首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sodium exchange was studied in the arterially perfused papillary muscle of the dog. Three kinetically defined phases accounted for all the myocardial sodium: phase 0 (vascular)-λo (exchange constant) = 3.6 min-1 phase 1 (interstitial)-λ1 = 0.62 min-1; phase 2 (intracellular)-λ2 < 0.020 min-1 in quiescent muscles. The phase 2 exchange rate was proportional to frequency of contraction and increased by approximately 0.004 min-1 for each 1 beat/min increment in rate in muscles demonstrating stable function. A sudden increase in frequency of contraction was followed by a marked increase in phase 2 sodium exchange if muscle function did not deteriorate. This increased exchange required 14 min to achieve a steady state. During this time active tension increased (positive staircase) and then declined to become stable as the sodium exchange stabilized. In muscles in which increased frequency of contraction produced a progressive decrease in active tension and contracture, sodium exchange failed to increase. The characteristics of sodium exchange are compared to those previously defined for calcium and potassium in the perfused dog papillary muscle. It is proposed that alteration in sodium exchange is a primary determinant of calcium and potassium movements and thereby plays a significant role in the control of myocardial contractility.  相似文献   

2.
During DNA replication by the λ-like bacteriophages, immature concatemeric DNA is produced by rolling circle replication. The concatemers are processed into mature chromosomes with cohesive ends, and packaged into prohead shells, during virion assembly. Cohesive ends are generated by the viral enzyme terminase, which introduces staggered nicks at cos, an approx. 200 bp-long sequence containing subsites cosQ, cosN and cosB. Interactions of cos subsites of immature concatemeric DNA with terminase orchestrate DNA processing and packaging. To initiate DNA packaging, terminase interacts with cosB and nicks cosN. The cohesive ends of N15 DNA differ from those of λ at 2/12 positions. Genetic experiments show that phages with chromosomes containing mismatched cohesive ends are functional. In at least some infections, the cohesive end mismatch persists through cyclization and replication, so that progeny phages of both allelic types are produced in the infected cell. N15 possesses an asymmetric packaging specificity: N15 DNA is not packaged by phages λ or 21, but surprisingly, N15-specific terminase packages λ DNA. Implications for genetic interactions among λ-like bacteriophages are discussed.  相似文献   

3.
FOF1 ATP synthases are rotary nanomotors that couple proton translocation across biological membranes to the synthesis/hydrolysis of ATP. During catalysis, the peripheral stalk, composed of two b subunits and subunit δ in Escherichia coli, counteracts the torque generated by the rotation of the central stalk. Here we characterize individual interactions of the b subunits within the stator by use of monoclonal antibodies and nearest neighbor analyses via intersubunit disulfide bond formation. Antibody binding studies revealed that the C-terminal region of one of the two b subunits is principally involved in the binding of subunit δ, whereas the other one is accessible to antibody binding without impact on the function of FOF1. Individually substituted cysteine pairs suitable for disulfide cross-linking between the b subunits and the other stator subunits (b-α, b-β, b-δ, and b-a) were screened and combined with each other to discriminate between the two b subunits (i.e. bI and bII). The results show the b dimer to be located at a non-catalytic α/β cleft, with bI close to subunit α, whereas bII is proximal to subunit β. Furthermore, bI can be linked to subunit δ as well as to subunit a. Among the subcomplexes formed were a-bI-α, bII-β, α-bI-bII-β, and a-bI-δ. Taken together, the data obtained define the different positions of the two b subunits at a non-catalytic interface and imply that each b subunit has a different role in generating stability within the stator. We suggest that bI is functionally related to the single b subunit present in mitochondrial ATP synthase.  相似文献   

