na+ and thus stimulate Ca2+ influx via Na+-Ca2+ exchange stimulated 3-methylglucose transport in the presence of external Ca2+. These include low-Na+ medium, 10(-6) M ouabain and K+-free medium, cyanide and the sodium ionophore, monensin. Hyperosmolarity stimulated transport also in the absence of Ca2+, consistent with release of Ca2+ from internal stores. Transport was decreased in a hypo-osmolar medium and with 10(-9) M ouabain, a concentration which stimulates the Na+ pump. (2) The calcium ionophore A23187 increased basal 3-methylglucose transport but opposed stimulation of transport by insulin. (3) Insulin-stimulated transport was antagonized by palmitate and this effect was reversed by 2-bromostearate, an inhibitor of fatty acid oxidation. These results are identical in all respects to those obtained in intact cardiac and skeletal muscle preparations, confirming that hexose transport in muscle shows Ca2+ dependence and indicating that isolated cardiac myocytes are suitable for the study of this phenomenon.  相似文献   

13.
The Ca2+ content of the sarcoplasmic reticulum (SR) of cardiac myocytes is thought to play a role in the regulation and termination of SR Ca2+ release through the ryanodine receptors (RyRs). Experimentally altering the amount of Ca2+ within the SR with the membrane-permeant low affinity Ca2+ chelator TPEN could improve our understanding of the mechanism(s) by which SR Ca2+ content and SR Ca2+ depletion can influence Ca2+ release sensitivity and termination. We applied laser-scanning confocal microscopy to examine SR Ca2+ release in freshly isolated ventricular myocytes loaded with fluo-3, while simultaneously recording membrane currents using the whole-cell patch-clamp technique. Following application of TPEN, local spontaneous Ca2+ releases increased in frequency and developed into cell-wide Ca2+ waves. SR Ca2+ load after TPEN application was found to be reduced to about 60% of control. Isolated cardiac RyRs reconstituted into lipid bilayers exhibited a two-fold increase of their open probability. At the low concentration used (20-40microTPEN did not significantly inhibit the SR-Ca2+-ATPase in SR vesicles. These results indicate that TPEN, traditionally used as a low affinity Ca2+ chelator in intracellular Ca2+ stores, may also act directly on the RyRs inducing an increase in their open probability. This in turn results in an increased Ca2+ leak from the SR leading to its Ca2+ depletion. Lowering of SR Ca2+ content may be a mechanism underlying the recently reported cardioprotective and antiarrhythmic features of TPEN.  相似文献   

14.
15.
This study examines whether fluid pressure (FP) modulates the L-type Ca2+ channel in cardiomyocytes and investigates the underlying cellular mechanism(s) involved. A flow of pressurized (16 dyn/cm2) fluid, identical to that bathing the myocytes, was applied onto single rat ventricular myocytes using a microperfusion method. The Ca2+ current (ICa) and cytosolic Ca2+ signals were measured using a whole cell patch-clamp and confocal imaging, respectively. It was found that the FP reversibly suppressed ICa (by 25%) without altering the current-voltage relationships, and it accelerated the inactivation of ICa. The level of ICa suppression by FP depended on the level and duration of pressure. The Ba2+ current through the Ca2+ channel was only slightly decreased by the FP (5%), suggesting an indirect inhibition of the Ca2+ channel during FP stimulation. The cytosolic Ca2+ transients and the basal Ca2+ in field-stimulated ventricular myocytes were significantly increased by the FP. The effects of the FP on the ICa and on the Ca2+ transient were resistant to the stretch-activated channel inhibitors, GsMTx-4 and streptomycin. Dialysis of myocytes with high concentrations of BAPTA, the Ca2+ buffer, eliminated the FP-induced acceleration of ICa inactivation and reduced the inhibitory effect of the FP on ICa by 80%. Ryanodine and thapsigargin, abolishing sarcoplasmic reticulum Ca2+ release, eliminated the accelerating effect of FP on the ICa inactivation, and they reduced the inhibitory effect of FP on the ICa. These results suggest that the fluid pressure indirectly suppresses the Ca2+ channel by enhancing the Ca2+-induced intracellular Ca2+ release in rat ventricular myocytes. L-type Ca2+ current; fluid pressure; ventricular myocytes; cytosolic Ca2+ transient  相似文献   

