首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The anion transport system of human red cells was isolated in vesicles containing the original membrane lipids and the 95 000 dalton polypeptides (band 3) by the method of Wolosin et al. (J. Biol. Chem. (1977) 252, 2419–2427). The vesicles have a functional anion transport system since they display sulfate transport that is inhibited by the fluorescent probe 8-anilinonaphthalene 1-sulfonate (ANS) with similar potency as in red cells. The vesicles were labeled with the SH-specific probe fluorescein mercuric acetate (FMA). Labeling lowers FMA fluorescence, and is prevented or reversed by dithiothreitol, suggesting that the reaction is with a thiol group on the protein. Fluorescence titrations show a maximum labeling stoichiometry of 1.3 ± 0.4 mol FMA/mol 95 000 dalton polypeptide. The polarization of bound FMA fluorescence is high indicating that the probe is highly immobilized. Pretreatment with Cu2+ + o-phenanthroline under conditions that crosslink band 3 in ghosts decreases FMA labeling 50%. Differences in kinetics of FMA labeling in sealed and leaky vesicles suggest that the reactive SH group is located in the intravesicular portion of the protein (corresponding to the cytoplasmic surface of the red cell) and that FMA can cross the membrane. Inhibitors of anion transport have no effect on FMA labeling kinetics suggesting it is not transported via the anion  相似文献   

2.
Sulfate efflux was measured in inside-out vesicles obtained from human red cells. Inhibition was observed in vesicles derived from cells pretreated with DIDS (4,4′-diisothiocyano-2,2′-stilbene disulfonate) or after addition of dipyridamole to the vesicles, both agents being specific and potent inhibitors of anion transport in cells. Trypsinization of the cytoplasmic side of the membrane in order to release a 40 000 dalton fragment from band 3 (the purported anion transport protein) had no effect on sulfate efflux. Further degradation of band 3 to a 17 000 dalton segment, by trypsinization of inside-out vesicles derived from cells that had been pretreated with chymotrypsin, also showed little reduction in transport activity. Furthermore, such vesicles derived from DIDS pretreated cells were inhibited by over 90%. In DIDS-treated cells, the agent is highly localized in band 3. In trypsinized inside-out vesicles, it is largely found in a 55 000 fragment and in trypsinized vesicles derived from cells pretreated with chymotrypsin it is largely located in the 17 000 fragment. The data suggest that both the anion transport and inhibitor binding sites are located in a 17 000 transmembrane segment of band 3.  相似文献   

3.
A new method has been developed for the chemical modification and labeling of carboxyl groups in proteins. Carboxyl groups are activated with Woodward's reagent K (N-ethyl-5-phenylisoxazolium 3'-sulfonate), and the adducts are reduced with [3H]BH4. The method has been applied to the anion transport protein of the human red blood cell (band 3). Woodward's reagent K is a reasonably potent inhibitor of band 3-mediated anion transport; a 5-min exposure of intact cells to 2 mM reagent at pH 6.5 produces 80% inhibition of transport. The inhibition is a consequence of modification of residues that can be protected by 4,4'-dinitrostilbene-2,2'-disulfonate. Treatment of intact cells with Woodward's reagent K followed by B3H4 causes extensive labeling of band 3, with minimal labeling of intracellular proteins such as spectrin. Proteolytic digestion of the labeled protein reveals that both the 60- and the 35-kDa chymotryptic fragments are labeled and that the labeling of each is inhibitable by stilbenedisulfonate. If the reduction is performed at neutral pH the major labeled product is the primary alcohol corresponding to the original carboxylic acid. Liquid chromatography of acid hydrolysates of labeled affinity-purified band 3 shows that glutamate but not aspartate residues have been converted into the hydroxyl derivative. This is the first demonstration of the conversion of a glutamate carboxyl group to an alcohol in a protein. The labeling experiments reveal that there are two glutamate residues that are sufficiently close to the stilbenedisulfonate site for their labeling to be blocked by 4,4'-diisothiocyanodihydrostilbene-2,2'-disulfonate and 4,4'-dinitrostilbene-2,2'-disulfonate.  相似文献   