4.
The DNA-packaging specificities of phages λ and 21 depend on the specific DNA interactions of the small terminase subunits, which have support helix-turn-recognition helix-wing DNA-binding motifs. λ-Terminase with the recognition helix of 21 preferentially packages 21 DNA. This chimeric terminase''s ability to package λDNA is reduced ∼20-fold. Phage λ with the chimeric terminase is unable to form plaques, but pseudorevertants are readily obtained. Some pseudorevertants have trans-acting suppressors that change codons of the recognition helix. Some of these codons appear to remove an unfavorable base-pair contact; others appear to create a novel nonspecific DNA contact. Helper-packaging experiments show that these mutant terminases have lost the ability to discriminate between λ and 21 during DNA packaging. Two cis-acting suppressors affect cosB, the small subunit''s DNA-binding site. Each changes a cosBλ-specific base pair to a cosB21-specific base pair. These cosB suppressors cause enhanced DNA packaging by 21-specific terminase and reduce packaging by λ-terminase. Both the cognate support helix and turn are required for strong packaging discrimination. The wing does not contribute to cosB specificity. Evolution of packaging specificity is discussed, including a model in which λ- and 21-packaging specificities diverged from a common ancestor phage with broad packaging specificity.VIRUSES must package viral chromosomes from nucleic acid pools that include host-cell nucleic acids, so specific recognition of the viral nucleic acid is essential during virion assembly. For large DNA viruses, including the tailed double-strand DNA (dsDNA) bacteriophages, the herpesviruses, and the adenoviruses, DNA-packaging proteins recognize specific sequences on the viral chromosomes (reviewed in Baines and Weller 2005 and Ostapchuk and Hearing 2005, respectively). For the dsDNA viruses that produce virion chromosomes by processing concatemeric DNA, a viral terminase enzyme functions in the recognition and cutting of concatemeric DNA and subsequently sponsors DNA translocation. λ-Terminase is a heterooligomer of large and small subunits, gpA and gpNu1, respectively. Cutting of concatemeric DNA is carried out by gpA''s endonuclease activity (Becker and Gold 1978; Davidson and Gold 1992; Hwang and Feiss 1996). Three DNA subsites, cosQ, cosN, and cosB, are contained in the ∼200-bp-long cos site and orchestrate DNA packaging through interactions with terminase (Figure 1A; reviewed in Feiss and Catalano 2005). gpA introduces staggered nicks in cosN to generate the 12-bp cohesive ends of mature λDNA molecules. Efficient and accurate nicking of cosN requires anchoring of gpA by gpNu1, which binds to the adjacent cosB subsite (Higgins and Becker 1994b; Hang et al. 2001).Open in a separate windowFigure 1.—The cos and terminase region of the λ-chromosome. (A) (Top) Map of cos and the terminase-encoding Nu1 and A genes. The black bar indicates the location of the winged helix-turn-helix DNA-binding motifs in the N-terminal domain of gpNu1. (Bottom) cos subsites: cosQ is required for termination of DNA packaging; cosN is the site where the large terminase subunit, gpA, introduces staggered nicks to generate the cohesive ends of virion DNA molecules; and cosB contains the gpNu1-binding sites R1, R2, and R3 along with the IHF-binding site I1. (B) (Top) Schematic of gpNu1 residues 1–42, including the support (blue) and recognition (red) α-helixes and the wing loop (magenta). β1 and β2 are short β-strands flanking the DNA-binding elements. (Bottom) Sequences are a comparison of residues of λ''s gpNu1 and phage 21''s gp1, with conserved resides indicated by vertical lines. Note that the recognition helixes of gpNu1 and gp1 differ by four residues, all likely solvent-exposed (Becker and Murialdo 1990; de Beer et al. 2002). (C) Three-dimensional structure of the winged helix-turn-helix-containing, N-terminal domain of gpNu1 (residues 1–68) (de Beer et al. 2002). Side groups of solvent-exposed residues of the recognition helix are displayed. Color coded as in B.