首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 108 毫秒
1.
Systemic tumor targeting and killing by Sindbis viral vectors   总被引:14,自引:0,他引:14  
Successful cancer gene therapy requires a vector that systemically and specifically targets tumor cells throughout the body. Although several vectors have been developed to express cytotoxic genes via tumor-specific promoters or to selectively replicate in tumor cells, most are taken up and expressed by just a few targeted tumor cells. By contrast, we show here that blood-borne Sindbis viral vectors systemically and specifically infect tumor cells. A single intraperitoneal treatment allows the vectors to target most tumor cells, as demonstrated by immunohistochemistry, without infecting normal cells. Further, Sindbis infection is sufficient to induce complete tumor regression. We demonstrate systemic vector targeting of tumors growing subcutaneously, intrapancreatically, intraperitoneally and in the lungs. The vectors can also target syngeneic and spontaneous tumors in immune-competent mice. We document the anti-tumor specificity of a vector that systemically targets and eradicates tumor cells throughout the body without adverse effects.  相似文献   

2.
应用新城疫病毒治疗肿瘤的研究进展   总被引:1,自引:0,他引:1  
新城疫病毒可以特异地杀伤肿瘤细胞,而对正常细胞没有伤害,目前在临床实验中认为是安全、有效的溶瘤试剂。随着近年来反向遗传操作技术的日趋成熟,该技术开始应用到新城疫病毒溶瘤效果的优化方面,通过改造新城疫病毒的F基因,及表达重组粒细胞巨噬细胞集落刺激因子,干扰素-γ,白细胞介素-2和肿瘤坏死因子-α等肿瘤杀伤因子,使该病毒具备更加优越的肿瘤杀伤能力,成为肿瘤治疗领域一个新兴的亮点,为癌症的临床治疗提供了崭新的前景。以下将简要介绍应用反向遗传操作技术重组新城疫病毒优化肿瘤治疗效果的研究进展,以及本实验室在相关领域的研究情况。  相似文献   

3.
Oncolytic viruses (OVs) represent a relatively novel anti-cancer modality. Like other new cancer treatments, effective OV therapy will likely require combination with conventional treatments. In order to design combinatorial treatments that work well together, a greater scrutiny of the mechanisms behind the individual treatments is needed. Sindbis virus (SV) based vectors have previously been shown to target and kill tumors in xenograft, syngeneic, and spontaneous mouse models. However, the effect of SV treatment on the immune system has not yet been studied. Here we used a variety of methods, including FACS analysis, cytotoxicity assays, cell depletion, imaging of tumor growth, cytokine blockade, and survival experiments, to study how SV therapy affects Natural Killer (NK) cell function in SCID mice bearing human ovarian carcinoma tumors. Surprisingly, we found that SV anti-cancer efficacy is largely NK cell-dependent. Furthermore, the enhanced therapeutic effect previously observed from Sin/IL12 vectors, which carry the gene for interleukin 12, is also NK cell dependent, but works through a separate IFNγ-dependent mechanism, which also induces the activation of peritoneal macrophages. These results demonstrate the multimodular nature of SV therapy, and open up new possibilities for potential synergistic or additive combinatorial therapies with other treatments.  相似文献   

4.
The ability to specifically engineer the genome of living cells at precise locations using rare-cutting designer endonucleases has broad implications for biotechnology and medicine, particularly for functional genomics, transgenics and gene therapy. However, the potential impact of chromosomal context and epigenetics on designer endonuclease-mediated genome editing is poorly understood. To address this question, we conducted a comprehensive analysis on the efficacy of 37 endonucleases derived from the quintessential I-CreI meganuclease that were specifically designed to cleave 39 different genomic targets. The analysis revealed that the efficiency of targeted mutagenesis at a given chromosomal locus is predictive of that of homologous gene targeting. Consequently, a strong genome-wide correlation was apparent between the efficiency of targeted mutagenesis (≤ 0.1% to ≈ 6%) with that of homologous gene targeting (≤ 0.1% to ≈ 15%). In contrast, the efficiency of targeted mutagenesis or homologous gene targeting at a given chromosomal locus does not correlate with the activity of individual endonucleases on transiently transfected substrates. Finally, we demonstrate that chromatin accessibility modulates the efficacy of rare-cutting endonucleases, accounting for strong position effects. Thus, chromosomal context and epigenetic mechanisms may play a major role in the efficiency rare-cutting endonuclease-induced genome engineering.  相似文献   