4.
When pyridoxal 5'-phosphate (PLP) is covalently bound to band 3 protein in intact red blood cells and those cells are subjected to the osmotic hemolysis and resealing process, a significant reduction in the original PLP anion transport inhibitory potency occurs. We show that partial deinhibition is not due to the development of a second anion transport pathway in resealed ghosts. Rather, partial deinhibition arises from a hemolysis-induced conformational change in CH17 (17-kDa integral chymotryptic domain of band 3). This change causes the extracellular exposure of new transport inhibitory sites. Exposure of the new sites leads to a 2-fold increase in PLP labeling of CH17 in resealed ghosts compared with CH17 in intact red cells. The hemolysis and resealing process has no effect on the labeling of CH35 (35-kDa integral chymotryptic fragment of band 3). Double-labeling studies show restoration of transport inhibitory potency to near red cell levels when the newly exposed CH17 sites are labeled with PLP in resealed ghosts. The results support the view that CH17 contains PLP transport inhibitory sites. They show that a major conformational change occurs in band 3 with hemolysis.  相似文献   

5.
Summary After treatment of red cell ghosts with chymotrypsin, the predominant intrinsic peptides remaining in the membrane fraction are 15,000 and 9,000 daltons mol wt. After partial extraction with Triton X-100, the residual membrane vesicles have almost no other stained peptides and such vesicles are reported to carry out anion transport activities sensitive to specific inhibitors. In vesicles derived from cells treated with DIDS(4,4-diisothiocyano-2,2-stilbene disulfonic acid), an irreversible inhibitor of anion transport that is highly localized in an abundant intrinsic protein known as band 3, the probe is largely recovered in the 15,000 dalton peptide. The part of band 3 from which it is derived is a previously reported 17,000 transmembrane segment (Steck, T.L., Ramos, R., Strapazon, E., 1976,Biochemistry 15:1154). The 9,000-dalton peptide is present in the vesicles in a one-to-one mole ratio with the 15,000-dalton peptide, suggesting that both are derived from the same protein. This conclusion is supported by the finding that the 35,000-dalton C-terminal end of band 3, derived by chymotrypsin treatment of cells, is further proteolysed if the cells are converted to ghosts and its disappearance coincides with the appearance of the 9,000-dalton fragment. Evidence is presented that the 9,000-dalton fragment crosses the bilayer and that it is closely associated with the 15,000-dalton peptide.This paper is dedicated to the memory of Walther Wilbrandt.  相似文献   

6.
Exposure of cells to intense light with the photoactivatable reagent, N- (4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine), present in the external medium results in irreversible inhibition of chloride or sulfate exchange. This irreversible inhibition seems to result from covalent reaction with the same sites to which NAP-taurine binds reversibly in the dark. As shown in the preceding paper, high chloride concentrations decrease the reversible inhibition by NAP-taurine in the dark, in a manner suggesting that NAP-taurine and chloride compete for the modifier site of the anion transport system. In a similar fashion, high chloride concentrations in the medium during exposure to light cause a decrease in both the irreversible binding of NAP-taurine to the membrane and the inhibition of chloride exchange. Most of the chloride- sensitive irreversibly bound NAP-taurine is found in the 95,000 dalton polypeptide known as band 3 and, after pronase treatment of intact cells, in the 65,000 dalton fragment of this protein produced by proteolytic cleavage. After chymotrypsin treatment of ghosts, the NAP- taurine is localized in the 17,000 dalton transmembrane portion of this fragment. Although the possible involvement of minor labeled proteins cannot be rigorously excluded, the modifier site labeled by external NAP-taurine appears, therefore, to be located in the same portion of the 95,000 dalton polypeptide as is the transport site.  相似文献   

7.
In previous studies it has been shown that protoporphyrin-induced photodynamic effects on red blood cells are caused by photooxidation of amino acid residues in membrane proteins and by the subsequent covalent cross-linking of these proteins. Band 3, the anion transport protein of the red blood cell membrane, has a relatively low sensitivity to photodynamic cross-linking. This cannot be attributed to sterical factors inherent in the specific localization of band 3 in the membrane structure. Solubilized band 3, for instance, showed a similar low sensitivity to cross-linking. By extracellular chymotrypsin cleavage of band 3 into fragments of 60 000 and 35 000 daltons it could be shown that both fragments were about equally sensitive to photodynamic cross-linking. The 17 000 dalton transmembrane segment, on the other hand, was completely insensitive. Inhibition of band 3-mediated sulfate transport proceeded much faster than band 3 interpeptide cross-linking, presumably indicating that the inhibition of transport is caused by photooxidation of essential amino acid residues or intrapeptide cross-linking. A close parallel was observed between photodynamic inhibition of anion transport and decreased binding of 4,4′-diisothiocyanodihydrostilbene-2,2′-disulfonate (H2DIDS), suggesting that a photooxidation in the immediate vicinity of the H2DIDS binding site may be responsible for transport inhibition.  相似文献   

