首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article reviews the key experiments demonstrating calcium-induced calcium release (CICR) in smooth muscle and contrasts the biophysical and molecular features of coupling between the sarcolemmal (L-type Ca2+ channel) and sarcoplasmic reticulum (ryanodine receptor) Ca2+ channels in smooth and cardiac muscle. Loose coupling refers to the coupling process in smooth muscle in which gating of ryanodine receptors is non-obligate and may occur with a variable delay following opening of the sarcolemmal Ca2+ channels. These features have been observed in the earliest studies of CICR in smooth muscle and are in marked contrast to cardiac CICR, where a close coupling between T-tubular and SR membranes results in tight coupling between the gating events. The relationship between this “loose coupling” and distinct subcellular release sites within smooth muscle cells, termed frequent discharge sites, is discussed.  相似文献   

2.
The review systematizes and analyzes recent data about the role of different Ca(2+)-transport mechanisms in the regulation of Ca2+ metabolism and functional activity of the cardiomyocytes. During the cardiac action potential, Ca2+ enters the cardiomyocytes through sarcolemmal L-type calcium channels and via the Na+/Ca2+ exchange. This Ca2+ activates the release of additional Ca2+ from the sarcoplasmic reticulum. The sum of calcium from sarcolemmal influxes and sarcoplasmic release produces contractile effect. For the occurrence of relaxation, Ca2+ remove from the cytoplasm by three mechanisms, namely, sarcoplasmic Ca2+ pump, Na+/Ca2+ exchange and sarcolemmal Ca2+ pump. In this review, the structural and functional properties of the Ca2+ transport systems in the sarcolemmal membranes, sarcoplasmic reticulum and mitochondria are discussed. In addition alterations in regulation of intracellular calcium by activation of beta- and alpha-adrenergic receptors are consider.  相似文献   

3.
The influx of calcium through the L-type voltage-gated calcium channels (LTCCs) is the trigger for the process of calcium-induced calcium release (CICR) from the sarcoplasmic reticulum, an essential step for cardiac contraction. There are two feedback mechanisms that regulate LTCC activity: calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF), both of which are mediated by calmodulin (CaM) binding. The IQ domain (aa 1645-1668) housed within the cytoplasmic domain of the LTCC Cav1.2 subunit has been shown to bind both calcium-loaded (Ca2+CaM ) and calcium-free CaM (apoCaM). Here, we provide new data for the structural basis for the interaction of apoCaM with the IQ peptide using NMR, revealing that the apoCaM C-lobe residues are most significantly perturbed upon complex formation. In addition, we have employed transmission electron microscopy of purified LTCC complexes which shows that both apoCaM and Ca2+CaM can bind to the intact channel.  相似文献   

4.
心肌细胞的兴奋 收缩偶联 (ECC)本质上是胞膜上的电压门控L 型钙通道 (LCCs)和胞内ryanodine受体 (RyRs)之间通过钙诱导钙释放 (CICR)机制进行沟通进而引发肌细胞收缩的过程。最近的研究进一步揭示了微观水平上LCCs和RyRs之间的信息联系。在钙偶联位点 (couplons)上 ,LCCs因膜去极化而随机开放 ,在局部产生高强度的钙脉冲 (即钙小星 ,Ca2 sparklet) ,作用于邻近肌质网终末池上的RyRs。钙偶联位点通过由钙小星随机激活的RyRs(即钙释放通道 )以钙火花 (Ca2 spark)的形式释放钙。这些钙在全细胞水平上总和即形成钙瞬变 (Ca2 transient)。因此 ,钙小星触发钙火花就构成了ECC中的基本事件。本文重点阐述LCCs和RyRs分子间的信号转导机制 ,也即从微观水平上探讨CICR及ECC的形成机制。  相似文献   

