首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
湿地植物根系泌氧及其在自然基质中的扩散效应研究进展   总被引:3,自引:0,他引:3  
王文林  韩睿明  王国祥  唐晓燕  梁斌 《生态学报》2015,35(22):7286-7297
湿地植物根系径向泌氧(ROL)是构造根际氧化-还原异质微生态系统的核心要素,其扩散层为好氧、厌氧微生物提供了良好生境并促进其代谢活动,使湿地植物根际成为有机物降解、物质循环及生命活动最为强烈的场所,已有成果证明湿地植物根系ROL的强弱与污染物的去除效果密切相关。因此,开展湿地植物根系ROL及其在自然基质中的扩散效应研究,对于了解湿地植物根系ROL机理及其根际氧环境特征,进而发挥湿地植物的污染去除功能具有十分重要的意义。基于此,首先归纳了湿地植物根系ROL特征及其受影响机制的研究现状,而后从种属差异、时空分布及对微生物的影响等方面对根系ROL在自然基质中的扩散效应国内外研究成果进行了总结,最终根据研究现状与不足对今后的研究方向进行了简要展望。创新之处在于:1)提出影响根系氧供给及氧输送释放通道的环境、生物等因素,阐述了其对根系ROL的影响机制;2)着重阐述了目前研究较少提及的根系ROL扩散效应测定方法。  相似文献   

2.
Microenvironmental studies regarding plant oxygen release in a wastewater environment are important to understand the principles of constructed wetlands for wastewater treatment. pH, oxidation reduction potential (ORP), and dissolved oxygen (DO) microprofiles for the lateral and main roots of the bulrush (Scirpus validus) in a vertical flow constructed wetland fed with municipal wastewater were measured using microelectrode techniques. pH was found to be low (6.91-6.98) near the lateral root surface, indicating possible nitrification or H(+) extrusion. The ORP at the lateral root surface was between +250 and +317 mV and gradually reached the bulk solution ORP (+14 to -54 mV) at a radial distance of approximately 4,750 microm. DO values at the lateral root surface varied from 0.64-2.04 mg L(-1) as bulk biochemical oxygen demand (BOD) changed from 24 to 1,267 mg L(-1). DO at the lateral root surface and the thickness of the oxygen layer around the root marginally increased with an increase in bulk BOD, while ORP at the lateral and main root surface decreased. pH and DO values did not change near the main root and had the bulk solution values. The results of this study provide insights into root-induced microenvironments and would be helpful for the quantification of the total amount of oxygen contributed by plants in constructed wetlands.  相似文献   

3.
BACKGROUND AND AIMS: Akagare and Akiochi are diseases of rice associated with sulfide toxicity. This study investigates the possibility that rice reacts to sulfide by producing impermeable barriers in roots. METHODS: Root systems of rice, Oryza sativa cv. Norin 36, were subjected to short-term exposure to 0.174 mm sulfide (5.6 ppm) in stagnant solution. Root growth was monitored; root permeability was investigated in terms of polarographic determinations of oxygen efflux from fine laterals and the apices of adventitious roots, water uptake, anatomy and permeability to Fe2+ using potassium ferricyanide. KEY RESULTS: Both types of root responded rapidly to the sulfide with immediate cessation of growth, decreased radial oxygen loss (ROL) to the rhizospheres and reduced water uptake. Profiles of ROL measured from apex to basal regions of adventitious roots indicated that more intense barriers to ROL than normal were formed around the apices. Absorption of Fe2+ appeared to be impeded in sulfide-treated roots. In adventitious roots, deposition of lipid material (suberisation) and thickenings of walls within the superficial cell layers were obvious within a week after lifting the treatment and could prevent the emergence of laterals and commonly result in their upward longitudinal growth within the cortex. Death of laterals sometimes occurred prior to emergence; emergent laterals eventually died. In adventitious roots, blockages formed within the vascular and aeration systems in response to the sulfide. CONCLUSIONS: In both adventitious and lateral roots, sulfide-induced cell wall suberization and thickening of the superficial layers were correlated with reduced permeability to O2, water and Fe2+. This study sheds light on some of the symptoms of diseases such as Akiochi. The results correlate with the authors' previous findings on the effects on roots of sulfide and lower organic acids in Phragmites and of acetic acid in rice.  相似文献   