16.
This study addressed the hypothesis that cardiac Sirtuin 1 (Sirt1) deficiency alters cardiomyocyte Ca2+ and Na+ regulation, leading to cardiac dysfunction and arrhythmogenesis. We used mice with cardiac‐specific Sirt1 knockout (Sirt1?/?). Sirt1flox/flox mice were served as control. Sirt1?/? mice showed impaired cardiac ejection fraction with increased ventricular spontaneous activity and burst firing compared with those in control mice. The arrhythmic events were suppressed by KN93 and ranolazine. Reduction in Ca2+ transient amplitudes and sarcoplasmic reticulum (SR) Ca2+ stores, and increased SR Ca2+ leak were shown in the Sirt1?/? mice. Electrophysiological measurements were performed using patch‐clamp method. While L‐type Ca2+ current (ICa, L) was smaller in Sirt1?/? myocytes, reverse‐mode Na+/Ca2+ exchanger (NCX) current was larger compared with those in control myocytes. Late Na+ current (INa, L) was enhanced in the Sirt1?/? mice, alongside with elevated cytosolic Na+ level. Increased cytosolic and mitochondrial reactive oxygen species (ROS) were shown in Sirt1?/? mice. Sirt1?/? cardiomyocytes showed down‐regulation of L‐type Ca2+ channel α1c subunit (Cav1.2) and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a), but up‐regulation of Ca2+/calmodulin‐dependent protein kinase II and NCX. In conclusions, these findings suggest that deficiency of Sirt1 impairs the regulation of intracellular Ca2+ and Na+ in cardiomyocytes, thereby provoking cardiac dysfunction and arrhythmogenesis.  相似文献   

17.
Store-operated Ca2+ entry (SOCE), which is Ca2+ entry triggered by the depletion of intracellular Ca2+ stores, has been observed in many cell types, but only recently has it been suggested to occur in cardiomyocytes. In the present study, we have demonstrated SOCE-dependent sarcoplasmic reticulum (SR) Ca2+ loading (loadSR) that was not altered by inhibition of L-type Ca2+ channels, reverse mode Na+/Ca2+ exchange (NCX), or nonselective cation channels. In contrast, lowering the extracellular [Ca2+] to 0 mM or adding either 0.5 mM Zn2+ or the putative store-operated channel (SOC) inhibitor SKF-96365 (100 µM) inhibited loadSR at rest. Interestingly, inhibition of forward mode NCX with 30 µM KB-R7943 stimulated SOCE significantly and resulted in enhanced loadSR. In addition, manipulation of the extracellular and intracellular Na+ concentrations further demonstrated the modulatory role of NCX in SOCE-mediated SR Ca2+ loading. Although there is little knowledge of SOCE in cardiomyocytes, the present results suggest that this mechanism, together with NCX, may play an important role in SR Ca2+ homeostasis. The data reported herein also imply the presence of microdomains unique to the neonatal cardiomyocyte. These findings may be of particular importance during open heart surgery in neonates, in which uncontrolled SOCE could lead to SR Ca2+ overload and arrhythmogenesis. cardiac ontogeny; cardiac excitation-contraction coupling; calcium homeostasis  相似文献   

18.
19.
20.
General anaesthetics have previously been shown to have profound effects on myocardial function. Moreover, many patients suffering from diabetes mellitus are anaesthetised during surgery. This study investigated compromised functioning of cardiac myocytes from streptozotocin (STZ)-induced diabetic rats and the additive effects of halothane on these dysfunctions. Ventricular myocytes were isolated from 8 to 12 weeks STZ-treated rats. Contraction and intracellular free calcium concentration ([Ca2+] i ) were measured in electrically field-stimulated (1 Hz) fura-2-AM-loaded cells using a video-edge detection system and a fluorescence photometry system, respectively. L-type Ca2+ current was measured in whole cell, voltage-clamp mode. Halothane significantly (p < 0.01) depressed the amplitude and the time course of the Ca2+ transients in a similar manner in myocytes from control and STZ-treated rats. However, the effect of halothane on the amplitude of shortening and L-type Ca2+ current was more pronounced in myocytes from STZ-treated animals compared to age-matched controls. Myofilament sensitivity to Ca2+ was significantly (p < 0.01) increased in myocytes from STZ-treated rats compared to control. However, in the presence of halothane the myofilament sensitivity to Ca2+ was significantly (p < 0.05) reduced to a greater extent in myocytes from STZ-treated rats compared to controls. In conclusion, these results show that contractility, Ca2+ transport and myofilament sensitivity were all altered in myocytes from STZ-treated rats and these processes were further altered in the presence of halothane suggesting that hearts from STZ-induced diabetic rats are sensitive to halothane. (Mol Cell Biochem 261: 251–261, 2004)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号