5.
In cardiac muscle, release of activator calcium from the sarcoplasmic reticulum occurs by calcium- induced calcium release through ryanodine receptors (RyRs), which are clustered in a dense, regular, two-dimensional lattice array at the diad junction. We simulated numerically the stochastic dynamics of RyRs and L-type sarcolemmal calcium channels interacting via calcium nano-domains in the junctional cleft. Four putative RyR gating schemes based on single-channel measurements in lipid bilayers all failed to give stable excitation-contraction coupling, due either to insufficiently strong inactivation to terminate locally regenerative calcium-induced calcium release or insufficient cooperativity to discriminate against RyR activation by background calcium. If the ryanodine receptor was represented, instead, by a phenomenological four-state gating scheme, with channel opening resulting from simultaneous binding of two Ca2+ ions, and either calcium-dependent or activation-linked inactivation, the simulations gave a good semiquantitative accounting for the macroscopic features of excitation-contraction coupling. It was possible to restore stability to a model based on a bilayer-derived gating scheme, by introducing allosteric interactions between nearest-neighbor RyRs so as to stabilize the inactivated state and produce cooperativity among calcium binding sites on different RyRs. Such allosteric coupling between RyRs may be a function of the foot process and lattice array, explaining their conservation during evolution.  相似文献   

6.
Contraction of skeletal muscle is triggered by release of calcium from the sarcoplasmic reticulum. In this study, highly purified normal and dystrophic mouse sarcoplasmic reticulum vesicles were compared with respect to calcium release characteristics. Sarcoplasmic reticulum vesicles were actively loaded with calcium in the presence of an ATP-regenerating system. Calcium fluxes were followed by dual wavelength spectrophotometry using the metallochromic indicators antipyrylazo III and arsenazo III, and by isotopic techniques. Calcium release from sarcoplasmic reticulum vesicles was elicited by (a) changing the free calcium concentration of the assay medium (calcium-induced calcium release); (b) addition of a permeant anion to the assay medium, following calcium loading in the presence of a relatively impermeant anion (depolarization-induced calcium release); (c) addition of the lipophilic anion tetraphenylboron (TPB?) to the assay medium and (d) using specific experimental conditions, i.e. high phosphate levels and low magnesium (spontaneous calcium release). Drugs known to influence Ca2+ release were shown to differentially affect the various types of calcium release. Caffeine (10 mM) was found to enhance calcium-induced calcium release from isolated sarcoplasmic reticulum. Ruthenium red (20 μM) inhibited both calcium-induced calcium release and tetraphenylboron-induced calcium release, and partially inhibited spontaneous calcium release and depolarization-induced calcium release. Local anesthetics inhibited spontaneous calcium release in a time-dependent manner, and inhibited calcium-induced calcium release instantaneously, but did not inhibit depolarization-induced calcium release. Use of pharmacological agents indicates that several types of calcium release operate in vitro. No significant differences were found between normal and dystrophic sarcoplasmic reticulum in calcium release kinetics or drug sensitivities.  相似文献   

7.
Theory of excitation-contraction coupling in cardiac muscle.   总被引:41,自引:0,他引:41       下载免费PDF全文
The consequences of cardiac excitation-contraction coupling by calcium-induced calcium release were studied theoretically, using a series of idealized models solved by analytic and numerical methods. "Common-pool" models, those in which the trigger calcium and released calcium pass through a common cytosolic pool, gave nearly all-or-none regenerative calcium releases (in disagreement with experiment), unless their loop gain was made sufficiently low that it provided little amplification of the calcium entering through the sarcolemma. In the linear (small trigger) limit, it was proven rigorously that no common-pool model can give graded high amplification unless it is operated on the verge of spontaneous oscillation. To circumvent this problem, we considered two types of "local-control" models. In the first type, the local calcium from a sarcolemmal L-type calcium channel directly stimulates a single, immediately opposed SR calcium release channel. This permits high amplification without regeneration, but requires high conductance of the SR channel. This problem is avoided in the second type of local control model, in which one L-type channel triggers a regenerative cluster of several SR channels. Statistical recruitment of clusters results in graded response with high amplification. In either type of local-control model, the voltage dependence of SR calcium release is not exactly the same as that of the macroscopic sarcolemmal calcium current, even though calcium is the only trigger for SR release. This results from the existence of correlations between the stochastic openings of individual sarcolemmal and SR channels. Propagation of regenerative calcium-release waves (under conditions of calcium overload) was analyzed using analytically soluble models in which SR calcium release was treated phenomenalogically. The range of wave velocities observed experimentally is easily explained; however, the observed degree of refractoriness to wave propagation requires either a strong dependence of SR calcium release on the rate of rise of cytosolic calcium or localization of SR release sites to one point in the sarcomere. We conclude that the macroscopic behavior of calcium-induced calcium release depends critically on the spatial relationships among sarcolemmal and SR calcium channels, as well as on their kinetics.  相似文献   

