首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth hormone releasing factor (GRF), a 44-residue peptide originally isolated from human pancreatic tumors, shows structural similarities to the members of the secretin-vasoactive intestinal peptide (VIP) peptides. This study was designed to determine the effects of human GRF (hGRF-(1-44] on pancreatic secretion in vivo in conscious dogs and in vitro in dispersed rat pancreatic acini. GRF given i.v. in graded doses in dogs caused a small but significant stimulation of pancreatic HCO3- and protein outputs and potentiated secretin- and cholecystokinin (CCK)-induced pancreatic HCO3- but not protein secretion. When given together with somatostatin, GRF failed to reverse the inhibitory action of this peptide on HCO3- and protein responses to secretin plus CCK in dogs. Studies in vitro dispersed rat pancreatic acini showed that GRF added to the incubation medium of these acini caused an increase in basal amylase release and shifted to the left the amylase dose-response curve to caerulein and urecholine but failed to affect the amylase response to VIP. This study indicates that GRF in vivo stimulates basal and augments secretin- or CCK-induced pancreatic HCO3- secretion and that this is probably due to direct stimulatory action of the peptide on pancreatic secretory cells.  相似文献   

2.
The effects of corticotropin-releasing factor (CRF) on gastric emptying of a saline solution was further investigated in six dogs prepared with gastric fistulas and chronic cerebroventricular guides and in four other dogs with chronic gastric fistulas and pancreatic (Herrera) cannulas. Intravenous infusion of CRF significantly inhibited gastric emptying whereas intracerebroventricular injection of CRF had no effect. Pharmacologic blockade of β-adrenergic system by propranolol did not modify intravenous CRF induced delay in gastric emptying. Intravenous CRF did not influence basal pancreatic secretion whereas secretin infused stimulated bicarbonate secretion. These results indicate that intravenous but not intracerebroventricular administration of CRF inhibited gastric emptying of a saline solution in dogs. The inhibitory effect of intravenous CRF on gastric emptying is not mediated by the β-adrenergic nervous system, and not secondary to the release of other peptides that affect both pancreatic secretion and gastric emptying such as cholecystokinin and peptide YY.  相似文献   

3.
The effects on pancreatic responses of highly potent cyclic hexapeptide (cyclo (N-Me-Ala-Phe-D-Trp-Lys-Thr-Phe)) (Veber analog) and octapeptide analogs of somatostatin such as D-Phe-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr-ol (SMS 201-995), D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2 (RC-121), and D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Trp-NH2 (RC-160) have been compared with somatostatin tetradecapeptide (SS-14) and atropine. The parameters evaluated were pancreatic responses to secretin and meat feeding in conscious dogs with chronic pancreatic fistula and amylase release from the dispersed pancreatic acini. The analogs were administered intravenously or intraduodenally. The cyclic hexapeptide and octapeptide analogs, given iv in graded doses against a constant background stimulation with secretin, produced similar and dose-dependent inhibition of pancreatic HCO3- and protein secretion. Analogs RC-121, RC-160, and the Veber analog were about two to four times more active than SS-14 in suppressing HCO3- secretion and equipotent in reducing protein secretion, but SMS 201-995 was only about half as potent as somatostatin in inhibiting HCO3-. RC-160 was effective in inhibiting secretin-induced protein secretion at lower doses than other analogs. In tests with feeding, SMS 201-995, the Veber analog, RC-121, and RC-160 were more potent inhibitors of exocrine pancreatic secretion of HCO3- and protein and exhibited more prolonged inhibitory effects than SS-14. The Veber analog, RC-121, and RC-160 were also more effective after intraduodenal administration. Atropine also caused significant inhibition of both HCO3- and protein responses to secretin and meal feeding. All four analogs decreased the postprandial insulin and pancreatic polypeptide release to a similar degree as SS-14. Neither SS-14 nor the analogs tested significantly affected basal or caerulein-, gastrin-, secretin-, or bethanechol-stimulated amylase release from the dispersed canine pancreatic acini. Atropine reduced amylase release induced by bethanechol, but not that stimulated by caerulein, gastrin, or secretin. This indicated that the analogs, as somatostatin, are ineffective as secretory inhibitors in vitro. We conclude that cyclic hexapeptide and octapeptide analogs are more potent and longer acting inhibitors of pancreatic secretion than somatostatin-14 in vivo.  相似文献   