λ''s cosB (cosBλ) is a complex subsite containing three copies of a gpNu1-binding sequence, the R sequence, plus a site, I1, for the integration host factor (IHF), the Escherichia coli DNA-bending protein. The order of sites is cosN–R3–I1–R2–R1. The amino-terminal half of gpNu1 contains a winged helix-turn-helix DNA-binding motif (Figure 1, B and C; Gajiwala and Burley 2000) that interacts with the R sequences. Further, the amino-terminal domain of gpNu1 is a tight dimer (Figure 1C, de Beer et al. 2002). The IHF-induced bend at I1 creates a DNA hairpin in cosB that positions the major grooves of R3 and R2 to face inward, so that the helix-turn-helix motifs of dimeric gpNu1 can be docked into them. The wing loops are positioned to make minor groove contacts with R3 and R2. Thus it is proposed that gpA is positioned to nick cosN by assembly of a bent structure with dimeric gpNu1 bound to R3 and R2 (Becker and Murialdo 1990; de Beer et al. 2002). A variety of studies indicate that the positioning of gpNu1 at R3 is crucial and that the other interactions function to create and/or stabilize the R3–gpNu1 interaction (Cue and Feiss 1993a; Higgins and Becker 1994a; Hang et al. 2001).DNA packaging initiates when terminase binds and nicks a cos. Following cosN nicking and separation of the cohesive ends, terminase remains bound to the cosB-containing chromosome end (Becker et al. 1977; Yang et al. 1997). The DNA-bound terminase docks on the portal vertex of a prohead, the empty, immature virion head shell. Assembly of the ternary prohead–terminase–DNA complex activates gpA''s potent translocation ATPase, and the viral DNA is translocated into the prohead (Yang and Catalano 2003; Dhar and Feiss 2005). Translocation brings the next cos along the concatemer to the portal-docked terminase (Feiss and Widner 1982). The downstream cos is cleaved by terminase, completing packaging of the chromosome. Recognition of the downstream cos requires cosQ and cosN (Cue and Feiss 2001). Following DNA packaging, terminase undocks from the filled head. Attachment of a tail to the DNA-filled head completes virion assembly. The undocked terminase remains bound to and sponsors the packaging of the next chromosome along the concatemer.The interactions between the recognition helix of gpNu1 and an R sequence are typical for helix-turn-helix proteins, as shown by genetic studies of chimeras between λ and its relative, phage 21, as follows: λ and 21 have similarly organized cos sites; the cosB of 21 also has the R3–I1–R2–R1 structure. Nevertheless, the two phages have distinct packaging specificities. Base-pair differences in the R sequences account for packaging specificity (Becker and Murialdo 1990; Smith and Feiss 1993). cosN and cosQ are interchangeable between λ and 21 (Feiss et al. 1981). The consensus R sequences are 5′-CGTTTCCtTTCT-3′ for cosBλ and 5′-CaTGTCGGncCT-3′ for cosB21, where capitalized residues are conserved in all three R sequences of both phages; underlined and capitalized are two residues conserved in all three R sequences of both phages, but which differ between cosBλ and cosB21 (Becker and Murialdo 1990). These two conserved but phage-specific base pairs are likely to be of major importance for specificity. Similarly, the recognition helixes of the helix-turn-helix motifs of the small subunits of λ (gpNu1) and 21 (gp1) terminases differ in four amino acid residues that account for packaging specificity (Figure 1; Becker and Murialdo 1990).In earlier work (de Beer et al. 2002), we showed that modifying λ-terminase by replacing the gpNu1 recognition helix with that of 21''s gp1 created a terminase (gpNu1hy1 terminase) that was specific for the cosB of phage 21 (designated cosB21). That is, λ cosB21 Nu1hy1 was viable, but λ cosBλ Nu1hy1 was inviable due to the specificity mismatch between cosBλ and the cosB21-specific recognition helix of the chimeric small terminase subunit, gpNu1hy1. The Nu1hy1 terminase packages cosB21 chromosomes ∼10-fold more efficiently than it does cosBλ chromosomes. This 10-fold discrimination between cosB21 and cosBλ chromosomes is much weaker than the >104-fold discrimination shown by wild-type λ and 21 terminases (de Beer et al. 2002). Because of the modest discrimination of Nu1hy1 terminase, the yield of λ cosBλ Nu1hy1 is only slightly below the yield required for plaque formation. Lysates of λ cosBλ Nu1hy1 contain plaque-forming pseudorevertants at a level expected for single mutations. A number of these pseudorevertants were sequenced and found to contain mutations in cosBλ or in the Nu1hy1 gene. Here we report on in vivo packaging studies on the effects of these Nu1hy1 and cosBλ suppressor mutations on packaging specificity.  相似文献   