8.
The cardiac ryanodine receptor (RyR2), the major calcium release channel on the sarcoplasmic reticulum (SR) in cardiomyocytes, has recently been shown to be involved in at least two forms of sudden cardiac death (SCD): (1) Catecholaminergic polymorphic ventricular tachycardia (CPVT) or familial polymorphic VT (FPVT); and (2) Arrhythmogenic right ventricular dysplasia type 2 (ARVD2). Eleven RyR2 missense mutations have been linked to these diseases. All eleven RyR2 mutations cluster into 3 regions of RyR2 that are homologous to the three malignant hyperthermia (MH)/central core disease (CCD) mutation regions of the skeletal muscle ryanodine receptor/calcium release channel RyR1. MH/CCD RyR1 mutations have been shown to alter calcium-induced calcium release. Sympathetic nervous system stimulation leads to phosphorylation of RyR2 by protein kinase A (PKA). PKA phosphorylation of RyR2 activates the channel. In conditions associated with high rates of SCD such as heart failure RyR2 is PKA hyperphosphorylated resulting in "leaky" channels. SR calcium leak during diastole can generate "delayed after depolarizations" that can trigger fatal cardiac arrhythmias (e.g., VT). We propose that RyR2 mutations linked to genetic forms of catecholaminergic-induced SCD may alter the regulation of the channel resulting in increased SR calcium leak during sympathetic stimulation.  相似文献   

9.
Activation of skinned muscle fibers by calcium and strontium ions   总被引:1,自引:0,他引:1  
Intact and mechanically skinned skeletal muscle fibers of the crab Carcinus maenas have been used. The aim of the experiments was to determine the origin of the mechanical activity recorded in intact crab muscle fibers exhibiting an inward strontium current in strontium solution without calcium. To do so, the effect of strontium ions in inducing activation of contractile proteins and calcium release from the sarcoplasmic reticulum has been studied. The properties of the sarcoplasmic reticulum membrane towards strontium ions, i.e., the efficiency of the calcium ATPase towards strontium ions and the capability to release strontium ions have been investigated. Results show that the contractile proteins have a lower affinity for strontium than for calcium ions. However, the maximum bound strontium is identical to the maximum bound calcium. As for the sarcoplasmic reticulum, strontium ions can induce a calcium release and also can be taken up by the calcium ATPase and be released. We concluded that the mechanical activity in intact fibers bathed in a strontium medium has two origins: first, a direct and partial activation of the contractile proteins by strontium ions flowing through the calcium channel; second, a contractile proteins activation of calcium ions released by the sarcoplasmic reticulum by a "strontium-induced calcium release" mechanism.  相似文献   

10.
A new method is introduced which allows the study of calcium-induced calcium release from fragmented sarcoplasmic reticulum. Results obtained with this method are in agreement with those obtained by previous investigators using skinned muscle fiber. It was also found that anesthetic drugs and alcohol increased the calcium- and caffeine-induced calcium release from the sarcoplasmic reticulum.  相似文献   

11.
Trapezius muscle from normal and malignant hyperthermia (MH) pigs was used to investigate the effects of halothane on contractile properties and on the calcium transport system of isolated surface membranes. We observed that (i) halothane, diluted in dimethyl sulfoxide, induced a higher isometric contracture response in MH muscle than in normal muscle, (ii) halothane had a more pronounced inhibitory effect on the sarcolemmal Ca2+-ATPase activity in MH membrane, and (iii) the actively accumulated calcium was released in higher amounts in MH muscle than in normal muscle. These results suggest that halothane might induce, in vivo, an important influx of extracellular calcium ions through the MH sarcolemmal membranes and this pool of intracellular calcium may constitute the trigger for the defective sarcoplasmic reticulum "calcium-induced calcium-release" system.  相似文献   