4.
This study was designed to determine the effects of CRF on the gastrointestinal functions such as secretion, motility and circulation in dogs. CRF was found to inhibit dose-dependently gastric acid response to pentagastrin but not to histamine. CRF stimulated pancreatic bicarbonate and protein secretion under basal conditions and in response to secretin or cholecystokinin (CCK). This stimulation was accompanied by an increase in plasma levels of pancreatic polypeptide (PP), but not of secretin or gastrin. CRF caused a partial inhibition of the migrating motor complexes in fasted dogs and increased spike activity of the small bowel. These motor effects of CRF probably resulted from the action of the released PP on the intestinal smooth muscle. CRF is also a potent and selective stimulant of the mesenteric blood flow. This effect may be secondary to the stimulation of intestinal motility and metabolism.  相似文献   

5.
The effects of ammonia on pancreatic enzyme secretion in vivo and in vitro.   总被引:2,自引:0,他引:2  
BACKGROUND: Recent studies clearly demonstrate that Helicobacter pylori (H. pylori) infection of the stomach causes persistent elevation of ammonia (NH3) in gastric juice leading to hypergastrinemia and enhanced pancreatic enzyme secretion. METHODS: The aim of this study is to evaluate the influence of NH4OH on plasma gastrin level and exocrine pancreatic secretion in vivo in conscious dogs equipped with chronic pancreatic fistulas and on secretory activity of in vitro isolated acini obtained from the rat pancreas by collagenase digestion. The effects of NH4OH on amylase release from pancreatic acini were compared with those produced by simple alkalization of these acini with NaOH. RESULTS: NH4OH given intraduodenally (i.d.) in increasing concentrations (0.5, 1.0, 2.0, 4.0, or 8.0 mM/L) resulted in an increase of pancreatic protein output, reaching respectively 9%, 10%, 19%, 16% and 17% of caerulein maximum in these animals and in a marked increase in plasma gastrin level. NH4OH (8 x 0 mM/L, i.d.) given during intravenous (i.v.) infusion of secretin (50 pmol/kg-h) and cholecystokinin (50 pmol/kg-h) reduced the HCO3 and protein outputs by 35% and 37% respectively, as compared to control obtained with infusion of secretin plus cholecystokinin alone. When pancreatic secretion was stimulated by ordinary feeding the same amount of NH4OH administered i.d. decreased the HCO3- and protein responses by 78% and 47% respectively, and had no significant effect on postprandial plasma gastrin. In isolated pancreatic acini, increasing concentrations of NH4OH (10(-7)-10(-4) M) produced a concentration-dependent stimulation of amylase release, reaching about 43% of caerulein-induced maximum. When various concentrations of NH4OH were added to submaximal concentration of caerulein (10(-12) M) or urecholine (10(-5) M), the enzyme secretion was reduced at a dose 10(-5) M of NH4OH by 38% or 40%, respectively. Simple alkalization with NaOH of the incubation medium up to pH 8.5 markedly stimulated basal amylase secretion from isolated pancreatic acini, whereas the secretory response of these acini to pancreatic secretagogues was significantly diminished by about 30%. LDH release into the incubation medium was not significantly changed in all tests indicating that NH4OH did not produce any apparent damage of pancreatic acini and this was confirmed by histological examination of these acini. CONCLUSIONS: 1. NH4OH affects basal and stimulated pancreatic secretion. 2. The excessive release of gastrin may be responsible for the stimulation of basal pancreatic enzyme secretion in conscious animals, and 3. The inhibitory effects of NH4OH on stimulated secretion might be mediated, at least in part, by its direct action on the isolated pancreatic acini possibly due to the alkalization of these acini.  相似文献   