5.
Experiments have been performed to help clarify the role of nonhomologies in phage λ recombination. Three-factor crosses were carried out, and the frequencies of single and double recombinants in the two adjoining intervals were compared when the central marker was either a double point mutation (v1v3) or deletion (rex-cI deletion) or nonhomologous substitution (imm434). In all cases the lefthand marker was a bio substitution (Fec- phenotype, which does not permit plating on recA-), and the righthand marker was an amber mutation in gene O. Experiments were performed in all four possible arrangements of the central and rightward markers, while selecting for the Fec+ phenotype on the recA- host. As anticipated, high negative interference (HNI) was observed with point mutations, but when the central marker was a substitution nonhomology, HNI was reduced about tenfold. Surprisingly, when the central marker was a simple deletion, a dramatic asymmetry in results was observed, with HNI being exhibited only when the central deletion marker was acquired by the double recombinant. These results indicate that under normal conditions (red+, gam+, rec+) and with noninhibited DNA replication, recombination in coliphage λ entails a highly asymmetric step that could be at the level of strand transfer or mismatch repair.  相似文献   

6.
Fischer E  Lüttge U 《Plant physiology》1980,65(5):1004-1008
Accumulation of 14C-labeled glycine and microelectrode techniques were employed to study glycine transport and the effect of glycine on the membrane potential (Δψ) in Lemna gibba G1. Evidence is presented that two processes, a passive uptake by diffusion and a carrier-mediated uptake, are involved in glycine transport into Lemna cells. At the onset of active glycine uptake the component of Δψ which depended on metabolism was decreased. The depolarized membrane repolarized in the presence of glycine. This glycine-induced depolarization followed a saturation curve with increasing glycine concentration which corresponded to carrier-mediated glycine influx kinetics. The transport of glycine was correlated with the metabolically dependent component of Δψ. It is suggested (a) that the transient change in Δψ reflects the operation of an H+-glycine cotransport system driven by an electrochemical H+ gradient; and (b) that this system is energized by an active H+ extrusion. Therefore the maximum depolarization of the membrane consequently depended on both the rate of glycine uptake and the activity of the proton extrusion pump.  相似文献   

7.
Decay-associated fluorescence spectra of the green alga Scenedesmus obliquus have been measured by single-photon timing with picosecond resolution in various states of light adaptation. The data have been analyzed by applying a global data analysis procedure. The amplitudes of the decay-associated spectra allow a determination of the relative antenna sizes of the photosystems. We arrive at the following conclusions: (a) The fluorescence kinetics of algal cells with open PS II centers (F0 level) have to be described by a sum of three exponential components. These decay components are attributed to photosystem (PS) I (τ ≈ 85 ps, λmaxem ≈ 695-700 nm), open PS II α-centers (τ ≈ 300 ps, λmaxem = 685 nm), and open PS II β-centers (τ ≈ 600 ps, λmaxem = 685 nm). A fourth component of very low amplitude (τ ≈ 2.2-2.3 ns, λmaxem = 685 nm) derives from dead chlorophyll. (b) At the Fmax level of fluorescence there are also three decay components. They originate from PS I with properties identical to those at the F0 level, from closed PS II α-centers (τ ≈ 2.2 ns, λmaxem = 685 nm) and from closed PS β-centers (τ ≈ 1.2 ns, λmaxem = 685 nm). (c) The major effect of light-induced state transitions on the fluorescence kinetics involves a change in the relative antenna size of α- and β-units brought about by the reversible migration of light-harvesting complexes between α-centers and β-centers. (d) A transition to state II does not measurably increase the direct absorption cross-section (antenna size) of PS I. Our data can be rationalized in terms of a model of the antenna organization that relates the effects of state transitions and light-harvesting complex phosphorylation with the concepts of PS II α,β-heterogeneity. We discuss why our results are in disagreement with those of a recent lifetime study of Chlorella by M. Hodges and I. Moya (1986, Biochim. Biophys. Acta., 849:193-202).  相似文献   