8.
Band 3, the predominant membrane-spanning polypeptide and purported anion transport protein of human red cells, was isolated by a new procedure which utilized selective solubilization and anion exchange chromatography on Affi-Gel 102 in 0.5% and Triton X-100/0.03% sodium dodecyl sulfate. Rabbit anti-serum prepared against the purified protein reacted with human and monkey band 3 but gave no immunoprecipitate with membrane proteins from several non-primate species. The antiserum was directed solely towards a portion of the cytoplasmic pole of the band 3 polypeptide contained within a 23,000 dalton amino-terminal fragment, as shown by agglutination, absorption, double diffusion and immunoprecipitation techniques. Saturation of both surfaces of resealed erythrocyte ghosts with the anti-band 3 antiserum had no significant effect on chloride transport. Our data define the topographically-limited immunogenicity of human band 3 in rabbits, demonstrate a lack of immunological cross-reactivity of band 3 between primates and non-primates, and support the hypothesis that the cytoplasmic domain of band 3 is not intimately involved in anion transport.  相似文献   

9.
A C Newton  S L Cook  W H Huestis 《Biochemistry》1983,22(26):6110-6117
Band 3, the anion transport protein of human erythrocyte membranes, can be transferred from cells to liposomes and from liposomes back to cell membranes, retaining function and native orientation. After incubation with cells, sonicated phosphatidylcholine vesicles bind a transmembrane protein that comigrates with band 3 on sodium dodecyl sulfate-polyacrylamide gels. Like native red cell band 3, the vesicle-bound protein is cleaved by chymotrypsin into 65- and 30-kdalton fragments and is not cleaved by trypsin. The protein can be cross-linked by copper-phenanthroline oxidation either before or after transfer to vesicles; in either case, the vesicle fractions contain high molecular weight material that is dissociated into 95-kdalton species by mercaptoethanol. Band 3-vesicle complexes contain no detectable cell lipid and are specifically permeable to anions. Greater than 99% of their anion uptake can be blocked by the band 3 inhibitor 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS). Red cells whose band 3 function has been blocked irreversibly by DIDS or eosin maleimide regain part of their anion permeability upon incubation with band 3-vesicle complexes. Under the conditions employed, an average of one copy of functional band 3 is delivered to half of the cells, increasing by 2.3-fold the number of cells containing functional anion transporters. Incubation of pure lipid vesicles or red cell membrane buds with either normal red cells or eosin maleimide inhibited cells has no detectable effect on the cells' anion permeability.  相似文献   

10.
The two structurally related probes, the apolar phenylisothiocyanate and the polar, water-soluble p-sulfophenylisothiocyanate, were analysed for their topological interaction with human erythrocyte band 3 protein. Upon thermolytic and peptic digestion of labeled erythrocyte ghosts, the membrane-integrated segments of band 3 protein, the 17,000 and 10,000 dalton peptides, were isolated. At 2 mM initial label concentration, 90% of the hydrophobic probe phenylisothiocyanate was recovered in the 10,000 dalton peptide, the remaining amount of label being associated with the 17,000 dalton fragment. Pretreatment of the membranes with 5 mM p-sulfophenylisothiocyanate followed by labeling with 2 mM phenylisothiocyanate results in a consistent reduction in binding of phenylisothiocyanate by 1 mol/mol isolated band 3 protein. p-Sulfophenylisothiocyanate reportedly binds to the 17,000 dalton fragment (Drickamer, K. (1977), J. Biol. Chem. 252, 6909-6917). The interaction of the polar probe with the membrane protein affects binding of phenylisothiocyanate to the 10,000 dalton peptide by the equivalent of 1 mol/mol isolated peptide. The topological interrelation of the membrane-integrated segments is concluded.  相似文献   