4.
A Method to Estimate Practical Radial Oxygen Loss of Wetland Plant Roots   总被引:1,自引:0,他引:1  
The estimation of practical radial oxygen loss (ROL) of wetland plant roots was attempted in this study. We have devised a new method to measure ROL of wetland plant roots. The whole root system was bathed in an anoxic nutrient solution. Oxygen released from the root was removed immediately by introducing oxygen-free nitrogen gas (O2 < 4 nmol L−1) to mimic natural habitats where released oxygen is consumed rapidly due to chemical and biological oxidation processes. Oxygen removed from the root-bathing chamber was simultaneously detected colorimetrically by use of the highly oxygen-sensitive anthraquinone radical anion (AQ·) in a cell outside the root-bathing chamber, which decolorized by a rapid reaction with oxygen. An emergent macrophyte Typha latifolia L. was incubated, and its ROL was measured by both the new method and one of the conventional methods, the closed chamber/electrode method, by which the ROL of Typha latifolia L. had not yet been measured. The new method succeeded in detecting the ROL, whereas the conventional method was not able to detect oxygen, due to the level being below the detection limit of the oxygen electrode. The oxygen supply via the seedlings of Typha latifolia L. was ca. 10 times higher compared with control measurements without plant. Light illumination significantly enhanced the ROL of Typha latifolia L. (0.33 nmol O2 g−1 root dry weight s−1 under light and 0.18 nmol O2 g−1 root dry weight s−1 in the dark). Theses values fall between those previously reported by the closed chamber/titanium citrate method and the open chamber/electrode method.  相似文献   

5.
* High radial oxygen loss (ROL) from roots of aquatic plants to reduced sediments is thought to deplete the roots of oxygen and restrict the distribution of those species unable to form a barrier to oxygen loss. Metal precipitates with high iron content (Fe-plaques) frequently form on roots of aquatic plants and could create such a diffusion barrier, thereby diverting a larger proportion of downward oxygen transport to the root meristems. * To investigate whether Fe-plaques form a barrier to oxygen loss, ROL and internal oxygen concentrations were measured along the length of roots of the freshwater plant Lobelia dortmanna using platinum sleeve electrodes and Clark-type microelectrodes. * Measurements showed that ROL was indeed lower from roots with Fe-plaques than roots without plaques and that ROL declined gradually with thicker iron coating on roots. The low ROL was caused by low diffusion coefficients through root walls with Fe-plaques resulting in higher internal oxygen concentrations in the root lacunae. * By diverting a larger proportion of downward oxygen transport to root meristems in L. dortmanna, the presence of Fe-plaques should diminish root anoxia and improve survival in reduced sediments.  相似文献   

6.
Internal transport of gases is crucial for vascular plants inhabiting aquatic, wetland or flood‐prone environments. Diffusivity of gases in water is approximately 10 000 times slower than in air; thus direct exchange of gases between submerged tissues and the environment is strongly impeded. Aerenchyma provides a low‐resistance internal pathway for gas transport between shoot and root extremities. By this pathway, O2 is supplied to the roots and rhizosphere, while CO2, ethylene, and methane move from the soil to the shoots and atmosphere. Diffusion is the mechanism by which gases move within roots of all plant species, but significant pressurized through‐flow occurs in stems and rhizomes of several emergent and floating‐leaved wetland plants. Through‐flows can raise O2 concentrations in the rhizomes close to ambient levels. In general, rates of flow are determined by plant characteristics such as capacity to generate positive pressures in shoot tissues, and resistance to flow in the aerenchyma, as well as environmental conditions affecting leaf‐to‐air gradients in humidity and temperature. O2 diffusion in roots is influenced by anatomical, morphological and physiological characteristics, and environmental conditions. Roots of many (but not all) wetland species contain large volumes of aerenchyma (e.g. root porosity can reach 55%), while a barrier impermeable to radial O2 loss (ROL) often occurs in basal zones. These traits act synergistically to enhance the amount of O2 diffusing to the root apex and enable the development of an aerobic rhizosphere around the root tip, which enhances root penetration into anaerobic substrates. The barrier to ROL in roots of some species is induced by growth in stagnant conditions, whereas it is constitutive in others. An inducible change in the resistance to O2 across the hypodermis/exodermis is hypothesized to be of adaptive significance to plants inhabiting transiently waterlogged soils. Knowledge on the anatomical basis of the barrier to ROL in various species is scant. Nevertheless, it has been suggested that the barrier may also impede influx of: (i) soil‐derived gases, such as CO2, methane, and ethylene; (ii) potentially toxic substances (e.g. reduced metal ions) often present in waterlogged soils; and (iii) nutrients and water. Lateral roots, that remain permeable to O2, may be the main surface for exchange of substances between the roots and rhizosphere in wetland species. Further work is required to determine whether diversity in structure and function in roots of wetland species can be related to various niche habitats.  相似文献   