8.
Studies of cytochrome synthesis in rat liver   总被引:3,自引:1,他引:2       下载免费PDF全文
The incorporation of radioactive amino acids and of δ-amino[2,3-3H2]laevulinate into rat liver cytochromes b5 and c and cytochrome oxidase has been examined with and without protein-synthesis inhibitors. Cycloheximide promptly inhibits labelling of both haem and protein for cytochrome c in parallel fashion. Although incorporation of 14C-labelled amino acid into microsomal cytochrome b5 is also rapidly inhibited, cycloheximide incompletely inhibits haem labelling of cytochrome b5 and cytochrome a+a3, and inhibition occurs only after repeated antibiotic injections. The possibility of apo-protein pools, or of haem exchange, with a rapidly renewed `free' haem pool, is considered. Consistent with this model is the observation of non-enzymic haem exchange in vitro between cytochrome b5 and methaemoglobin. Chloramphenicol, injected intravenously over 5h, results in a 20–40% decrease in incorporation of δ-amino[2,3-3H2]laevulinate into haem a+a3 and haem of cytochromes b5 and c. With the dosage schedule of chloramphenicol studied, amino acid labelling of total liver protein and of cytochrome c was not inhibited. Similarly, ferrochelatase activity was not decreased.  相似文献   

9.
A method is developed for analyzing in a unified manner both uniaxial and uniform biaxial strain data obtained from nearly isotropic tissues. The formulation is a direct application of nonlinear elasticity theory pertaining to large deformations. The general relation between Eulerian stress (σ) and extension ratio (λ) in soft isotropic elastic bodies undergoing uniform deformation takes the simple form: σ = ((λ3 - 1)/λ) f(λ), where f(λ) must be determined for each material. The extension ratio may be either greater than 1.0 (uniaxial elongation), or lie between zero and 1.0 (uniform biaxial extension). Simple analytical functions for f(λ) are most readily found for each tissue by plotting all data as (λ3 - 1)/λσ vs. λ. Of those tissues investigated in this way (dog pericardium and pleura, and cat mesentery and dura), all but pleura could be adequately described by a parabola: 1/f(λ) = 1/k{[(λM - λ)(λ - λm)]/[λM - λm}. In these instances, three material constants per tissue (K, λM, λm) served to predict approximately the stresses attained during both small and large deformations, in strips and sheets alike. It was further found that the uniaxial strain asymptote (λM) was linearly related to the biaxial strain asymptote (ΛM), thus effectively reducing the number of constants by one.  相似文献   

10.
Cardiac cells express more than one isoform of the Na, K-ATPase (NKA), the heteromeric enzyme that creates the Na+ and K+ gradients across the plasmalemma. Cardiac isozymes contain one catalytic α-subunit isoform (α1, α2, or α3) associated with an auxiliary β-subunit isoform (β1 or β2). Past studies using biochemical approaches have revealed minor kinetic differences between isozymes formed by different α-β isoform combinations; these results make it difficult to understand the physiological requirement for multiple isoforms. In intact cells, however, NKA enzymes operate in a more complex environment, which includes a substantial transmembrane potential. We evaluated the voltage dependence of human cardiac NKA isozymes expressed in Xenopus oocytes, and of native NKA isozymes in rat ventricular myocytes, using normal mammalian physiological concentrations of Na+o and K+o. We demonstrate that although α1 and α3 pumps are functional at all physiologically relevant voltages, α2β1 pumps and α2β2 pumps are inhibited by ∼75% and ∼95%, respectively, at resting membrane potentials, and only activate appreciably upon depolarization. Furthermore, phospholemman (FXYD1) inhibits pump function without significantly altering the pump’s voltage dependence. Our observations provide a simple explanation for the physiological relevance of the α2 subunit (∼20% of total α subunits in rat ventricle): they act as a reserve and are recruited into action for extra pumping during the long-lasting cardiac action potential, where most of the Na+ entry occurs. This strong voltage dependence of α2 pumps also helps explain how cardiotonic steroids, which block NKA pumps, can be a beneficial treatment for heart failure: by only inhibiting the α2 pumps, they selectively reduce NKA activity during the cardiac action potential, leading to an increase in systolic Ca2+, due to reduced extrusion through the Na/Ca exchanger, without affecting resting Na+ and Ca2+ concentrations.  相似文献   