11.
Scanning microcalorimetry was employed as an aid in examining some structural features of the anion transport system in red blood cell vesicles. Two structural transitions were previously shown to be sensitive to several covalent and non-covalent inhibitors of anion transport in red cells. In this study, these transitions were selectively removed, either thermally or enzymatically, and the subsequent effect on 35SO42? efflux in red cell vesicles was determined. It is shown that removal of one of these transitions (B2) has a negligible inhibitory effect on anion transport. Cytoplasmic, intermolecular disulfide linkages between band 3 dimers are known to form during the B2 transition. The integrity of the 4,4′-diisothiocyanostilbene-2,2′-disulfonate-sensitive C transition, on the other hand, is shown to be a requirement for anion transport. The localized region of the membrane giving rise to this transition contains the transmembrane segment of band 3, as well as membrane phospholipids. The calorimetric results suggest a structure of band 3 which involves independent structural domains, and are consistent with the transmembrane segment playing a direct role in the transport process.  相似文献   

12.
Human red blood cells anion exchange protein (band 3) exposed to peroxyl radicals produced by thermolysis of 2,2′-azo-bis(2-amidinopropane) (AAPH) is degraded by proteinases that prevent accumulation of oxidatively damaged proteins. To assess whether this degradation affects anion transport capacity we used the anionic fluorescent probe 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-y) amino] ethanosulfonate (NBD-taurine). A decrease of band 3 function was observed after exposure to peroxyl radicals. In the presence of proteinase inhibitors the decrement of anion transport through band 3 was smaller indicating that removal achieved by proteinases includes oxidized band 3 which still retain transport ability. Proteinases recognize band 3 aggregates produced by peroxyl radicals as was evaluated by immunoblotting. It is concluded that decrease of band 3 transport capacity may result from a direct protein oxidation and from its degradation by proteinases and that band 3 aggregates removal may prevent macrophage recognition of the senescent condition which would lead to cell disposal.  相似文献   

13.
Human red blood cells anion exchange protein (band 3) exposed to peroxyl radicals produced by thermolysis of 2,2'-azo-bis(2-amidinopropane) (AAPH) is degraded by proteinases that prevent accumulation of oxidatively damaged proteins. To assess whether this degradation affects anion transport capacity we used the anionic fluorescent probe 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-y) amino] ethanosulfonate (NBD-taurine). A decrease of band 3 function was observed after exposure to peroxyl radicals. In the presence of proteinase inhibitors the decrement of anion transport through band 3 was smaller indicating that removal achieved by proteinases includes oxidized band 3 which still retain transport ability. Proteinases recognize band 3 aggregates produced by peroxyl radicals as was evaluated by immunoblotting. It is concluded that decrease of band 3 transport capacity may result from a direct protein oxidation and from its degradation by proteinases and that band 3 aggregates removal may prevent macrophage recognition of the senescent condition which would lead to cell disposal.  相似文献   

14.
The modes of binding of a new class of impermeant metal-chelating probe, the complex of 111In3+ to 1-(p-benzenediazonium) ethylenediamine tetraacetic acid (azo-phenyl-EDTA), to human and rabbit erythrocyte membranes and the effect of binding on the function of rabbit platelets have been studied. The metal chelate, azo-phenyl-EDTA.[111In3+] bound covalently to membrane proteins following reaction with intact erythrocytes. The amount and the pattern of labeling was assessed by sodium dodecyl sulfate (SDS)-polyacrylamide disc and slab gels for radioactivity. The pattern of labeling of intact human erythrocytes by azo-phenyl-EDTA.[111In3+], by pyridoxal phosphate-NaB3H7 and by galactose oxidase-NaB3H4 was also compared. The following results were obtained: (a) The pattern of labeling of intact human erythrocyte by azo-phenyl-EDTA.[111In3+] differed from other commonly used probes for labeling external membrane surfaces. Five polypeptides were labeled by the metal chelates. In addition to the known major proteins (protein band III, PAS-1, PAS-2 and PAS-3 of Fairbanks et al. (1972) Biochemistry 10, 2606--2617) a protein (radioactive band 4) which migrated slightly slower than PAS-3 in SDS gel was labeled heavily by the metal chelate. This protein has an apparent molecular weight of 37,500 in 8.4% acrylamide-SDS gel. About 40% of bound radioactivity was found in this protein. The diazo linkage of the metal chelate to this protein was found to be especially unstable to heat. (b) In rabbit erythrocyte membranes, the metal chelate bound to three polypeptides with apparent molecular weights of 96,000, 43,000 and 33,000 in 8.4% acrylamide gel. They are probably glycoproteins in nature. (c) The binding of the probe to platelets did not affect the platelet aggregability induced by adenosine diphoshpate. In vivo studies indicated that the labeled platelets accumulated at the plague of atherosclerotic rabbits. (d) The bifunctional analog of EDTA may permit new applications of metals with useful physical properties for studies of cell membranes.  相似文献   