5.
BACKGROUND: Malignant glioma has a dismal prognosis. It was previously shown that glioma cells are efficiently killed when they express a gene coding for a hyperfusogenic mutant of the gibbon ape leukemia virus envelope glycoprotein (GALV.fus). However, production of viral vectors expressing GALV.fus has proven problematic because the transgene is toxic to vector-producing cells of human origin. We reasoned that Sindbis-virus-based vectors might be ideal for GALV.fus gene transfer because high-titer stocks can easily be generated in hamster cells and Sindbis virus efficiently infects human tumor cells through the high-affinity 67 kDa laminin receptor. In addition, Sindbis virus nonstructural proteins are potent inducers of apoptosis, and Sindbis vector RNAs expressing fusogenic viral proteins have been shown to spread from cell-to-cell in membrane-formed infectious particles. METHODS: Sindbis virus replicon-containing particles were generated by co-transfecting vector and helper RNAs into baby hamster kidney (BHK-21) cells. Packaged beta-galactosidase and GALV.fus expressing Sindbis vectors were used to infect glioma cell lines, which were then compared for syncytial cytopathic effect, cell killing, and release of infectious virus-like particles containing the vector genome. Finally, the efficacy of GALV.fus and beta-galactosidase Sindbis vectors was compared in an orthotopic intracerebral U87 glioma xenograft model in nude mice. RESULTS: High-titer stocks (>10(9) infectious units (iu)/ml) of the GALV.fus and beta-galactosidase vectors were obtained. Glioma cells infected with the GALV.fus vector formed large syncytia which died rapidly by apoptosis and released infectious membrane-formed particles that could transfer vector genomes to uninfected cells. The GALV.fus vector had significantly greater antitumor therapeutic potency than the beta-galactosidase vector in the U87 glioma xenograft model. CONCLUSIONS: Sindbis vectors expressing GALV.fus can be packaged into infectious viral particles to high titer, they exhibit potent bystander cytopathic potential and are active against U87 glioma xenografts. Sindbis-virus-based replicons appear to be efficient vector systems for delivery and expression of fusogenic membrane glycoproteins.  相似文献   

6.
In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy.  相似文献   

7.
The greatest challenge in cancer treatment is to achieve the highest levels of specificity and efficacy. Cancer gene therapy could be designed specifically to express therapeutic genes to induce cancer cell destruction. Cancer-specific promoters are useful tools to accomplish targeted expression; however, high levels of gene expression are needed to achieve therapeutic efficacy. Incorporating an imaging reporter gene in tandem with the therapeutic gene will allow tangible proof of principle that gene expression occurs at the correct location and at a sufficient level. Gene-based imaging can advance cancer detection and diagnosis. By combining the cancer-targeted imaging and therapeutic strategies, the exciting prospect of a 'one-two punch' to find hidden, disseminated cancer cells and destroy them simultaneously can potentially be realized.  相似文献   

8.
Viral gene therapy has exceptional potential as a specifically tailored cancer treatment. However, enthusiasm for cancer gene therapy has varied over the years, partly owing to safety concerns after the death of a young volunteer in a clinical trial for a genetic disease. Since this singular tragedy, results from numerous clinical trials over the past 10 years have restored the excellent safety profile of adenoviral vectors. These vectors have been extensively studied in phase I and II trials as intraprostatically administered agents for patients with locally recurrent and high-risk local prostate cancer. Promising therapeutic responses have been reported in several studies with both oncolytic and suicide gene therapy strategies. The additional benefit of combining gene therapy with radiation therapy has also been realized; replicating adenoviruses inhibit DNA repair pathways, resulting in a synergistic sensitization to radiation. Other, nonreplicating suicide gene therapy strategies are also significantly enhanced with radiation. Combined radiation/gene therapy is currently being studied in phase I and II clinical trials and will likely be the first adenoviral gene therapy mechanism to become available to urologists in the clinic. Systemic gene therapy for metastatic disease is also a major goal of the field, and clinical trials are currently under way for hormone-resistant metastatic prostate cancer. Second- and third-generation "re-targeted" viral vectors, currently being developed in the laboratory, are likely to further improve these systemic trials.  相似文献   