7.
Adventitious roots of rice (Oryza sativa) acclimatize to root-zone O(2) deficiency by increasing porosity, and induction of a barrier to radial O(2) loss (ROL) in basal zones, to enhance longitudinal O(2) diffusion towards the root tip. Changes in root-zone gas composition that might induce these acclimatizations, namely low O(2), elevated ethylene, ethylene-low O(2) interactions, and high CO(2), were evaluated in hydroponic experiments. Neither low O(2) (0 or 0.028 mol m(-3) O(2)), ethylene (0.2 or 2.0 microl l(-1)), or combinations of these treatments, induced the barrier to ROL. This lack of induction of the barrier to ROL was despite a positive response of aerenchyma formation to low O(2) and elevated ethylene. Carbon dioxide at 10 kPa had no effect on root porosity, the barrier to ROL, or on growth. Our findings that ethylene does not induce the barrier to ROL in roots of rice, even though it can enhance aerenchyma formation, shows that these two acclimatizations for improved root aeration are differentially regulated.  相似文献   

8.
Myriophyllum spicatum and Potamogeton crispus are common species of shallow eutrophic lakes in north-eastern Germany, where a slow recovery of the submersed aquatic vegetation was observed. Thus, the characterisation of the root oxygen release (ROL) as well as its implication for geochemical processes in the sediment are of particular interest. A combination of microelectrode measurements, methylene blue agar and a titanium(III) redox buffer was used to investigate the influence of the oxygen content in the water column on ROL, diel ROL dynamics as well as the impact of sediment milieu. Oxygen gradients around the roots revealed a maximum oxygen diffusion zone of up to 250 μm. During a sequence with a light/dark cycle as well as alternating aeration of the water column, maximum ROL with up to 35% oxygen saturation at the root surface occurred under light/O2-saturated conditions. A decrease to about 30% was observed under dark/O2-saturated conditions, no ROL was detected at dark/O2-depleted conditions and only a weak ROL with 5–10% oxygen saturation at the root surface was measured under light but O2-depleted water column. These results indicate, that during darkness, ROL is supplied by oxygen from the water column and even during illumination and active photosynthesis production, ROL is modified by the oxygen content in the water column. Visualisation of ROL patterns revealed an enhanced ROL for plants which were grown in sulfidic littoral sediment in comparison to plants grown in pure quartz sand. For both plant species grown in sulfidic littoral sediment, a ROL rate of 3–4 μmol O2 h−1 plant−1 was determined with the Ti(III) redox buffer. For plants grown in pure quartz sand, the ROL rate decreased to 1–2 μmol O2 h−1 plant−1. Hence, aside from the oxygen content in the water column, the redox conditions and microbial oxygen demand in the sediment has to be considered as a further major determinant of ROL.  相似文献   

9.
Growth in stagnant, oxygen‐deficient nutrient solution increased porosity in adventitious roots of two monocotyledonous (Carex acuta and Juncus effusus) and three dicotyledonous species (Caltha palustris, Ranunculus sceleratus and Rumex palustris) wetland species from 10 to 30% under aerated conditions to 20–45%. The spatial patterns of radial oxygen loss (ROL), determined with root‐sleeving oxygen electrodes, indicated a strong constitutive ‘barrier’ to ROL in the basal root zones of the two monocotyledonous species. In contrast, roots of the dicotyledonous species showed no significant ‘barrier’ to ROL when grown in aerated solution, and only a partial ‘barrier’ when grown in stagnant conditions. This partial ‘barrier’ was strongest in C. palustris, so that ROL from basal zones of roots of R. sceleratus and R. palustris was substantial when compared to the monocotyledonous species. ROL from the basal zones would decrease longitudinal diffusion of oxygen to the root apex, and therefore limit the maximum penetration depth of these roots into anaerobic soil. Further studies of a larger number of dicotyledonous wetland species from a range of substrates are required to elucidate the ecophysiological consequences of developing a partial, rather than a strong, ‘barrier’ to ROL.  相似文献   