15.
Right-side-out vesicles derived from red blood cells treated with chymotrypsin retain specific anion transport function (defined as transport sensitive to the specific inhibitor, 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS)), even though the transport protein, band 3, is cleaved into two segments of 60 and 35 kdaltons. In contrast, vesicles derived from alkali-stripped ghosts treated with relatively high concentrations of chymotrypsin retain almost no specific anion function. The loss of function appears to be related to additional cleavages of band 3 protein that occur in treated ghosts, the 60-kdalton segment being reduced first to a 17- and then to a 15-kdalton segment and the 35-kdalton segment being reduced to a 9-kdalton segment plus a carbohydrate containing fragment. The chymotryptic cleavages of band 3 protein of ghosts are preferentially inhibited by high ionic strength, the production of the 9-kdalton segment being somewhat slower than that of the 15-kdalton segment. Vesicles derived from ghosts treated with chymotrypsin at different ionic strengths show a graded reduction in specific anion transport activity, but it was not possible to determine, definitively, which of the additional cleavages was inhibitory. In the light of these data and other information, the functional role of the segments of band 3 is discussed.  相似文献   

16.
The band 3 protein of the human red blood cell membrane contains a glutamate residue that must be protonated in order for divalent (SO4=) anion transport to take place at an appreciable rate. The carboxyl side chain on this glutamate residue can be converted to the primary alcohol by treatment of intact cells with Woodward's reagent K (N-ethyl-5-phenylisoxazolium 3'-sulfonate) followed by reductive cleavage with BH4-. Edman degradation of CNBr fragments from band 3 labeled in intact cells with Woodward's reagent K and [3H]BH4- showed that Glu681 is heavily labeled under conditions in which Cl- exchange is inhibited, SO4= exchange is accelerated, and Cl- conductance is accelerated. No other glutamate residue in band 3 is detectably labeled under the conditions of these experiments, as demonstrated either by Edman degradation or by the lack of label in major known proteolytic fragments. It is concluded that Glu681 is the binding site for the H+ that is transported with SO4= during band 3-catalyzed H+/SO4= cotransport. This residue is conserved among all species of red cell band 3 (AE1) as well as the related proteins AE2 and AE3. Glu681 is the first amino acid residue in band 3 which has been identified as a binding site for a transported substrate (H+). The functional characteristics of this residue suggest that it lies within the transport pathway and can be alternately exposed to the intracellular and extracellular media.  相似文献   

17.
The anion transport system of human red blood cells was isolated in vesicles containing the original lipids of the membrane and predominantly the 95,000-dalton polypeptides (Band 3) associated with intralipid particles. The vesicles display various characteristic properties of anion permeation closely resembling those of the native system. The properties include energy of activation, pH dependence, anion sleectivity, sensitivity to specific inhibitors, and exchange and net rates of sulfate transport. Based on these and other criteria, the functional properties of isolated vesicles could be equated with those of the intact cell system. Direct support for the involvement of 95,000-dalton polypeptides in permeation functions is provided.  相似文献   