6.
HCO3- secretion by gastric mucous cells is essential for protection against acidic injury and peptic ulcer. Herein we report the identification of an apical HCO3- transporter in gastric surface epithelial cells. Northern hybridization and RT-PCR demonstrate the expression of this transporter, also known as SLC26A9, in mouse and rat stomach and trachea (but not kidney). In situ hybridization in mouse stomach showed abundant expression of SLC26A9 in surface epithelial cells with apical localization on immunofluorescence labeling. Functional studies in HEK-293 cells demonstrated that SLC26A9 mediates Cl-/HCO3- exchange and is also capable of Cl--independent HCO3- extrusion. Unlike other anion exchangers or transport proteins reported to date, SLC26A9 activity is inhibited by ammonium (NH4+). The inhibitory effect of NH4+ on gastric HCO3- secretion was also indicated by reduced gastric juxtamucosal pH (pHjm) in rat stomach in vivo. This report is the first to describe the inhibition of HCO3- transport in vitro and the reduction of pHjm in stomach in vivo by NH4+. Given its critical localization on the apical membrane of surface epithelial cells, its ability to transport HCO3-, and its inhibition by NH4+, we propose that SLC26A9 mediates HCO3- secretion in surface epithelial cells and is essential for protection against acidic injury in the stomach. Disease states that are associated with increased ammonia (NH3)/NH4+ generation (e.g., Helicobacter pylori) may impair gastric HCO3- secretion and therefore predispose patients to peptic ulcer by inhibiting SLC26A9.  相似文献   

7.
This study investigated the action of enprostil, a synthetic analog of PGE2, on gastric HCO3- secretion in humans and on duodenal HCO3- secretion in the anesthetized rat. A previously validated 2-component model was used to calculate gastric HCO3- and H+ secretion in 10 human subjects. Compared to placebo, a single 70 micrograms oral dose of enprostil increased basal gastric HCO3- secretion from 1810 +/- 340 to 3190 +/- 890 mumol/hr (P less than 0.05). In addition, enprostil reduced basal gastric H+ secretion from 5240 +/- 1140 to 1680 +/- 530 mumol/hr (P less than 0.02). Enprostil also increased HCO3- secretion and reduced H+ secretion during intravenous pentagastrin infusion. In the rat, duodenal HCO3- secretion was measured by direct titration in situ using perfused segments of duodenum just distal to the Brunner gland area and devoid of pancreatic and biliary secretions. Addition of enprostil (10 micrograms/ml) to the duodenal bathing solution increased duodenal HCO3- secretion from 6.3 +/- 1.3 to 15.1 +/- 2.0 mumol/cm X hr (P less than 0.01, n = 6). The stimulatory action of enprostil on duodenal HCO3- secretion at 10 micrograms/ml was comparable in magnitude and duration to that of 10 micrograms/ml natural PGE2. In summary, the PGE2 analog enprostil stimulated gastroduodenal HCO3- secretion, effects which may be beneficial in protection of the gastroduodenal mucosa against luminal acid.  相似文献   