11.
GABA type A receptors (GABAAR), the brain''s major inhibitory neurotransmitter receptors, are the targets for many general anesthetics, including volatile anesthetics, etomidate, propofol, and barbiturates. How such structurally diverse agents can act similarly as positive allosteric modulators of GABAARs remains unclear. Previously, photoreactive etomidate analogs identified two equivalent anesthetic-binding sites in the transmembrane domain at the β+ subunit interfaces, which also contain the GABA-binding sites in the extracellular domain. Here, we used R-[3H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (R-mTFD-MPAB), a potent stereospecific barbiturate anesthetic, to photolabel expressed human α1β3γ2 GABAARs. Protein microsequencing revealed that R-[3H]mTFD-MPAB did not photolabel the etomidate sites at the β+ subunit interfaces. Instead, it photolabeled sites at the α+ and γ+ subunit interfaces in the transmembrane domain. On the (+)-side, α1M3 was labeled at Ala-291 and Tyr-294 and γ2M3 at Ser-301, and on the (−)-side, β3M1 was labeled at Met-227. These residues, like those in the etomidate site, are located at subunit interfaces near the synaptic side of the transmembrane domain. The selectivity of R-etomidate for the β+ interface relative to the α++ interfaces was >100-fold, whereas that of R-mTFD-MPAB for its sites was >50-fold. Each ligand could enhance photoincorporation of the other, demonstrating allosteric interactions between the sites. The structural heterogeneity of barbiturate, etomidate, and propofol derivatives is accommodated by varying selectivities for these two classes of sites. We hypothesize that binding at any of these homologous intersubunit sites is sufficient for anesthetic action and that this explains to some degree the puzzling structural heterogeneity of anesthetics.  相似文献   

12.
13.
Whole-cell suspensions of Cylindrocarpon didymum were observed to transform 2,2′-bimorphine to the compounds 10-α-S-monohydroxy-2,2′-bimorphine and 10,10′-α,α′-S,S′-dihydroxy-2,2′-bimorphine. Mass spectrometry and 1H nuclear magnetic resonance spectroscopy confirmed the identities of these new morphine alkaloids.  相似文献   

14.
Using a mode-locked laser (λ, 632.8 nm), fluorescence decay of chlorophyll (Chl) a in the green alga Chlorella pyrenoidosa, the red alga Porphyridium cruentum, and the blue-green alga Anacystis nidulans was measured by the phase-shift method under conditions when photosynthesis was not operative (3-(3,4-dichlorophenyl)-1,1-dimethylurea [DCMU] poisoning, or cooling to 77°K). In the presence of 10-5 M DCMU, the lifetime of Chl a fluorescence (τ) at room temperature is about 1.7 nsec in Chlorella, 1.0 nsec in Porphyridium, and 0.7 nsec in Anacystis. At 77°K, τ is 1.4 nsec (for fluorescence at about 685 nm, F-685) and 2.3 nsec (for F-730) in Chlorella, 0.9 nsec (F-685) and 1.2 nsec (F-730) in Porphyridium, and 0.8 nsec (F-685 and F-730) in Anacystis. From the above measurement, and the assumption that τ0 (the intrinsic fluorescence lifetime) for Chl a in all three algae is 15.2 nsec, we have calculated the rate constants of radiationless transition (that includes energy transfer to weakly fluorescent system I) processes competing with fluorescence at room temperature to be about 5 × 108 sec-1 in Chlorella, 9 × 108 sec-1 in Porphyridium, and 13 × 108 sec-1 in Anacystis. At 77°K, this rate constant for Chl a that fluoresces at 685 nm remains, in the first approximation, the same as at room temperature. From the τ data, the rate constant for the trapping of excitation energy is calculated to be about 1.2 × 109 sec-1 for Chlorella, 2 × 109 sec-1 for Porphyridium, and 2 × 109 sec-1 for Anacystis. The efficiency of trapping is calculated to be about 66% (Chlorella), 68% (Porphyridium), and 60% (Anacystis). (It is recognized that variations in the above values are to be expected if algae grown under different conditions are used for experimentation.) The maximum quantum yield of Chl a fluorescence for system II (λ, 632.8 nm), calculated from τ measurements, is about 10% in Chlorella, 6-7% in Porhyridium, and 5% in Anacystis under conditions when photosynthesis is not operative; the values at 77°K appear to be very close to those with DCMU added at room temperature. ø for F-730 at 77°K, however, is somewhat higher than for F-685. The predicted quantum yields of fluorescence for Chl a in intact cells (both systems I and II) at low intensities of 632.8 nm light are about 2-3, 1-2, and 1% for Chlorella, Porphyridium, and Anacystis, respectively.  相似文献   