10.
The objective of this work was to determine whether radial oxygen loss (ROL) from roots of Typha domingensis and Cladium jamaicense creates an internal oxygen deficiency or, conversely, indicates adequate internal aeration and leakage of excess oxygen to the rhizosphere. Methylene blue in agar was used to visualize the pattern of ROL from roots, and oxidation of a titanium-citrate solution was used to quantify rates of oxygen leakage. Typha's roots had a higher porosity than Cladium's and responded to flooding treatment by increasing cortical air space, particularly near the root tips. A greater oxygen release, which occurred along the subapical root axis, and an increase in rhizosphere redox potential (E(h)) over time were associated with the well-developed aerenchyma system in Typha. Typha roots, regardless of oxygen release pattern, showed low or undetectable alcohol dehydrogenase (ADH) activity or ethanol concentrations, indicating that ROL did not cause internal deficiencies. Cladium roots also released oxygen, but this loss primarily occurred at the root tips and was accompanied by increased root ADH activity and ethanol concentrations. These results support the hypothesis that oxygen release by Cladium is accompanied by internal deficiencies of oxygen sufficient to stimulate alcoholic fermentation and helps explain Cladium's lesser flood tolerance in comparison with Typha.  相似文献   

11.
A Re-examination of the Functional Significance of Aerenchyma   总被引:1,自引:0,他引:1  
Model roots of known length and internal porosity were assayed for ROL (radial oxygen loss) by the cylindrical Pt electrode technique and a series of curves were obtained which express the inter-relationships between ROL and diffusion path length over a wide range of internal porosity levels. The results indicate that internal porosity can exert considerable control on the amount of oxygen lost from roots, the more so the narrower the root. Because radial oxygen loss is necessary for survival and competitiveness, doubt is therefore cast on the currently held view that aerenchyma formation furnishes the wetland plant with an oxygen diffusion pathway excessive to its requirements. The results also suggest that cellular partitions and diaphragms in wetland species may impede gas transport far less than has hitherto been thought.  相似文献   

12.
BACKGROUND AND AIMS: Claims that submerged roots of alder and other wetland trees are aerated by pressurized gas flow generated in the stem by a light-induced thermo-osmosis have seemed inconsistent with root anatomy. Our aim was to seek a verification using physical root-stem models, stem segments with or without artificial roots, and rooted saplings. METHODS: Radial O2 loss (ROL) from roots was monitored polarographically as the gas space system of the models, and stems were pressurized artificially. ROL and internal pressurization were also measured when stems were irradiated and the xylem stream was either CO2 enriched or not. Stem photosynthesis and respiration were measured polarographically. Stem and root anatomy were examined by light and fluorescence microscopy. KEY RESULTS: Pressurizing the models and stems to 相似文献   

13.
Few studies have examined exodermal development in relation to the formation of barriers to both radial oxygen loss (ROL) and solute penetration along growing roots. Here, we report on the structural development, chemical composition and functional properties of the exodermis in two diverse wetland grasses, Glyceria maxima and Phragmites australis. Anatomical features, development, the biochemical composition of exodermal suberin and the penetration of apoplastic tracers and oxygen were examined. Striking interspecific differences in exodermal structure, suberin composition and quantity per unit surface area, and developmental changes along the roots were recorded. Towards the root base, ROL and periodic acid (H(5)IO(6)) penetration were virtually stopped in P. australis; in G. maxima, a tight ROL barrier restricted but did not stop H(5)IO(6) penetration and the exodermis failed to stain with lipidic dyes. Cultivation in stagnant deep hypoxia conditions or oxygenated circulating solution affected the longitudinal pattern of ROL profiles in G. maxima but statistically significant changes in exodermal suberin composition or content were not detected. Interspecific differences in barrier performance were found to be related to hypodermal structure and probably to qualitative as well as quantitative variations in suberin composition and distribution within exodermal cell walls. Implications for root system function are discussed, and it is emphasized that sufficient spatial resolution to identify the effects of developmental changes along roots is crucial for realistic evaluation of exodermal barrier properties.  相似文献   

14.
The objective of this study was to investigate the relationships between root radial oxygen loss (ROL), photosynthesis, and nutrient removal, based on the hypothesis that ROL is primarily an active process which is affected positively by photosynthesis, and is correlated positively with nutrient removal. Four common wetland plants were studied in small-scale monoculture wetlands. Higher ROL coincided with faster growth among the four monocultures. Significant correlation between ROL and photosynthetic rate existed in Cyperus flabelliformis wetland (P < 0.01). Both ROL and photosynthesis represented close correlations with nutrient removal rates in all four monocultures. Significant differences in ROL, photosynthetic rate, removal rates of NH4+, and soluble reactive phosphorus (SRP) were found among the four species. ROL and photosynthetic rates showed single-peak daily and seasonal patterns, with maximum daily values around noon, and with maximum yearly values in summer or autumn for the four monocultures. The results suggest that the ROL of wetland plants is related to active physiological processes. Both ROL and photosynthetic rate are indices which can be used to identify wetland plants with a higher nutrient removal capacity.  相似文献   