12.
This article discusses how changes in luminal calcium concentration affect calcium release rates from triad-enriched sarcoplasmic reticulum vesicles, as well as single channel opening probability of the ryanodine receptor/calcium release channels incorporated in bilayers. The possible participation of calsequestrin, or of other luminal proteins of sarcoplasmic reticulum in this regulation is addressed. A comparison with the regulation by luminal calcium of calcium release mediated by the inositol 1,4,5-trisphosphate receptor/calcium channel is presented as well.  相似文献   

13.
Ryanodine modulates Ca2+ permeability in isolated terminal cisternae of sarcoplasmic reticulum, suggesting that it is a specific ligand for the calcium release channel. Our laboratory has purified the ryanodine receptor and demonstrated it to be equivalent to the feet structures, which are involved in the junctional association of the transverse tubule with the terminal cisternae. Recently, Smith, Coronado and Meissner have incorporated sarcoplasmic reticulum into bilayers and found a high conductivity channel (approximately .100 pS) which has a number of characteristics expected of the Ca2+ release channels in SR. We now find that the high conductivity channel in the bilayer is sensitive to ryanodine. Low concentrations of ryanodine (sub microM): (1) lock the channels in an open state; (2) prevent the action of ruthenium red (microM) to completely close the channel; and (3) much higher concentrations of ryanodine (300 microM) close the channel. In these three respects ryanodine acts similarly on the channel in the bilayer as in vesicles. Further, the bilayer studies provide new insight into the action of ryanodine on the channel in that: (1) ryanodine locks the channel in the open state, but the conductivity is reduced to about 40%; (2) ryanodine prevents ruthenium red from closing the channel, although there is a further decrease in the open current. These studies provide support that the high conductivity calcium channel in sarcoplasmic reticulum is involved in excitation-contraction coupling. By the same token the pharmacological action of ryanodine is pinpointed to the calcium release channel.  相似文献   

14.
A comparative pharmacological analysis of relative contributions of different signal transduction pathways in the activation of contraction (excitation-contraction coupling, ECC) in intact fast striated muscles of frog and lamprey was performed. It was found that the major mechanism responsible for the ECC in muscles of both animals is Ca2+ release from the sarcoplasmic reticulum through the ryanodine-sensitive channels. However, the ECC in lamprey muscle displays some important differences in the units of electromechanical coupling, which precede the calcium release from sarcoplasmic reticulum. The maximum contraction force in frog muscle develops during caffeine-induced contracture, which indicates that all Ca2+ stored in sarcoplasmic reticulum is released through ryanodine-sensitive channels. In contrast, in lamprey muscle, the maximum force develops not in response to high caffeine concentration, but in response to repetitive electrical stimulation. Hence, in addition to stores liberated by ryanodine-sensitive channels, some other sources of calcium ions should exist, which contribute to the contraction activation. A source of this additional Ca2+ ions can be external medium, because acetylcholine contracture is abolished in a calcium-free medium. In frog muscle, the acetylcholine contracture was abolished in a Na(+)-free solution. It was concluded that in frog muscle ECC can be triggered by changes in the transmembrane potential (depolarization-induced calcium release), while in lamprey muscle the entry of calcium ions into myoplasm as the trigger in ECC (calcium-induced calcium release). The lamprey muscle was found to be more resistant to tetrodotoxin and tetracaine, which is indicative of a role in the activation of contraction of tetrodotoxin-resistant Na+ and/or Ca2+ channels. It was concluded, that ECC mechanism in striated muscles of low vertebrates is not limited by the generally accepted scheme of depolarization-induced calcium release but can include some other schemes, which require the Ca2+ influx into the cell.  相似文献   