9.
Specifically and effectively directing a therapeutic gene to its intended site of action is a critical issue for translation of basic genomics to clinical gene therapy. Delivering gene therapy vectors to specific cells or tissues through intravenous injection is the most desirable method for this purpose. In 2001, we reported successful targeted gene transduction in vitro utilizing both oncoretroviral and lentiviral vectors pseudotyped with a chimeric Sindbis virus envelope (ZZ SINDBIS). However, these pseudotypes mediated non-specific gene transduction to liver and spleen in vivo. To address this problem we generated the modified ZZ SINDBIS (termed m168) with significantly less non-specific infectivity. To investigate the ability of m168 pseudotyped lentiviral vector to mediate targeted gene transduction in vivo, we utilized a metastatic tumor model by using mouse melanoma cells engineered to express human P-glycoprotein. We administered the m168 pseudotyped vector conjugated with anti-P-glycoprotein antibody into the mice intravenously to target metastatic melanoma. The m168 pseudotyped vector selectively infected metastatic melanoma cells demonstrating successful targeted gene transduction in vivo. Targeting technology based upon m168 can be further modified for application not only to cancer but also potentially to genetic, neurologic, infectious and immune diseases, thereby expanding the future application of gene therapy.  相似文献   

10.
11.
BACKGROUND: The morphological diversity of arthropods makes them attractive subjects for studying the evolution of developmental mechanisms. Comparative analyses suggest that arthropod diversity has arisen largely as a result of changes in expression patterns of genes that control development. Direct analysis of how a particular gene functions in a given species during development is hindered by the lack of broadly applicable techniques for manipulating gene expression. RESULTS: We report that the Arbovirus Sindbis can be used to deliver high levels of gene expression in vivo in a number of non-host arthropod species without causing cytopathic effects in infected cells or impairing development. Using recombinant Sindbis virus, we investigated the function of the homeotic gene Ultrabithorax in the development of butterfly wings and beetle embryos. Ectopic Ultrabithorax expression in butterfly forewing imaginal discs was sufficient to cause the transformation of characteristic forewing properties in the adult, including scale morphology and pigmentation, to those of the hindwing. Expression of Ultrabithorax in beetle embryos outside of its endogenous expression domain affected normal development of the body wall cuticle and appendages. CONCLUSIONS: The homeotic genes have long been thought to play an important role in the diversification of arthropod appendages. Using recombinant Sindbis virus, we were able to investigate homeotic gene function in non-model arthropod species. We found that Ultrabithorax is sufficient to confer hindwing identity in butterflies and alter normal development of anterior structures in beetles. Recombinant Sindbis virus has broad potential as a tool for analyzing how the function of developmental genes has changed during the diversification of arthropods.  相似文献   

12.
Among the issues discussed at this year's meeting on prostate cancer in Vail, Colorado, were several that specifically relate to the patient with advanced disease. Dr. E. David Crawford addressed the issue of the timing of hormone therapy, specifically reviewing several important trials that give a glimpse at the potential outcome of aggressive treatment in stage D1.5. The efficacy of antiandrogens, flutamide, bicalutamide, and nilutamide, when combined with chemical or surgical castration, was reviewed. Dr. Arturo Mendoza-Valdes reviewed the rationale behind intermittent (versus continuous) total androgen blockade, especially as related to quality of life. Dr. Paul Miller gave an update on the role of bisphosphonates as adjuvant therapy for prostate cancer. Also discussed was an important new agent for androgen deprivation, Abarelix, a sustained-release GnRH antagonist with low histamine-releasing potential which avoids testosterone and other hormone surge and flare.  相似文献   