15.
An endoglucanase was isolated from cell walls of Zea mays seedlings. Characterization of the hydrolytic activity of this glucanase using model substrates indicated a high specificity for molecules containing intramolecular (1→3),(1→4)-β-d-glucosyl sequences. Substrates with (1→4)-β-glucosyl linkages, such as carboxymethylcellulose and xyloglucan were, degraded to a limited extent by the enzyme, whereas (1→3)-β-glucans such as laminarin were not hydrolyzed. When (1→3),(1→4)-β-d-glucan from Avena endosperm was used as a model substrate a rapid decrease in vicosity was observed concomitant with the formation of a glucosyl polymer (molecular weight of 1-1.5 × 104). Activity against a water soluble (1→3),(1→4)-β-d-glucan extracted from Zea seedling cell walls revealed the same depolymerization pattern. The size of the limit products would indicate that a unique recognition site exists at regular intervals within the (1→3),(1→4)-β-d-glucan molecule. Unique oligosaccharides isolated from the Zea (1→3),(1→4)-β-d-glucan that contained blocks of (1→4) linkages and/or more than a single contiguous (1→3) linkage were hydrolyzed by the endoglucanase. The unique regions of the (1→3),(1→4)-β-d-glucan may be the recognition-hydrolytic site of the Zea endoglucanase.  相似文献   

16.
17.
The swamp eel, Monopterus albus, can survive in high concentrations of ammonia (>75 mmol l−1) and accumulate ammonia to high concentrations in its brain (∼4.5 µmol g−1). Na+/K+-ATPase (Nka) is an essential transporter in brain cells, and since NH4 + can substitute for K+ to activate Nka, we hypothesized that the brain of M. albus expressed multiple forms of Nka α-subunits, some of which might have high K+ specificity. Thus, this study aimed to clone and sequence the nka α-subunits from the brain of M. albus, and to determine the effects of ammonia exposure on their mRNA expression and overall protein abundance. The effectiveness of NH4 + to activate brain Nka from M. albus and Mus musculus was also examined by comparing their Na+/K+-ATPase and Na+/NH4 +-ATPase activities over a range of K+/NH4 + concentrations. The full length cDNA coding sequences of three nkaα (nkaα1, nkaα3a and nkaα3b) were identified in the brain of M. albus, but nkaα2 expression was undetectable. Exposure to 50 mmol l−1 NH4Cl for 1 day or 6 days resulted in significant decreases in the mRNA expression of nkaα1, nkaα3a and nkaα3b. The overall Nka protein abundance also decreased significantly after 6 days of ammonia exposure. For M. albus, brain Na+/NH4 +-ATPase activities were significantly lower than the Na+/K+-ATPase activities assayed at various NH4 +/K+ concentrations. Furthermore, the effectiveness of NH4 + to activate Nka from the brain of M. albus was significantly lower than that from the brain of M. musculus, which is ammonia-sensitive. Hence, the (1) lack of nkaα2 expression, (2) high K+ specificity of K+ binding sites of Nkaα1, Nkaα3a and Nkaα3b, and (3) down-regulation of mRNA expression of all three nkaα isoforms and the overall Nka protein abundance in response to ammonia exposure might be some of the contributing factors to the high brain ammonia tolerance in M. albus.  相似文献   