15.
We have investigated the links between electrical excitation and contraction in mammalian heart muscle. Using isolated single cells from adult rat ventricle, a whole-cell voltage-clamp technique and quantitative fluorescence microscopy, we have measured simultaneously calcium current (Ica) and [Ca2+]i (with fura-2). We find that the voltage-dependence of Ica and the [Ca 2+]i-transient and the dependence of [Ca2+]i-transient on depolarization-duration cannot both be readily explained by a simple calcium-induced Ca-release (CICR) mechanism. Additionally, we find that when [Ca2+]i and [Na+]i are at their diastolic levels, activation of the Na-Ca exchange mechanism by depolarization does not measurably trigger the release of Ca2+i. Finally, measuring Ica in adult and neonatal rat heart cells and using the alkaloid ryanodine, we have carried out complementary experiments. These experiments show that there may be an action of ryanodine on Ica that is independent of [Ca2+]i and independent of a direct action of the alkaloid on the calcium channel itself. Along with experiments of others showing that ryanodine binds to the sarcoplasmic reticulum calcium-release channel/spanning protein complex, our data suggests a model to explain our findings. The model links the calcium channels responsible for Ica to the sarcoplasmic reticulum by means of one or more of the spanning protein(s). Information from the calcium channel can be communitated to the sarcoplasmic reticulum by this route and, presumably, information can move in the opposite direction from the sarcoplasmic reticulum to the calcium channel.  相似文献   

16.
We propose a simple, physically reasonable electron-conformational model for the ryanodine receptor (RyR) and, on that basis, present a theory to describe RyR lattice responses to L-type channel triggering as an induced non-equilibrium phase transition. Each RyR is modelled with a single open and a single closed (electronic) state only, described utilizing a s=12 pseudospin approach. In addition to the fast electronic degree of freedom, the RyR channel is characterized by a slow classical conformational coordinate, Q, which specifies the RyR channel calcium conductance and provides a multimodal continuum of possible RyR states. The cooperativity in the RyR lattice is assumed to be determined by inter-channel conformational coupling. Given a threshold sarcoplasmic reticulum (SR) calcium load, the RyR lattice fires due to a nucleation process with a step-by-step domino-like opening of a fraction of lattice channels, providing for a sufficient release to generate calcium sparks. The optimal mode of RyR lattice functioning during calcium-induced calcium release implies a fractional release with a robust termination due to a decrease in SR calcium load, accompanied by a respective change in effective conformational strain of the lattice. SR calcium overload is shown to result in excitation of RyR lattice auto-oscillations with spontaneous RyR channel opening and closure.  相似文献   

17.
Calcium release from isolated heavy sarcoplasmic reticulum of rabbit skeletal muscle by several calmodulin antagonistic drugs was measured spectrophotometrically with arsenazo III and compared with the properties of the caffeine-induced calcium release. Trifluoperazine and W7 (about 500 microM) released all actively accumulated calcium (half-maximum release at 129 microM and 98 microM, respectively) in the presence 0.5 mM MgCl2 and 1 mg/ml sarcoplasmic reticulum protein; calmidazolium (100 microM) and compound 48/80 (70 micrograms/ml) released maximally 30-40% calcium, whilst bepridil (100 microM) and felodipin (50 microM) with calmodulin antagonistic strength similar to trifluoperazine (determined by inhibition of the calcium, calmodulin-dependent protein kinase of cardiac sarcoplasmic reticulum) did not cause a detectable calcium release, indicating that this drug-induced calcium release is not due to the calmodulin antagonistic properties of the tested drugs. Calcium release of trifluoperazine, W7 and compound 48/80 and that of caffeine was inhibited by similar concentrations of magnesium (half-inhibition 1.4-4.2 mM compared with 0.97 mM for caffeine) and ruthenium red (half-inhibition for trifluoperazine, W7 and compound 48/80 was 0.22 microM, 0.08 microM and 0.63 micrograms/ml, respectively, compared with 0.13 microM for caffeine), suggesting that this drug-induced calcium release occurs via the calcium-gated calcium channel of sarcoplasmic reticulum stimulated by caffeine or channels with similar properties.  相似文献   