15.
不同渗氧能力水稻品种对砷的耐性和积累   总被引:2,自引:0,他引:2  
水稻是目前世界上(尤其是东南亚)最主要的粮食作物之一,也是砷(As)通过食物链进入人体的主要途径。日益加剧的土壤砷污染,严重影响了稻米的产量和品质,进而威胁着人体健康。通过温室实验,研究CNT 87059-3、玉香油占和巴西陆稻3种不同渗氧能力的水稻品种在不同砷浓度处理下的生长情况和砷积累特征,结果表明:(1)渗氧能力强的玉香油占砷耐性指数最高,砷处理浓度为2 mg/L时耐性指数高达0.71,而CNT 87059-3的耐性指数为0.55,巴西陆稻仅有0.17;(2)随着砷处理浓度的升高,3种水稻品种的生物量呈现下降趋势,但渗氧能力强的玉香油占较其它两品种生物量的下降幅度小;(3)在不同砷浓度处理下水稻地下部分的砷含量有显著性差异(P0.001),且同种砷浓度处理下不同水稻品种的地下部分砷含量也存在显著性差异(P0.01),渗氧能力较强的水稻品种与渗氧能力较弱的品种相比能显著降低砷在根部(地下部分)的积累。水稻渗氧能力与其砷耐性和砷积累有显著相关性,渗氧能力越强,水稻的砷耐性越强,砷的积累量越少。因此,通过筛选渗氧能力强的水稻品种,有望降低污染农田水稻的砷含量和健康风险。  相似文献   

16.
BACKGROUND AND AIMS: Rain-fed lowland rice commonly encounters stresses from fluctuating water regimes and nutrient deficiency. Roots have to acquire both oxygen and nutrients under adverse conditions while also acclimating to changes in soil-water regime. This study assessed responses of rice roots to low phosphorus supply in aerated and stagnant nutrient solution. METHODS: Rice (Oryza sativa 'Amaroo') was grown in aerated solution with high P (200 micro m) for 14 d, then transferred to high or low (1.6 micro m) P supply in aerated or stagnant solution for up to 8 d. KEY RESULTS: After only 1 d in stagnant conditions, root radial oxygen loss (ROL) had decreased by 90 % in subapical zones, whereas near the tip ROL was maintained. After 4 d in stagnant conditions, maximum root length was 11 % less, and after 8 d, shoot growth was 25 % less, compared with plants in aerated solution. The plants in stagnant solution had up to 19 % more adventitious roots, 24 % greater root porosity and 26 % higher root/shoot ratio. Rice in low P supply had fewer tillers in both stagnant and aerated conditions. After 1-2 d in stagnant solution, relative P uptake declined, especially at low P supply. Aerated roots at low P supply maintained relative P uptake for 4 d, after which uptake decreased to the same levels as in stagnant solution. CONCLUSIONS: Roots responded rapidly to oxygen deficiency with decreased ROL in subapical zones within 1-2 d, indicating induction of a barrier to ROL, and these changes in ROL occurred at least 2 d before any changes in root morphology, porosity or anatomy were evident. Relative P uptake also decreased under oxygen deficiency, showing that a sudden decline in root-zone oxygen adversely affects P nutrition of rice.  相似文献   