18.
Bacterial community composition, enzymatic activities, and carbon dynamics were examined during diatom blooms in four 200-liter laboratory seawater mesocosms. The objective was to determine whether the dramatic shifts in growth rates and ectoenzyme activities, which are commonly observed during the course of phytoplankton blooms and their subsequent demise, could result from shifts in bacterial community composition. Nutrient enrichment of metazoan-free seawater resulted in diatom blooms dominated by a Thalassiosira sp., which peaked 9 days after enrichment (≈24 μg of chlorophyll a liter−1). At this time bacterial abundance abruptly decreased from 2.8 × 106 to 0.75 × 106 ml−1, and an analysis of bacterial community composition, by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments, revealed the disappearance of three dominant phylotypes. Increased viral and flagellate abundances suggested that both lysis and grazing could have played a role in the observed phylotype-specific mortality. Subsequently, new phylotypes appeared and bacterial production, abundance, and enzyme activities shifted from being predominantly associated with the <1.0-μm size fraction towards the >1.0-μm size fraction, indicating a pronounced microbial colonization of particles. Sequencing of DGGE bands suggested that the observed rapid and extensive colonization of particulate matter was mainly by specialized α-Proteobacteria- and Cytophagales-related phylotypes. These particle-associated bacteria had high growth rates as well as high cell-specific aminopeptidase, β-glucosidase, and lipase activities. Rate measurements as well as bacterial population dynamics were almost identical among the mesocosms indicating that the observed bacterial community dynamics were systematic and repeatable responses to the manipulated conditions.  相似文献   

19.
Voltage-gated Na+ channels in the brain are composed of a single pore-forming α subunit, one non-covalently linked β subunit (β1 or β3), and one disulfide-linked β subunit (β2 or β4). The final step in Na+ channel biosynthesis in central neurons is concomitant α-β2 disulfide linkage and insertion into the plasma membrane. Consistent with this, Scn2b (encoding β2) null mice have reduced Na+ channel cell surface expression in neurons, and action potential conduction is compromised. Here we generated a series of mutant β2 cDNA constructs to investigate the cysteine residue(s) responsible for α-β2 subunit covalent linkage. We demonstrate that a single cysteine-to-alanine substitution at extracellular residue Cys-26, located within the immunoglobulin (Ig) domain, abolishes the covalent linkage between α and β2 subunits. Loss of α-β2 covalent complex formation disrupts the targeting of β2 to nodes of Ranvier in a myelinating co-culture system and to the axon initial segment in primary hippocampal neurons, suggesting that linkage with α is required for normal β2 subcellular localization in vivo. WT β2 subunits are resistant to live cell Triton X-100 detergent extraction from the hippocampal axon initial segment, whereas mutant β2 subunits, which cannot form disulfide bonds with α, are removed by detergent. Taken together, our results demonstrate that α-β2 covalent association via a single, extracellular disulfide bond is required for β2 targeting to specialized neuronal subcellular domains and for β2 association with the neuronal cytoskeleton within those domains.  相似文献   

20.
N2,3-Ethenoguanine (N2,3-ϵG) is one of the exocyclic DNA adducts produced by endogenous processes (e.g. lipid peroxidation) and exposure to bioactivated vinyl monomers such as vinyl chloride, which is a known human carcinogen. Existing studies exploring the miscoding potential of this lesion are quite indirect because of the lability of the glycosidic bond. We utilized a 2′-fluoro isostere approach to stabilize this lesion and synthesized oligonucleotides containing 2′-fluoro-N2,3-ϵ-2′-deoxyarabinoguanosine to investigate the miscoding potential of N2,3-ϵG by Y-family human DNA polymerases (pols). In primer extension assays, pol η and pol κ replicated through N2,3-ϵG, whereas pol ι and REV1 yielded only 1-base incorporation. Steady-state kinetics revealed that dCTP incorporation is preferred opposite N2,3-ϵG with relative efficiencies in the order of pol κ > REV1 > pol η ≈ pol ι, and dTTP misincorporation is the major miscoding event by all four Y-family human DNA pols. Pol ι had the highest dTTP misincorporation frequency (0.71) followed by pol η (0.63). REV1 misincorporated dTTP and dGTP with much lower frequencies. Crystal structures of pol ι with N2,3-ϵG paired to dCTP and dTTP revealed Hoogsteen-like base pairing mechanisms. Two hydrogen bonds were observed in the N2,3-ϵG:dCTP base pair, whereas only one appears to be present in the case of the N2,3-ϵG:dTTP pair. Base pairing mechanisms derived from the crystal structures explain the slightly favored dCTP insertion for pol ι in steady-state kinetic analysis. Taken together, these results provide a basis for the mutagenic potential of N2,3-ϵG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号