8.
We examined the roles of endogenous prostaglandins (PGs) and nitric oxide (NO) in the gastroduodenal ulcerogenic responses to hypothermic stress (28 approximately 30 degrees C) in anesthetized rats. Lowering body temperature provoked damage in the gastroduodenal mucosa, with an increase of gastric acid secretion and motility. These responses were completely abolished by bilateral vagotomy or atropine, while 16,16-dimethyl PGE2 decreased the mucosal ulcerogenic response with no effect on acid secretion. The non-selective COX inhibitors, indomethacin or aspirin, worsened these lesions with enhancement of gastric motility and no effect on acid secretion, while the selective COX-2 inhibitor NS-398 did not affect any of these responses. On the other hand, the non-selective NOS inhibitor L-NAME but not aminoguanidine (a relatively selective inhibitor of iNOS), significantly potentiated the acid secretory and mucosal ulcerogenic responses in the stomach but reduced the duodenal damage in response to hypothermia, the effects being antagonized by co-administration of L-arginine. Hypothermia itself decreased duodenal HCO3- secretion under both basal and mucosal acidification-stimulated conditions. Both indomethacin and aspirin further decreased the HCO3- response to the mucosal acidification, while L-NAME significantly increased the HCO3- secretion even under hypothermic conditions, similar to 16,16-dimethyl PGE2. These results suggest that 1) hypothermic stress caused an increase of acid secretion and motility as well as a decrease of duodenal HCO3-secretion, resulting in damage in both the stomach and duodenum, 2) the COX-1 but not COX-2 inhibition worsened these lesions by enhancing gastric motility and further decreasing duodenal HCO3- response, 3) the cNOS but not iNOS inhibition worsened gastric lesions by increasing acid secretion but decreased duodenal damage by increasing HCO3- secretion. Thus, it is assumed that the gastroduodenal ulcerogenic and functional responses to hypothermic stress are modified by cNOS/NO as well as COX-1/PGs.  相似文献   

9.
An experimental system allowing both the incubation and rapid transfert of rat hypothalamic slices has been developed in order to approach the regulation of CRF secretion. The release of CRF has been quantified by a specific radioimmunoassay. Under basal conditions, immunoreactive CRF release reached an optimum of 96.2 +/- 10.4 pg/3 hypothalami/20 min. A depolarizing concentration of KCl (56 mM) or veratridine (50 microM) applied for 20 min. induced a 222 and 257% increase, respectively, in CRF release. The in vitro CRF values released under basal and stimulated conditions are comparable to those of other hypothalamic neuropeptides. Furthermore, in vitro CRF release from the hypothalamus is in the same order of magnitude as in vivo CRF secretion estimated by hypophysial portal blood collection or median eminence push-pull cannulation.  相似文献   

10.
R L Stephens  H Yang  J Rivier  Y Taché 《Peptides》1988,9(5):1067-1070
The effects of intracisternal injection of CRF antagonist, alpha-CRF 9-41, on the inhibition of gastric acid secretion elicited by intracisternal injection of corticotropin-releasing factor (CRF) and stress were investigated in conscious pylorus-ligated rats. Intracisternal injection of the alpha-helical CRF 9-41 (50 micrograms) did not influence basal gastric secretion, but injected concomitantly with intracisternal CRF (5 micrograms), completely blocked CRF (5 micrograms)-induced inhibition of gastric secretory volume, acid concentration and output. Intracisternal injection of alpha-helical CRF 9-41 (3, 10, 50 micrograms) produced a dose-related reversal (0, 52 and 100%) of brain surgery-induced inhibition of gastric acid output. By contrast intravenous injection of CRF antagonist (50 micrograms) did not inhibit gastric hyposecretory response to brain surgery. These data suggest that endogenous CRF in the brain may mediate stress-induced gastric hyposecretion in the rat.  相似文献   

11.
Recent synthesis of specific, potent bombesin receptor antagonists allows examination of the role of bombesin-like peptides in physiological processes in vivo. We characterized effects of [D-Phe6]bombesin(6-13)-methyl-ester (BME) on pancreatic enzyme secretion stimulated by the C-terminal decapeptide of gastrin releasing peptide (GRP-10), food intake, and diversion of bile-pancreatic juice in rats. In isolated pancreatic acini, BME had no agonistic effects on amylase secretion but competitively inhibited responses to GRP-10, yielding a pA2 value of 8.89 +/- 0.19. In conscious rats with gastric, jugular vein, bile-pancreatic, and duodenal cannulas, basal enzyme secretion (bile-pancreatic juice recirculated) was not affected by the antagonist. Maximal amylase response to GRP-10 (0.5 nmol/kg/h) was inhibited dose dependently by BME, reaching 97% inhibition at a dose of 400 nmol/kg/h. The dose response curve of amylase secretion stimulated by GRP-10 was shifted to the right by 40 nmol/kg/h BME, but maximal amylase response was unaltered, suggesting competitive inhibition in vivo. Liquid food intake and bile-pancreatic juice diversion caused substantial increases in amylase secretion; neither response was altered during administration of 400 pmol/kg/h BME. These results demonstrate that BME is a potent, competitive antagonist of pancreatic responses to bombesin-like peptides in vitro and in vivo. Lack of effect of BME on basal pancreatic secretion or responses to liquid food intake or diversion of bile-pancreatic juice in rats suggests that endogenous bombesin-like peptides do not act either directly or indirectly to mediate these responses.  相似文献   