18.
Extracellular chymotrypsin cleaves the 95 000 dalton protein that migrates in band 3 of SDS-polyacrylamide gel electropherograms of the erythrocyte membrane into fragments of 60 000 and 35 000 daltons, but not further. Minor components of band 3 that remain at the original 95 000 dalton location may be eluted from the membrane by 0.1 N NaOH, indicating that, in contrast to the major component and the chymotryptic fragments, they are not integral membrane constituents. Incubation at neutral pH of chymotrypsinized erythrocytes with the bifunctional anion transport inhibitor 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid results in covalent binding of that inhibitor primarily to the 60 000 dalton fragment and some cross-linking of the 60 000 dalton fragment with the 35 000 dalton fragment. Increasing the pH to 9.5 leads to a cross-linking of virtually all of the pairs of chymotryptic fragments and thus to a reconstitution of band 3 with its typical diffuse appearance in the 95 000 dalton region of the SDS-polyacrylamide gels. This indicates that (1) each integral 95 000 dalton protein molecule is capable of binding at least one 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid molecule; (2) the 35 000 dalton fragment, though it is only weakly stained with Coomassie blue, is present in an amount that is equimolar with that of the 60 000 dalton fragment. Since the number of 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid binding sites on the protein in band 3/cell is known to be close to the number of band 3 molecules/cell, it is suggested that the cross-linking takes place at a region of the band 3 molecule that is involved in the control of anion transport, Like chymotrypsin, papain digests the band 3 protein from the outer membrane surface. Unlike chymotrypsin, however, papain digestion results in an inhibition of anion exchange. Papain produces a major fragment of 60 000 daltons that differs from the major chymotryptic fragment by at most six amino acid residues. The only detectable difference between the noninhibitory action of chymotrypsin and the inhibitory action of papain on the band 3 protein is that papain is capable of partially digesting the 35000 dalton fragment. No reconstitution of band 3 by cross-linking of the fragments with 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid can be achieved. Since the 35 000 dalton fragment reacts with one of the two reactive groups of 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid and is also susceptible to digestion by the inhibitory papain, we suggest that a portion of this peptide participates, together with a portion of the 60 000 dalton fragment, in the control anion transport.  相似文献   

19.
Functional reconstitution of the glycine receptor   总被引:1,自引:0,他引:1  
The functional reconstitution of the chloride channel coupled glycine receptor is described. Glycine receptors were purified from the cholate extract of rat spinal cord membranes by affinity chromatography and incorporated into phospholipid vesicles by the addition of phosphatidylcholine and removal of detergent by gel filtration. The reconstituted vesicles showed the same polypeptide composition as the purified receptor (proteins of Mr 48,000 and 58,000). The pharmacological characteristics of the glycine receptor were also preserved in the proteoliposomes, as demonstrated by the displacement of [3H]strychnine binding by several glycinergic ligands and by photoaffinity labeling experiments. In order to observe functional responses (i.e., specific agonist-induced anion translocation), we have developed an assay based on the fluorescence quenching of an anion-sensitive entrapped probe, SPQ [6-methoxy-N-(3-sulfopropyl)quinolinium]. Reconstituted vesicles were loaded with the fluorescent probe during a freeze-thaw-sonication cycle in the presence of added liposomes containing cholesterol. In such a reconstituted system, glycine receptor agonists are able to increase the rate of anion influx into the vesicles. The action of agonists is blocked by the simultaneous presence of strychnine or other glycine antagonists. Our results show that the purified 48,000- and 58,000-dalton polypeptides reconstituted into phospholipid vesicles can bind ligands and promote specific ion translocation in a way similar to the glycine receptor in its native environment.  相似文献   

20.
Experiments were designed to determine whether band 3, the anion transport protein of the red cell membrane, contains a mobile element that acts as a carrier to move the anions across a permeability barrier. The transport site-specific, nonpenetrating irreversible inhibitor 4,4'-diisothiocyano-2,2'-stilbene disulfonate (DIDS) was found to be effective only when applied extracellularly. It was used to sequester transport sites on the extracellular side of the membrane in intact cells. The membranes were then coverted into inside-out vesicles. The number of anion transport sites available on the cytoplasmic side of the vesicle membranes was then estimated by measuring the binding of N-(-4-azido-2-nitrophenyl)-2-aminoethyl-sulfonate (NAP-taurine), a photoreactive probe. Pretreatment with DIDS from the extracullular side substantially reduced the binding of NAP-taurine at the cytoplasmic side. Since NAP-taurine does not appear to penetrate into the intravesicular (normally extracellular) space, a transmembrane effect is apparently involved. About 70% of the DIDS-sensitive NAP-taurine binding sites are located in band 3, with the remainder largely in a lower molecular weight (band 4) region. A similar pattern of reduction in NAP-taurine binding is produced by high concentrations of Cl-, but this anion has little or no effect in vesicles from cells pretreated with DIDS. Thus the DIDS-modulated sites seem to be capable of binding either NAP-taurine or Cl. It is suggested that band 3 contains a mobile transport element that can be recruited to the extracellular surface by DIDS, thus becoming unavailable to NAP-taurine at the cytoplasmic face of the membrane. The results are consistent with a model of carrier-mediated transport in which the movement of the transport site is associated with a local conformational change in band 3 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号