13.
Present therapeutic strategies for most cancers are restricted mainly to the primary tumors and are also not very effective in controlling metastatic states. Alternatively, gene therapy can be a potential option for treating such cancers. Currently mammalian viral-based cancer gene therapy is the most popular approach, but the efficacy has been shown to be quite low in clinical trials. In this study, for the first time, the insect cell-specific baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) has been evaluated as a vector for gene delivery to colorectal cancer cells. Experiments involving factorial design were employed to study the individual and combined effects of different parameters such as multiplicity of infection (MOI), viral incubation time and epigenetic factors on transduction efficiency. The results demonstrate that baculovirus gene delivery system holds immense potential for development of a new generation of highly effective virotherapy for colorectal, as well as other major carcinomas (breast, pancreas, and brain), and offers significant benefits to traditional animal virus-based vectors with respect to safety concerns.  相似文献   

14.
The use of bacteria in the regression of certain forms of cancer has been recognized for more than a century. Much effort, therefore, has been spent over the years in developing wild-type or modified bacterial strains to treat cancer. However, their use at the dose required for therapeutic efficacy has always been associated with toxicity problems and other deleterious effects. Recently, the old idea of using bacteria in the treatment of cancer has attracted considerable interest and new genetically engineered attenuated strains as well as microbial compounds that might have specific anticancer activity without side effects are being evaluated for their ability to act as new anticancer agents. This involves the use of attenuated bacterial strains and expressing foreign genes that encode the ability to convert non-toxic prodrugs to cytotoxic drugs. Novel strategies also include the use of bacterial products such as proteins, enzymes, immunotoxins and secondary metabolites, which specifically target cancer cells and cause tumor regression through growth inhibition, cell cycle arrest or apoptosis induction. In this review we describe the current knowledge and discuss the future directions regarding the use of bacteria or their products, in cancer therapy.  相似文献   

15.
The interest in studying metabolic alterations in cancer and their potential role as novel targets for therapy has been rejuvenated in recent years. Here, we report the development of the first genome‐scale network model of cancer metabolism, validated by correctly identifying genes essential for cellular proliferation in cancer cell lines. The model predicts 52 cytostatic drug targets, of which 40% are targeted by known, approved or experimental anticancer drugs, and the rest are new. It further predicts combinations of synthetic lethal drug targets, whose synergy is validated using available drug efficacy and gene expression measurements across the NCI‐60 cancer cell line collection. Finally, potential selective treatments for specific cancers that depend on cancer type‐specific downregulation of gene expression and somatic mutations are compiled.  相似文献   

16.
BACKGROUND: A long-standing goal in genetic therapy for cancer is a systemic gene delivery system that selectively targets tumor cells, including metastases. Here we describe a novel cationic immunolipoplex system that shows high in vivo gene transfer efficiency and anti- tumor efficacy when used for systemic p53 gene therapy of cancer. MATERIALS AND METHODS: A cationic immunolipoplex incorporating a biosynthetically lipid-tagged, anti-transferrin receptor single-chain antibody (TfRscFv), was designed to target tumor cells both in vitro and in vivo. A human breast cancer metastasis model was employed to evaluate the in vivo efficacy of systemically administered, TfRscFv-immunolipoplex-mediated, p53 gene therapy in combination with docetaxel. RESULTS: The TfRscFv-targeting cationic immunolipoplex had a size of 60-100 nm, showed enhanced tumor cell binding, and improved targeted gene delivery and transfection efficiencies, both in vitro and in vivo. The p53 tumor suppressor gene was not only systemically delivered by the immunolipoplex to human tumor xenografts in nude mice but also functionally expressed. In the nude mouse breast cancer metastasis model, the combination of the p53 gene delivered by the systemic administration of the TfRscFv-immunolipoplex and docetaxel resulted in significantly improved efficacy with prolonged survival. CONCLUSIONS: This is the first report using scFv-targeting immunolipoplexes for systemic gene therapy. The TfRscFv has a number of advantages over the transferrin (Tf) molecule itself: (1) scFv has a much smaller size than Tf producing a smaller immunolipoplex giving better penetration into solid tumors; (2) unlike Tf, the scFv is a recombinant protein, not a blood product; (3) large scale production and strict quality control of the recombinant scFv, as well as scFv-immunolipoplex, are feasible. The sensitization of tumors to chemotherapy by this tumor-targeted and efficient p53 gene delivery method could lower the effective dose of the drug, correspondingly lessening the severe side effects, while decreasing the possibility of recurrence. Moreover, this approach is applicable to both primary and recurrent tumors, and more significantly, metastatic disease. The TfRscFv-targeting of cationic immunolipoplexes is a promising method of tumor targeted gene delivery that can be used for systemic gene therapy of cancer with the potential to critically impact the clinical management of cancer.  相似文献   