12.
Only one secretin receptor has been cloned and its properties characterized in native and transfected cells. To test the hypothesis that stimulatory and inhibitory effects of secretin are mediated by different secretin receptor subtypes, pancreatic and gastric secretory responses to secretin and secretin-Gly were determined in rats. Pancreatic fluid secretion was increased equipotently by secretin and secretin-Gly, but secretin was markedly more potent for inhibition of basal and gastrin-induced acid secretion. In Chinese hamster ovary cells stably transfected with the rat secretin receptor, secretin and secretin-Gly equipotently displaced (125)I-labeled secretin (IC(50) values 5.3 +/- 0.5 and 6.4 +/- 0.6 nM, respectively). Secretin, but not secretin-Gly, caused release of somatostatin from rat gastric mucosal D cells. Thus the equipotent actions of secretin and secretin-Gly on pancreatic secretion appear to result from equal binding and activation of the pancreatic secretin receptor. Conversely, secretin more potently inhibited gastric acid secretion in vivo, and only secretin released somatostatin from D cells in vitro. These results support the existence of a secretin receptor subtype mediating inhibition of gastric acid secretion that is distinct from the previously characterized pancreatic secretin receptor.  相似文献   

13.
14.
The potent inhibitory effect of galanin on basal and pentagastrin-stimulated gastric acid secretion in vivo, and the presence of galanin-containing nerves in gastrointestinal tract and pancreas, suggested that this peptide may regulate the exocrine secretion of the GI system. Male rats were anesthetized with pentobarbital and the dose-dependent inhibitory effects of galanin on basal and stimulated pancreatic protein and amylase secretions were investigated in separate experiments. Galanin was administered intravenously in the following doses: 3, 6, 10, 15 and 20 micrograms/kg/h (0.93, 1.86, 3.1, 4.65 and 6.2 nmol/kg/h), and pancreatic secretions measured. The maximal effective dose of galanin (3.1 nmol/kg/h) on basal pancreatic secretions was found, and was used for evaluating the inhibitory effect of galanin on pancreatic protein and amylase secretions stimulated by bombesin, secretin and cholecystokinin. Galanin potently inhibited basal, bombesin-, secretin- and cholecystokinin-stimulated pancreatic protein and amylase secretion. Inhibitory effect of galanin was dose-dependent and biphasic.  相似文献   

15.
Reduced gastrointestinal HCO3- secretion contributes to malabsorption and obstructive syndromes in cystic fibrosis. The apical HCO3- transport pathways in these organs have not been defined. We therefore assessed the involvement of apical Cl-/HCO3- exchangers and anion conductances in basal and cAMP-stimulated duodenal HCO3- secretion. Muscle-stripped rat and rabbit proximal duodena were mounted in Ussing chambers, and electrical parameters, HCO3- secretion rates, and 36Cl-, 22Na+, and 3H+ mannitol fluxes were assessed. mRNA expression levels were measured by a quantitative PCR technique. Removal of Cl- from or addition of 1 mM DIDS to the luminal perfusate markedly decreased basal HCO3- secretion but did not influence the HCO3- secretory response to 8-bromo-cAMP, which was inhibited by luminal 5-nitro-2-(3-phenylpropylamino)-benzoate. Bidirectional 22Na+ and 36Cl- flux measurements demonstrated an inhibition rather than a stimulation of apical anion exchange during cAMP-stimulated HCO3- secretion. The ratio of Cl- to HCO3- in the anion secretory response was compatible with both Cl- and HCO3- being secreted via the CFTR anion channel. CFTR expression was very high in the duodenal mucosa of both species. We conclude that in rat and rabbit duodena, an apical Cl-/HCO3- exchanger mediates a significant part of basal HCO3- secretion but is not involved in the HCO3- secretory response to cAMP analogs. The inhibitor profile, the strong predominance of Cl- over HCO3- in the anion secretory response, and the high duodenal CFTR expression levels suggest that a major portion of cAMP-stimulated duodenal HCO3- secretion is directly mediated by CFTR.  相似文献   