18.
Sarcoplasmic reticulum isolated from malignant hyperthermia-susceptible (MHS) muscle exhibits abnormalities in the regulation of calcium release. To identify the molecular basis of this abnormality, the Ca2+ release channel from both normal and MHS sarcoplasmic reticulum was examined using proteolytic digestion followed by immunoblot staining with a polyclonal antibody against the rabbit Ca2+ release channel protein. Under appropriate conditions, trypsin digestion of isolated sarcoplasmic reticulum vesicles from the two types of pigs revealed a distinct difference in the immunostaining pattern of the Ca2+ release channel-derived peptides. An approximate 86-kDa peptide was the predominant fragment in normal sarcoplasmic reticulum while an approximate 99-kDa peptide fragment was the major peptide detected in MHS sarcoplasmic reticulum. Digestion of sarcoplasmic reticulum vesicles isolated from four normal and four MHS pigs showed that the differences were highly reproducible. Trypsin digestion of sarcoplasmic reticulum isolated from heterozygous pigs, which contain one normal and one MHS allele, showed an antibody staining pattern that was intermediate between MHS and normal sarcoplasmic reticulum. These results can be explained by a primary amino acid sequence difference between the normal and MHS Ca2+ release channels and support the hypothesis that a mutation in the gene coding for the sarcoplasmic reticulum Ca2+ release channel is responsible for malignant hyperthermia.  相似文献   

19.
Computer simulations were used to examine the response of ryanodine receptors (RyRs) to the sarcolemmal calcium influx via L-type calcium channels (DHPRs). The effects of ryanodine receptor organization, diad geometry, DHPR single-channel current, and DHPR gating were examined. In agreement with experimental findings, the simulations showed that RyRs can respond rapidly (approximately 0.4 ms) to calcium influx via DHPRs. The responsiveness of the RyR depends on the geometrical arrangement between the RyRs and the DHPR in the diad, with wider diads being generally less responsive. When the DHPR single-channel current is small (approximately 25 fA), the organization of RyRs into small clusters results in an improved responsiveness. With experimentally observed DHPR mean open and closed times (0.17 ms and 4 ms, respectively) it is the first opening of the DHPR that is most likely to activate the RyR. A measure of the efficiency (Q) by which DHPR gating evokes sarcoplasmic reticulum release is defined. Q is at maximum for tau approximately 0.3 ms, and we interpret this finding in terms of the "tuning" of DHPR gating to RyR response. If certain cardiac myopathies are associated with a mismatch in the "tuning," then modification of DHPR gating with drugs to "retune" calcium-induced calcium release should be possible.  相似文献   

20.
The calcium release channel of sarcoplasmic reticulum mediates Ca2+ release which triggers muscle contraction in excitation-contraction coupling. The channels have been identified morphologically with the feet structures, which are involved in junctional association of terminal cisternae of sarcoplasmic reticulum with the transverse tubules to form the triad junction. In this study, we further characterize the action of drugs on the calcium release channel from sarcoplasmic reticulum fused into planar bilayers. Adriamycin is an effective cancer chemotherapeutic drug, which is limited by its cardiotoxicity. The drug, when added to the myoplasmic side (cis side), activates channel opening at microM concentrations in a dose dependent manner. Adriamycin together with ATP (mM) gives optimal activation, with an open probability (Po) of approximately 1.0. Ruthenium red added to the cis side, equivalent to the cytoplasmic (myoplasmic) domain, completely blocks channel opening. Qualitatively similar results are obtained with adriamycinol, the major metabolite of adriamycin. The inhibition by adriamycin is not reversed by reperfusion to wash out the drug. Silver ions are also found to activate the channel. The conductance of the channel activated by adriamycin, adriamycinol or Ag+ is approximately 100 ps, similar to that previously reported for activation of the channel with Ca2+ and ATP. Ruthenium red has previously been observed to block channel activation from the cytoplasmic side.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号