17.
水稻根系通气组织与根系泌氧及根际硝化作用的关系   总被引:9,自引:0,他引:9  
李奕林 《生态学报》2012,32(7):2066-2074
通过根箱土培试验研究了不同产量籼稻品种中旱22(ZH,高产品种)及禾盛10号(HS,低产品种)苗期根系生长、通气组织发育、根系径向泌氧量(radial oxygen loss,ROL)以及根表和根际土壤硝化强度差异。结果表明,除水稻播种40 d时二者根数量和根干重无显著差异外,ZH根直径、根数量和根干重均显著高于HS,二者差异尤其表现在根系生物量差异。两个水稻品种在距根尖20 mm处均可见辐射状通气组织,ZH皮层薄壁细胞已经完全崩溃形成连接中柱和外皮层的纵向气腔,而HS皮层薄壁细胞未发生完全离解,但仍能观察到明显的连接中柱和外皮层的纵向气腔的形成。同时ZH外皮层厚壁细胞体积较小,排列紧密,细胞壁增厚程度大;而HS外皮层厚壁细胞体积相对较大,排列疏松,细胞壁增厚程度相对较小。表明高产品种通气组织发育比低产品种更加完善,表现为ZH根孔隙度(porosity of root,POR)显著高于HS,且高产品种对水稻根系ROL的屏蔽作用较低产品种更强,为根系提供更充足的氧气供应,促进根系生长。除了水稻播种后40 d时ZH和HS单根ROL无显著差异外(P<0.05),ZH单株、单位重量以及单根ROL均显著高于HS(P<0.01)。两个水稻品种硝化强度均表现为根际土壤显著高于根表土壤 (P<0.01),前者大约是后者的3-6倍。两个品种根表土壤硝化强度无显著差异,而ZH根际土壤硝化强度均显著高于HS。相关性分析结果表明水稻根际土壤硝化强度和整株水稻ROL呈极显著正相关关系(r=0.803,P<0.01),和水稻POR也呈现极显著正相关关系(r=0.808,P<0.01),同时和根系直径、数量和干重均呈极显著正相关关系(P<0.01)。而根表土壤硝化强度和以上指标均无相关关系。由于硝化作用是好氧过程,因此高产品种由于根系发达,通气组织发育好,相应ROL也较大,造成根际土壤氧气含量高,从而可能导致根际土壤硝化强度显著高于低产品种。  相似文献   

18.
BACKGROUND AND AIMS: Respiratory critical oxygen pressures (COPR) determined from O(2)-depletion rates in media bathing intact or excised roots are unreliable indicators of respiratory O(2)-dependency in O(2)-free media and wetlands. A mathematical model was used to help illustrate this, and more relevant polarographic methods for determining COPR in roots of intact plants are discussed. METHODS: Cortical [O(2)] near the root apex was monitored indirectly (pea seedlings) from radial oxygen losses (ROL) using sleeving Pt electrodes, or directly (maize) using microelectrodes; [O(2)] in the root was controlled by manipulating [O(2)] around the shoots. Mathematical modelling of radial diffusive and respiratory properties of roots used Michaelis-Menten enzyme kinetics. KEY RESULTS: Respiration declined only when the O(2) partial pressure (OPP) in the cortex of root tips fell below 0.5-4.5 kPa, values consistent with depressed respiration near the centre of the stele as confirmed by microelectrode measurements and mathematical modelling. Modelling predictions suggested that the OPP of a significant core at the centre of roots could be below the usual detection limits of O(2)-microelectrodes but still support some aerobic respiration. CONCLUSIONS: In O(2)-free media, as in wetlands, the COPR for roots is likely to be quite low, dependent upon the respiratory demands, dimensions and diffusion characteristics of the stele/stelar meristem and the enzyme kinetics of cytochrome oxidase. Roots of non-wetland plants may not differ greatly in their COPRs from those of wetland species. There is a possibility that trace amounts of O(2) may still be present in stelar 'anaerobic' cores where fermentation is induced at low cortical OPPs.  相似文献   

19.
洪水条件下湿地植物的生存策略   总被引:18,自引:1,他引:17  
洪水是自然界存在的一种普遍现象。湿地植物由于所处生境的特殊性,会经常受到周期性或永久性的洪水胁迫。在长期的适应进化过程中,湿地植物形成了一些特殊的生存策略,以适应水文条件的大幅度变化。主要的生存策略如下:1)生活史方面,植物可通过改变生长时间、繁殖方式、种子特征等避免洪水的直接伤害或利用洪水的流动起到传播扩散的作用;2)形态学特征方面,植物可通过调整根系形态、分布等将根系生长到氧气相对充足的土壤表层或形成不定根增强根系通气功能;3)解剖学方面,植物可通过改善组织孔隙度形成通气组织等改善空气传导到根系的"气体通道";4)生理生化方面,植物可通过增加碳水化合物含量以延长生存时间,释放出一些生长激素(乙烯等)以调节植物缺氧条件下的生理活动或形态、解剖方面的变化。在今后的研究中,不定根的形成机理、乙烯在通气组织形成中的作用及其过程、放射氧损失(ROL)的形成机理及其释放速率的调控等一些机理性的工作还需进一步加强。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号