16.
陈奇  张万琴  梅懋华 《生理学报》1985,37(3):241-247
本工作用制备 Thomas 胰瘘和胃痿的5条狗进行慢性实验。实验时用0.1N 盐酸灌入十二指肠以刺激胰液分泌,并分別注射吗啡或/和纳洛酮,观察它们对胰液分泌和对胰液中碳酸氢盐和蛋白质浓度的影响。另外我们还观察了吗啡和纳洛酮对6条狗离体胰主导管紧张性的影响。结果表明:(1)吗啡抑制了胰液分泌量,对胰液中碳酸氢盐和蛋白质浓度无影响,由于分泌量减少故两者的排出量显著减少(P<0.05),(2)纳洛酮本身对胰液分泌量和碳酸氢盐及蛋白质浓度均无影响;(3)纳洛酮可以加强吗啡抑制胰液分泌的作用(P<0.01);(4)吗啡能增加狗的离体胰主导管肌条的紧张性,纳洛酮不能阻断或翻转吗啡的这一效应,相反能加强其效应。本工作表明,吗啡抑制酸化十二指肠所引起的胰碳酸氢盐和蛋白质排出量,其机制可能是吗啡刺激胰导管收缩,而纳洛酮则加强吗啡的这种抑制效应。  相似文献   

17.
Guzman EA  Zhang W  Lin TR  Mulholland MW 《Peptides》2003,24(5):727-734
Neural and hormonal mechanisms control pancreatic secretion. The effects of the corticotropin releasing factor (CRF) related neuropeptide urocortin (UCN) on pancreatic exocrine secretion were examined. In anesthetized male rats, pancreatic secretion volume and total protein were assayed. UCN increased pancreatic secretory volume and protein secretion and potentiated cholecytokinin-stimulated protein secretion. Astressin, a non-specific CRF receptor antagonist, inhibited UCN-stimulated protein output while CRF(2) receptor antagonist, antisauvagine-30, was without effect. Atropine, but not subdiaphragmatic vagotomy, inhibited UCN-mediated secretion. In acinar cells, UCN did not stimulate release of amylase nor intracellular cAMP. UCN is a pancreatic exocrine secreatagogue with effects mediated through cholinergic intrapancreatic neurons.  相似文献   