17.
The goal of oncolytic therapy is to exploit the innate ability of viruses to infect tumor cells, replicate in tumor cells, and produce selective oncolysis while sparing normal cells. Although the concept that viruses can be oncolytic is not new, it is only in the last three decades that efforts have been directed at genetically mutating viruses to specifically target characteristics of cancer cells. Several viruses have the potential to infect, replicate and lyse tumor cells, each taking advantage of different host cancer cell biology. This review will focus on the major viruses under current investigation for oncolytic therapy, the mechanism by which they specifically eradicate tumors, and the clinical strategies currently under investigation.  相似文献   

18.
Functionalized multi-walled carbon nanotubes have been extensively gained popularity in pancreatic cancer gene therapy. LyP-1, a peptide, has been proved to specifically bind pancreatic cancer cells. The potential therapeutic effect of LyP-1–conjugated functionalized multi-walled carbon nanotubes in treating pancreatic cancer is still unknown. In this study, LyP-1–conjugated functionalized multi-walled carbon nanotubes were successfully synthesized, characterized and showed satisfactory size distribution and zeta potential. Compared with functionalized multi-walled carbon nanotubes, cellular uptake of LyP-1–functionalized multi-walled carbon nanotubes was shown to be increased. Compound of LyP-1–functionalized multi-walled carbon nanotubes and MBD1siRNA showed superior gene transfection efficiency. Moreover, LyP-1-fMWNTs/MBD1siRNA complex could significantly decrease the viability and proliferation and promoted apoptosis of pancreatic cancer cells in vitro. Further xenograft assays revealed that the tumour burden in the nude mice injected with LyP-1–functionalized multi-walled carbon nanotubes/MBD1siRNA was significantly relieved. The study demonstrated that LyP-1–functionalized multi-walled carbon nanotubes/MBD1siRNA could be a promising candidate for tumour active targeting therapy in pancreatic cancer.  相似文献   

19.
《Cancer epidemiology》2013,37(6):1014-1019
Background: Gene therapy has attracted attention for its potential to specifically and efficiently target cancer cells with minimal toxicity to normal cells. At present, it offers a promising direction for the treatment of cancer patients. Numerous vectors have been engineered for the sole purpose of killing cancer cells, and some have successfully suppressed malignant tumours. Many plant proteins have anticancer properties; consequently, genes encoding some of these proteins are being used to design constructs for the inhibition of multiplying cancer cells. Results: Data addressing the function of vectors harbouring genes specifically encoding ricin, saporin, lunasin, linamarase, and tomato thymidine kinase 1 under the control of different promoters are summarised here. Constructs employing genes to encode cytotoxic proteins as well as constructs employing genes of enzymes that convert a nontoxic prodrug into a toxic drug are considered here. Conclusion: Generation of eukaryotic expression vectors containing genes encoding plant proteins for killing of cancer cells may permit the broadening of cancer gene therapy strategy, particularly because of the specific mode of action of anticancer plant proteins.  相似文献   

20.

Mitosis, under the control of the microtubule-based mitotic spindle, is an attractive target for anti-cancer treatments, as cancer cells undergo frequent and uncontrolled cell divisions. Microtubule targeting agents that disrupt mitosis or single molecule inhibitors of mitotic kinases or microtubule motors kill cancer cells with a high efficacy. These treatments have, nevertheless, severe disadvantages: they also target frequently dividing healthy tissues, such as the haematopoietic system, and they often lose their efficacy due to primary or acquired resistance mechanisms. An alternative target that has emerged in dividing cancer cells is their ability to “cluster” the poles of the mitotic spindle into a bipolar configuration. This mechanism is necessary for the specific survival of cancer cells that tend to form multipolar spindles due to the frequent presence of abnormal centrosome numbers or other spindle defects. Here we discuss the recent development of combinatorial treatments targeting spindle pole clustering that specifically target cancer cells bearing aberrant centrosome numbers and that have the potential to avoid resistance mechanism due their combinatorial nature.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号