18.
The mammalian esophagus has the capacity to secrete a HCO(3)(-) and mucin-rich fluid in the esophageal lumen. These secretions originate from the submucosal glands (SMG) and can contribute to esophageal protection against refluxed gastric acid. The cellular mechanisms by which glandular cells achieve these secretions are largely unknown. To study this phenomenon, we used the pH-stat technique to measure luminal alkali secretion in an isolated, perfused pig esophagus preparation. Immunohistochemistry was used to localize receptors and transporters involved in HCO(3)(-) transport. The SMG-bearing esophagus was found to have significant basal alkali secretion, predominantly HCO(3)(-), which averaged 0.21 +/- 0.04 microeq.h(-1).cm(-2). This basal secretion was doubled when stimulated by carbachol but abolished by HCO(3)(-) or Cl(-) removal. Basal- and carbachol-stimulated secretions were also blocked by serosal application of atropine, pirenzipine, DIDS, methazolamide, and ethoxzolamide. The membrane-impermeable carbonic anhydrase inhibitor benzolamide, applied to the serosal bath, partially inhibited basal HCO(3)(-) secretion and blocked the stimulation by carbachol. Immunohistochemistry using antibodies to M(1) cholinergic receptor or carbonic anhydrase-II enzyme showed intense labeling of duct cells and serous demilunes but no labeling of mucous cells. Labeling with an antibody to Na(+)-(HCO(3)(-))(n) (rat kidney NBC) was positive in ducts and serous cells, whereas labeling for Cl(-)/HCO(3)(-) exchanger (AE2) was positive in duct cells but less pronounced in serous cells. These data indicate that duct cells and serous demilunes of SMG play a role in HCO(3)(-) secretion, a process that involves M(1) cholinergic receptor stimulation. HCO(3)(-) transport in these cells is dependent on cytosolic and serosal membrane-bound carbonic anhydrase. HCO(3)(-) secretion is also dependent on serosal Cl(-) and is mediated by DIDS-sensitive transporters, possibly NBC and AE2.  相似文献   

19.
Eight patients with active acromegaly due to GH-producing pituitary adenoma were studied. GH secretory dynamics in vitro was evaluated by adding GRF, CRF, or a somatostatin analog, SMS 201-995 to the perifusate of dispersed cells from tumors. A comparison was made between the data obtained in preoperative tests for GH secretion and those obtained in experiments in vitro. Before operation, the GRF test (100 micrograms, iv) resulted in no GH response in three of six patients examined. The CRF test (100 micrograms, iv) resulted in a paradoxical GH increase in two of the same six patients. In vitro studies performed on adenoma cells revealed that exposure to GRF (100 ng/ml) elicited an increase in GH in seven of eight patients examined. Exposure to CRF (100 ng/ml) caused an enhanced GH secretion in four of the same eight patients. There were cases in which GH response to these hypothalamic hormones was observed in vitro but not in vivo, whereas there was only one case in which CRF caused an increase in GH in vivo but not in vitro. Thus, GH secretory dynamics was not always the same in vivo and in vitro. The discrepancy could be ascribed to the different secretory status of hypothalamic hormone (e.g., GRF or somatostatin) in vivo in each acromegalic patient.  相似文献   

20.
We investigated the cyclooxygenase (COX) isoforms as well as prostaglandin E receptor EP subtypes responsible for acid-induced gastric HCO(3)(-) secretion in rats and EP receptor-knockout (-/-) mice. Under urethane anesthesia, a chambered stomach (in the presence of omeprazole) was perfused with saline, and HCO(3)(-) secretion was measured at pH 7.0 using a pH-stat method and by adding 2 mM HCl. Mucosal acidification was achieved by exposing the stomach for 10 min to 50 or 100 mM HCl. Acidification of the mucosa increased the secretion of HCO(3)(-) in the stomach of both rats and WT mice, in an indomethacin-inhibitable manner. The acid-induced gastric HCO(3)(-) secretion was inhibited by prior administration of indomethacin and SC-560 but not rofecoxib in rats and mice. Acidification increased the PGE(2) content of the rat stomach, and this response was significantly attenuated by indomethacin and SC-560 but not rofecoxib. This response was also attenuated by ONO-8711 (EP1 antagonist) but not AE3-208 (EP4 antagonist) in rats and disappeared in EP1 (-/-) but not EP3 (-/-) mice. PGE(2) increased gastric HCO(3)(-) secretion in both rats and WT mice, and this action was inhibited by ONO-8711 and disappeared in EP1 (-/-) but not EP3 (-/-) mice. These results support a mediator role for endogenous PGs in the gastric response induced by mucosal acidification and clearly indicate that the enzyme responsible for production of PGs in this process is COX-1. They further show that the presence of EP1 receptors is essential for the increase in the secretion of HCO(3)(-) in response to mucosal acidification in the stomach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号